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Abstract – This paper presents a method for detect-
ing and locating esophageal tumors using electrical
impedance tomography (EIT) based on the modified
total variation (MTV) regularization algorithm, utilizing
a four-layer electrode array balloon detection structure.
The optimal structure of the electrode array was obtained
using the uniform design (UD) method. By integrating
esophageal tissue structure information, physical mod-
els containing tumors at different locations were con-
structed. Using the adjacent excitation mode, the study
compared average voltage, voltage dynamic range, and
boundary voltage changes of electrode pairs within one-
quarter of a cycle to analyze esophageal tumor char-
acteristics. By comparing the correlation coefficients,
relative errors, and imaging times of three reconstruc-
tion algorithms, the MTV algorithm, which best matches
the morphological characteristics of the esophagus, was
selected for image reconstruction. The calculated tumor
height showed an error (∆H) within 1 mm, indicating that
EIT can provide vital information on the position, size,
and electrical properties of esophageal tumors, demon-
strating significant potential for clinical application in
esophageal examinations.

Index Terms – Electrical impedance imaging,
esophageal tumor, finite element inverse problem.

I. INTRODUCTION
Gastrointestinal tumors are a category of high-risk

cancers, accounting for five of the top ten most common
cancer types globally, with esophageal cancer particu-
larly notable for its high incidence and mortality rates [1–
2]. Esophageal tumors, malignant growths originating
from the epithelial tissue of the esophagus, have the best
treatment outcomes when detected early, hence timely
detection can improve patient survival rates [3].

Traditional diagnostic methods for esophageal can-
cer have several limitations. For example, esophageal
biopsies can cause bleeding and other complications, and
CT scans are relatively expensive and involve radiation
exposure. Because of the significant electrical property
differences between tumor tissues and normal tissues
[4], non-invasive and safe electrical impedance tomog-
raphy (EIT) can reconstruct the electrical property distri-
bution of the esophagus, obtain anatomical information,
and facilitate the detection of esophageal conditions, fur-
ther reflecting the positional information of pathological
tissues.

EIT originated in archaeological geophysics and
is characterized by functional imaging. Being non-
destructive and non-invasive, it is gaining extensive
application in medical diagnostics. After decades of
research and innovation, EIT’s clinical utility has been
confirmed in monitoring lung function [5–6] and breast
cancer [7], and it has shown potential in detecting seizure
zones [8], strokes [9], and cerebral edema during dehydra-
tion treatment [10]. In recent years, many research teams
have started using EIT for studies on the gastrointestinal
tract, primarily focusing on the stomach. Research from
the Chinese Academy of Medical Sciences has shown that
EIT can non-invasively detect and assess gastric motility
functions [11], and scholars at home and abroad have
expanded its application to studies on gastric transport,
gastric emptying [12–13], and the relationship between
gastric fluid pH and conductivity [14–15]. Medical diag-
nostics based on EIT mainly involve external monitoring
devices placed outside the monitored area. Recently,
intraluminal impedance tomography has also been devel-
oped. For instance, evaluating the efficacy of localized
prostate cancer ablation using a multi-electrode urethral
impedance probe [16], and a needle-based impedance
imaging system for tissue classification [17].
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However, research on esophageal wall impedance
imaging is still in its early stages. In this study, utiliz-
ing the structural information and prior knowledge of
the conductivity of esophageal tissues and tumors, and
employing a detection balloon device with a four-layer
electrode array at varying depths, we analyze esophageal
tissue functions and determine the location of esophageal
tumors through model design, finite element calcula-
tions, and reconstruction algorithms.

II. THEORETICAL METHOD
A. Model establishment

Based on the optimal structure discussed later in this
paper, the model was constructed and algorithm anal-
ysis was performed using the balloon detection device
shown in Fig. 1 (a). The detection balloon contains four
arrays of sensing electrodes, spaced 20 mm apart, with
each array consisting of six uniformly arranged elec-

(a)

(b)

Fig. 1. (a) Detection balloon and (b) esophageal model
structure.

trodes. Data collection for the electric field is achieved
by slowly infusing the sealed balloon, allowing the sur-
face electrodes of the balloon to make sufficient contact
with the inner wall of the esophagus.

The human esophagus is approximately 25-30 cm
in length, varying with individual chest lengths, has a
wall thickness of 3-4 mm and a diameter of about 2
cm, and contains three narrow sections. By integrat-
ing esophageal tissue structure information, a three-
dimensional EIT electric field model of a healthy esopha-
gus and esophageal tumors was established using COM-
SOL to solve the forward problem. In studying the
impact of the placement of a balloon within the esoph-
agus on its morphological structure, the modeling con-
sidered two typical forms: Type 1 containing narrow
sections and Type 2 without narrow sections. Healthy
esophageal tissue is divided from the inside out into
three layers: the mucosal layer, muscle layer, and outer
layer, with respective thicknesses of 1 mm, 2 mm, and
1 mm. A two-dimensional cross-sectional structure of
esophageal tissue is shown in Fig. 2 (b). The electrode-
covered length of the esophagus is 10 cm, with tumors
located at 5 cm (h5) and 8 cm (h8) positions in both Type
1 and Type 2, resulting in a model of the esophagus with
a radius of 2, as shown in Fig. 2.

Fig. 2. Three-dimensional simulation model of the
esophagus: (a) Type 1 including narrow areas, (b) model
1 h5, (c) model 2 h8, (d) Type 2 excluding narrow areas,
(e) model 3 h5, and (f) model 4 h8.

B. UD optimization theory
The electrode array was optimized using a uniform

design (UD) method based on finite element simulation.
UD was introduced by Fang and Wang [18] in 1980, uti-
lizing number theory to uniformly distribute sampling
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points in space. This method enhances optimization effi-
ciency, making it widely applicable in experiments. The
general steps for multivariate optimization are as fol-
lows:

(1) Identify the variables and their search ranges, and
set an appropriate number of levels for each vari-
able.

(2) Select an appropriate UD table. Typically, a UD
table is denoted as Un(qm), where n represents the
number of experimental runs, m represents the num-
ber of variables, and each variable has q levels [19].

(3) Determine the variable combinations based on the
UD table and conduct the experiments.

(4) Analyze the experimental results to identify the
”optimal” variable combination that corresponds
to the maximization/minimization of the objective
function.

(5) Based on the optimal variable combination, narrow
down the search range for the next round of experi-
ments. Repeat this process until the objective func-
tion stabilizes, at which point the final variable com-
bination is obtained.

In this experiment, the standard deviation of cur-
rent density is used to evaluate the uniformity of current
distribution within the body. By comparing the standard
deviations under different electrode array configurations,
the configuration that yields the most uniform current
distribution can be selected. The mathematical expres-
sion for the electrode array optimization objective func-
tion is:

σJ =

√
1
N

N

∑
i=1

(Ji − J)2, (1)

where Jiis the current density value at the i-th sampling
point, J is the mean current density, and N is the total
number of sampling points.

C. Solving the forward problem
The solution to electrical impedance imaging is

derived through Maxwell’s equations, which formulate a
mathematical model for the electromagnetic field prob-
lem. Here, the forward problem involves knowing the
conductivity distribution within a region and the bound-
ary drive signals, and solving for the voltage distribu-
tion both inside and at the boundaries, essentially solv-
ing the boundary value problem of the electromagnetic
field. The excitation current generates a specific electro-
magnetic field in the target area and, using electromag-
netic field theory, an EIT mathematical model is con-
structed. The potential distribution function ϕwithin the
field and the conductivity distribution function σsatisfy
the Laplace equation:

∇• [σ (x,y)∇φ (x,y)] = 0,(x,y) ∈ Ω. (2)

The boundary conditions are:
φ (x,y) = f (x,y) ,(x,y) ∈ ∂Ω, (3)

σ (x,y)
∂φ (x,y)

∂n
= j (x,y) ,(x,y) ∈ ∂Ω. (4)

In equations (3) and (4), ∂Ω represents the bound-
ary of the field domain, f represents the known boundary
potential, jrepresents the current density flowing into the
field domain Ω, and n represents the outward unit normal
vector of the field domain.

In the simulated esophageal model, the electrical
conductivity parameters are set as follows: mucosal con-
ductivity is 1.02 S/m, muscle conductivity is 1.16 S/m,
outer layer conductivity is 0.82 S/m, and electrode con-
ductivity is 5.96×107 S/m. Tumor staging is an impor-
tant means to evaluate the development of cancer, based
on factors such as tumor size and depth of invasion.
T1a denotes an early-stage tumor, while T2a represents
an intermediate stage of cancer with a larger tumor
size. To simulate different stages of tumor tissue, the
esophageal lesion sizes and conductivities are set accord-
ing to Table 1 in references [20–22].

Table 1: Tumor parameters of the esophagus
Parameter T1a T2a

Radius (mm) 2 3
Conductivity (S/m) 2.98∼3.21 3.65∼4.28

This study used 10 kHz, 5 mA alternating current for
excitation. The adjacent excitation mode was employed,
where current was injected between two adjacent elec-
trode pairs, and the differential voltage was measured
across other adjacent electrode pairs. This process was
repeated with different electrode pairs until all pairs were
used for excitation, resulting in a total of 504 boundary
voltage data points used for EIT image reconstruction.

D. Image reconstruction
The inverse problem of EIT involves determining

the distribution or changes in bioelectric resistivity given
known voltage distributions and boundary information.
A simulation was conducted using COMSOL and MAT-
LAB, and a mesh was generated in EIDORS. The voltage
data obtained from the forward simulation was used to
reconstruct the esophageal EIT images using three algo-
rithms: Laplace prior Gauss-Newton method, Tikhonov
regularization, and conjugate gradient.

The Laplace prior Gauss-Newton method is per-
formed within a Bayesian inference framework to esti-
mate the posterior distribution of model parameters. The
objective function is expressed as:

S(θ) =
N

∑
i=1

(yi − f (xi;θ))2 +λ

M

∑
j=1

|θ j|. (5)

In this context, λ is the regularization factor con-
trolling the strength of the regularization term and |θ j|
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represents the L1 norm, which encourages sparsity in the
parameters θ j.

The motivation behind regularization methods is to
address the numerical instability caused by ill-posed
problems. The Tikhonov regularization method intro-
duces a penalty term with an L2 norm to constrain the
solution, and its objective function can be expressed as:

ET ik(g) =
1
2
∥ Ag−b ∥2

2 +λT ik ∥ L(g− ḡ) ∥2 . (6)

In equation (6), the first term is the fidelity term and
the second term is the penalty term. λT ik is the regulariza-
tion factor, ḡ is the estimated value obtained from prior
information, and L is a specific differential operator.

Modified total variation (MTV) regularization
defines the minimization objective function for three-
dimensional EIT as:

E(σ ,u) = min
σ ,u

{ 1
2 ∥Vmeasured −Vsimulated(σ) ∥2

2 +
λ1 ∥ σ −u ∥2

2 +λ2 ∥ u ∥ TV

}
.

(7)
In equation (7), Vmeasured represents the actual mea-

sured voltage data and Vsimulated(σ) represents the simu-
lated voltage calculated based on the current conductiv-
ity distribution σ . λ1 and λ2are regularization parameters
that control the contribution weights of the smoothing
term and the total variation term to the overall optimiza-
tion problem.

This function is used with an alternating minimiza-
tion method. When u is fixed in equation (8), σ is
updated to minimize the difference with the measured
voltage and the auxiliary variable. When σ is fixed in
equation (9), u is updated to minimize the difference
with σ and the total variation. By alternately fixing u
and σ , the nonlinear conjugate gradient method and the
split Bregman method are used to iteratively solve for σ

and u. Convergence is checked by examining whether ∥
σ (k+1)−σ (k) ∥ is less than a preset threshold or whether
the maximum number of iterations has been reached:

σ
(k+1) = argmin

σ

{ 1
2 ∥Vmeasured −Vsimulated(σ) ∥2

2 +

λ1 ∥ σ −u(k) ∥2
2

}
,

(8)

u(k+1) = argmin
u

{
λ1 ∥ σ (k+1)−u ∥2

2 +
λ2 ∥ u ∥ TV

}
. (9)

The image quality is quantitatively evaluated using
the correlation coefficient (CC) and relative error (RE),
and the accuracy of tumor localization is assessed using
the height error (∆H) method.

(1) Correlation coefficient

The correlation coefficient evaluates the correlation
between the actual conductivity distribution and the
reconstructed result, defined as:

CC =

z
∑

i=1
(ξ ∗− ξ̄ ) · (ξ − ξ̄ )

z
∑

i=1
(ξ ∗− ξ̄∗)2 ·

z
∑

i=1
(ξ − ξ̄ )2

. (10)

(2) Image relative error

The image relative error evaluates the deviation
between the reconstructed conductivity distribution
and the actual conductivity distribution, assessing
the deviation between the reconstructed image and
the ideal image. It is defined as:

RE =
∥ξ ∗− ξ∥ 2

∥ξ∥2
. (11)

In this context, ξ represents the actual distribution
of electrical conductivity within the field, ξ̄ denotes
the mean of ξ , ξ ∗ signifies the computed distribu-
tion of electrical conductivity, and ξ̄∗ stands for the
mean of ξ ∗. A smaller RE and a closer CC to 1 indi-
cate a more accurate reconstruction of the image.

(3) Height error

Establishing a coordinate system with the electrode
covering the esophageal section, with the center
of the bottom cross-sectional circle as the coordi-
nate origin, let the actual height of the tumor be H
and the simulated calculated height be h. Then, the
height error is defined as:

∆H = |H −h|. (12)

A smaller height error, ∆H, reflects a better recon-
struction of the imaging results.

III. EXPERIMENTAL RESULTS AND
ANALYSIS

A. Optimization of electrode array
Table 2 lists the five parameters to be optimized

along with their respective optimization ranges. Below
are the criteria and explanations for selecting these
parameters:

(1) The electrodes are attached to the surface of the
balloon, with the width represented by the central
angle. Furthermore, the product of the electrode unit
width and the number of electrodes in a single layer
must be less than 360◦.

Table 2: Electrode array optimization parameters
Variable Unit Level

L Electrode length mm [5.2,14.8]
D Electrode width deg [20,32]

T Electrode thickness mm [1.2,2.4]
S1 Number of electrodes per layer [3,15]

S2 Number of electrode layers [1,13]
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(2) The product of the electrode length and the number
of electrode layers must be less than the length of
the target region.

(3) If the number of electrodes results in a decimal
value, then it should be rounded to the nearest
integer.

Table 3 presents the UD for the first round of elec-
trode array optimization. Un(135) UD was selected, with
a deviation D=0.0194, indicating good uniformity that
meets the design requirements of this study. The num-
bers in parentheses represent the sampling points of UD,
and the actual optimization parameters can be calculated
based on the corresponding sampling points. For exam-
ple, the first sampling point combination in Un(135) is
(11, 6, 10, 2, 3), which corresponds to the variable com-
bination of optimization parameters (L, D, T, S1, S2) as
(13.2, 25, 2.1, 4, 3).

Table 3: UD table for the first round of electrode array
parameter optimization

No. L D T S1 S2
1 13.2(11) 25(6) 2.1(10) 4(2) 3(3)
2 9.2(6) 27(8) 2.4(13) 8(6) 10(10)
3 8.4(5) 32(13) 1.4(3) 9(7) 2(2)
4 6(2) 26(7) 1.3(2) 13(11) 11(11)
5 14.8(13) 28(9) 1.5(4) 12(10) 5(5)
6 11.6(9) 24(5) 1.2(1) 7(5) 7(7)
7 14(12) 21(2) 2.3(12) 11(9) 1(1)
8 6.8(3) 22(3) 1.9(8) 10(8) 12(12)
9 7.6(4) 31(12) 1.6(5) 3(1) 9(9)

10 5.2(1) 29(10) 2(9) 6(4) 6(6)
11 10.8(8) 30(11) 1.7(6) 5(3) 13(13)
12 10(7) 20(1) 1.8(7) 15(13) 4(4)
13 12.4(10) 23(4) 2.2(11) 13(12) 8(8)

According to the UD update method, the optimiza-
tion trajectory of the electrode array is shown in Fig. 3.
As can be seen from Fig. 3, after three rounds of UDs,
the objective function tends to stabilize and reaches its
minimum value. The optimal parameters of the electrode
array are shown in Table 4.

Table 4: Optimal electrode array structural parameters
L (mm) D (deg) T (mm) S1 S2

10 30 1.9 6 4

B. Positive simulation results
Figure 4 presents the simulation results obtained

using the finite element method under uniform exci-
tation conditions, with Fig. 4 (c) showing the two-

Note: The parameters for the 11th experiment were inconsistent
and thus excluded.

Fig. 3. Trace plot of electrode array optimization.

dimensional cross-sectional electric potential distribu-
tion of esophageal tumors. There is a significant differ-
ence in the electric potential distribution between healthy
esophagi and those with tumors, for the same esophageal
morphology. Furthermore, when the tumor position is
fixed, the electric potential distribution varies with differ-
ent esophageal morphologies. Figure 5 shows the aver-
age voltage and voltage dynamic range results for six
scenarios obtained by simulating the esophagus with-
out tumors in two esophageal morphologies, and with
tumors of radii 2 mm and 3 mm at positions 5 cm and
8 cm in the esophagus. The voltage dynamic range is

Table 2: Electrode array optimization parameters 

Variable Unit Level 

L Electrode length mm [5.2,14.8] 

D Electrode width deg [20,32] 

T Electrode thickness mm [1.2,2.4] 

S1 Number of electrodes per 

layer 

 [3,15] 

S2 Number of electrode layers  [1,13] 

 

Table 3: UD table for the first round of electrode array 

parameter optimization 

No. L D T S1 S2 

1 13.2(11) 25(6) 2.1(10) 4(2) 3(3) 

2 9.2(6) 27(8) 2.4(13) 8(6) 10(10) 

3 8.4(5) 32(13) 1.4(3) 9(7) 2(2) 

4 6(2) 26(7) 1.3(2) 13(11) 11(11) 

5 14.8(13) 28(9) 1.5(4) 12(10) 5(5) 

6 11.6(9) 24(5) 1.2(1) 7(5) 7(7) 

7 14(12) 21(2) 2.3(12) 11(9) 1(1) 

8 6.8(3) 22(3) 1.9(8) 10(8) 12(12) 

9 7.6(4) 31(12) 1.6(5) 3(1) 9(9) 

10 5.2(1) 29(10) 2(9) 6(4) 6(6) 

11 10.8(8) 30(11) 1.7(6) 5(3) 13(13) 

12 10(7) 20(1) 1.8(7) 15(13) 4(4) 

13 12.4(10) 23(4) 2.2(11) 13(12) 8(8) 

 
Note: The parameters for the 11th experiment were 

inconsistent and thus excluded. 

Fig. 3. Trace plot of electrode array optimization. 

 

Table 4: Optimal electrode array structural parameters 

L (mm) D (deg) T (mm) S1 S2 

10 30 1.9 6 4 

 

Table 3 presents the UD for the first round of 

electrode array optimization. Un(135) UD was selected, 

with a deviation D=0.0194, indicating good uniformity 

that meets the design requirements of this study. The 

numbers in parentheses represent the sampling points of 

UD, and the actual optimization parameters can be 

calculated based on the corresponding sampling points. 

For example, the first sampling point combination in 

Un(135) is (11, 6, 10, 2, 3), which corresponds to the 

variable combination of optimization parameters (L, D, 

T, S1, S2) as (13.2, 25, 2.1, 4, 3). 

According to the UD update method, the 

optimization trajectory of the electrode array is shown in 

Fig. 3. As can be seen from Fig. 3, after three rounds of 

UDs, the objective function tends to stabilize and reaches 

its minimum value. The optimal parameters of the 

electrode array are shown in Table 4. 

 

B. Positive simulation results 

Figure 4 presents the simulation results obtained 

using the finite element method under uniform excitation 

conditions, with Fig. 4 (c) showing the two-dimensional 

cross-sectional electric potential distribution of 

esophageal tumors. There is a significant difference in 

the electric potential distribution between healthy 

esophagi and those with tumors, for the same esophageal 

morphology. Furthermore, when the tumor position is 

fixed, the electric potential distribution varies with 

different esophageal morphologies. Figure 5 shows the 

average voltage and voltage dynamic range results for 

six scenarios obtained by simulating the esophagus 

without tumors in two esophageal morphologies, and 

with tumors of radii 2 mm and 3 mm at positions 5 cm 

and 8 cm in the esophagus. The voltage dynamic range 

is defined as: 

max
DR 10

min

20log
 

  
 

V
V dB

V
.                    (12) 

In the formula, maxV  and minV  represent the maximum 

and minimum voltage, respectively.  

 

 
 

Fig. 4. Simulated distribution of esophageal potential: 
(a) Type 1 healthy esophagus, (b) model 1 (c) model 2, 

(d) Type 2 healthy esophagus, (e) model 3, and (f) model 

4. 

(a) (b)

Table 2: Electrode array optimization parameters 

Variable Unit Level 

L Electrode length mm [5.2,14.8] 

D Electrode width deg [20,32] 

T Electrode thickness mm [1.2,2.4] 

S1 Number of electrodes per 

layer 

 [3,15] 

S2 Number of electrode layers  [1,13] 

 

Table 3: UD table for the first round of electrode array 

parameter optimization 

No. L D T S1 S2 

1 13.2(11) 25(6) 2.1(10) 4(2) 3(3) 

2 9.2(6) 27(8) 2.4(13) 8(6) 10(10) 

3 8.4(5) 32(13) 1.4(3) 9(7) 2(2) 

4 6(2) 26(7) 1.3(2) 13(11) 11(11) 

5 14.8(13) 28(9) 1.5(4) 12(10) 5(5) 

6 11.6(9) 24(5) 1.2(1) 7(5) 7(7) 

7 14(12) 21(2) 2.3(12) 11(9) 1(1) 

8 6.8(3) 22(3) 1.9(8) 10(8) 12(12) 

9 7.6(4) 31(12) 1.6(5) 3(1) 9(9) 

10 5.2(1) 29(10) 2(9) 6(4) 6(6) 

11 10.8(8) 30(11) 1.7(6) 5(3) 13(13) 

12 10(7) 20(1) 1.8(7) 15(13) 4(4) 

13 12.4(10) 23(4) 2.2(11) 13(12) 8(8) 

 
Note: The parameters for the 11th experiment were 

inconsistent and thus excluded. 

Fig. 3. Trace plot of electrode array optimization. 

 

Table 4: Optimal electrode array structural parameters 

L (mm) D (deg) T (mm) S1 S2 

10 30 1.9 6 4 

 

Table 3 presents the UD for the first round of 

electrode array optimization. Un(135) UD was selected, 

with a deviation D=0.0194, indicating good uniformity 

that meets the design requirements of this study. The 

numbers in parentheses represent the sampling points of 

UD, and the actual optimization parameters can be 

calculated based on the corresponding sampling points. 

For example, the first sampling point combination in 

Un(135) is (11, 6, 10, 2, 3), which corresponds to the 

variable combination of optimization parameters (L, D, 

T, S1, S2) as (13.2, 25, 2.1, 4, 3). 

According to the UD update method, the 

optimization trajectory of the electrode array is shown in 

Fig. 3. As can be seen from Fig. 3, after three rounds of 

UDs, the objective function tends to stabilize and reaches 

its minimum value. The optimal parameters of the 

electrode array are shown in Table 4. 

 

B. Positive simulation results 

Figure 4 presents the simulation results obtained 

using the finite element method under uniform excitation 

conditions, with Fig. 4 (c) showing the two-dimensional 

cross-sectional electric potential distribution of 

esophageal tumors. There is a significant difference in 

the electric potential distribution between healthy 

esophagi and those with tumors, for the same esophageal 

morphology. Furthermore, when the tumor position is 

fixed, the electric potential distribution varies with 

different esophageal morphologies. Figure 5 shows the 

average voltage and voltage dynamic range results for 

six scenarios obtained by simulating the esophagus 

without tumors in two esophageal morphologies, and 

with tumors of radii 2 mm and 3 mm at positions 5 cm 

and 8 cm in the esophagus. The voltage dynamic range 

is defined as: 

max
DR 10

min

20log
 

  
 

V
V dB

V
.                    (12) 

In the formula, maxV  and minV  represent the maximum 

and minimum voltage, respectively.  

 

 
 

Fig. 4. Simulated distribution of esophageal potential: 
(a) Type 1 healthy esophagus, (b) model 1 (c) model 2, 

(d) Type 2 healthy esophagus, (e) model 3, and (f) model 

4. 

(c) (d)

Table 2: Electrode array optimization parameters 

Variable Unit Level 

L Electrode length mm [5.2,14.8] 

D Electrode width deg [20,32] 

T Electrode thickness mm [1.2,2.4] 

S1 Number of electrodes per 

layer 

 [3,15] 

S2 Number of electrode layers  [1,13] 

 

Table 3: UD table for the first round of electrode array 

parameter optimization 

No. L D T S1 S2 

1 13.2(11) 25(6) 2.1(10) 4(2) 3(3) 

2 9.2(6) 27(8) 2.4(13) 8(6) 10(10) 

3 8.4(5) 32(13) 1.4(3) 9(7) 2(2) 

4 6(2) 26(7) 1.3(2) 13(11) 11(11) 

5 14.8(13) 28(9) 1.5(4) 12(10) 5(5) 

6 11.6(9) 24(5) 1.2(1) 7(5) 7(7) 

7 14(12) 21(2) 2.3(12) 11(9) 1(1) 

8 6.8(3) 22(3) 1.9(8) 10(8) 12(12) 

9 7.6(4) 31(12) 1.6(5) 3(1) 9(9) 

10 5.2(1) 29(10) 2(9) 6(4) 6(6) 

11 10.8(8) 30(11) 1.7(6) 5(3) 13(13) 

12 10(7) 20(1) 1.8(7) 15(13) 4(4) 

13 12.4(10) 23(4) 2.2(11) 13(12) 8(8) 

 
Note: The parameters for the 11th experiment were 

inconsistent and thus excluded. 

Fig. 3. Trace plot of electrode array optimization. 

 

Table 4: Optimal electrode array structural parameters 

L (mm) D (deg) T (mm) S1 S2 

10 30 1.9 6 4 

 

Table 3 presents the UD for the first round of 

electrode array optimization. Un(135) UD was selected, 

with a deviation D=0.0194, indicating good uniformity 

that meets the design requirements of this study. The 

numbers in parentheses represent the sampling points of 
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According to the UD update method, the 

optimization trajectory of the electrode array is shown in 

Fig. 3. As can be seen from Fig. 3, after three rounds of 

UDs, the objective function tends to stabilize and reaches 

its minimum value. The optimal parameters of the 

electrode array are shown in Table 4. 

 

B. Positive simulation results 
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using the finite element method under uniform excitation 

conditions, with Fig. 4 (c) showing the two-dimensional 

cross-sectional electric potential distribution of 

esophageal tumors. There is a significant difference in 

the electric potential distribution between healthy 
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fixed, the electric potential distribution varies with 

different esophageal morphologies. Figure 5 shows the 

average voltage and voltage dynamic range results for 
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and 8 cm in the esophagus. The voltage dynamic range 

is defined as: 
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and minimum voltage, respectively.  

 

 
 

Fig. 4. Simulated distribution of esophageal potential: 
(a) Type 1 healthy esophagus, (b) model 1 (c) model 2, 

(d) Type 2 healthy esophagus, (e) model 3, and (f) model 

4. 

(e) (f)

Fig. 4. Simulated distribution of esophageal potential: (a)
Type 1 healthy esophagus, (b) model 1, (c) model 2, (d)
Type 2 healthy esophagus, (e) model 3, and (f) model 4.
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(a) (b)

Fig. 5. (a) Average voltage and (b) voltage dynamic
range of different models.

defined as:

VDR = 20log10

(
Vmax

Vmin

)
dB. (13)

In the formula, Vmaxand Vminrepresent the maximum
and minimum voltage, respectively.

In the two types of models with tumor radii of 2 mm
and 3 mm, the average voltage in the esophagus with
tumors is lower than in the healthy esophagus, reflect-
ing that the higher electrical conductivity of tumor tis-
sue reduces the local potential. This result validates the
application value of impedance imaging in distinguish-

In the two types of models with tumor radii of 2 mm and 

3 mm, the average voltage in the esophagus with tumors 

is lower than in the healthy esophagus, reflecting that the 

higher electrical conductivity of tumor tissue reduces the 

local potential. This result validates the application value 

of impedance imaging in distinguishing between normal 

and pathological esophageal tissues. Meanwhile, the 

smaller voltage dynamic range indicates the high quality 

of the model reconstruction. 

 

 
Fig. 5. (a) Average voltage and (b) voltage dynamic 

range of different models. 

 

To investigate the effect of tumor position at different 

locations on boundary voltage, Fig. 1 (b) establishes a 

Cartesian coordinate system for the cross-section with 

the tumor located at 2 cm, recording the tumor position 

through angles. Figure 6 shows the variation in boundary 

voltage during one-fourth of the excitation signal cycle 

when electrodes 1 and 2 are the excitation electrode pair 

and the tumor is located at 30°, 90°, 150°, and -90°, with 

the other adjacent electrodes serving as measurement 

electrodes. To facilitate better comparison of the data in 

the figure, the measurement values of electrode pair 6-7 

are symmetrical about y=0. When the tumor is at 30°, the 

adjacent electrodes are 1 and 6. It can be clearly seen 

from Fig. 6 (a) that the largest changes are observed in 

the measurement electrode pairs 5-6 and 6-7, which are  

adjacent to the tumor. Similarly, in Figs. 6 (b-d), it is 

found that the closer the electrodes are to the tumor area, 

the greater the changes in the relevant measurement 

electrode pairs. This result suggests that the trend of 

changes in measurement electrode pairs can be used to 

preliminarily locate the tumor position. 

 

 
 

Fig. 6. Relationship between changes in boundary voltage and tumor location: (a) tumor located at 30°, (b) tumor 

located at 90°, (c) tumor located at 150°, and (d) tumor located at -90°.  
Fig. 6. Relationship between changes in boundary voltage and tumor location: (a) tumor located at 30◦, (b) tumor
located at 90◦, (c) tumor located at 150◦, and (d) tumor located at -90◦.

ing between normal and pathological esophageal tissues.
Meanwhile, the smaller voltage dynamic range indicates
the high quality of the model reconstruction.

To investigate the effect of tumor position at differ-
ent locations on boundary voltage, Fig. 1 (b) establishes
a Cartesian coordinate system for the cross-section with
the tumor located at 2 cm, recording the tumor position
through angles. Figure 6 shows the variation in boundary
voltage during one-fourth of the excitation signal cycle
when electrodes 1 and 2 are the excitation electrode pair
and the tumor is located at 30◦, 90◦, 150◦, and -90◦,
with the other adjacent electrodes serving as measure-
ment electrodes. To facilitate better comparison of the
data in the figure, the measurement values of electrode
pair 6-7 are symmetrical about y=0. When the tumor is at
30◦, the adjacent electrodes are 1 and 6. It can be clearly
seen from Fig. 6 (a) that the largest changes are observed
in the measurement electrode pairs 5-6 and 6-7, which
are adjacent to the tumor. Similarly, in Figs. 6 (b-d), it is
found that the closer the electrodes are to the tumor area,
the greater the changes in the relevant measurement elec-
trode pairs. This result suggests that the trend of changes
in measurement electrode pairs can be used to prelimi-
narily locate the tumor position.
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C. Reconstructed image comparison
In this study, we employed the Laplace prior Gauss-

Newton method, the Tikhonov regularization algorithm,
and the MTV algorithm to reconstruct EIT images of
the esophageal model. The imaging results were pre-
sented as two-dimensional slices with 0.01 mm inter-
vals. Figures 7 (a-c) illustrate the conductivity distribu-
tion of the esophagus at 4 cm, 5 cm, 6 cm, 7 cm, and
8 cm. Due to the inherent smoothness of the Tikhonov
regularization algorithm, the conductivity differences
between esophageal tissue and tumors were significant
and had clear boundaries, resulting in a blurred bound-
ary between the target and background regions [23]. The
application of the MTV algorithm ensured the contrast
of the reconstructed images, with better edge preser-
vation, effectively mitigating the excessive smoothing
issue caused by the Tikhonov algorithm. Table 2 pro-
vides a quantitative analysis of the imaging results at dif-
ferent layers using the correlation coefficient and rela-
tive error. Additionally, the reconstruction times for the
Laplace prior Gauss-Newton method, Tikhonov regu-
larization algorithm, and MTV algorithm were 1.163 s,
1.124 s, and 0.654 s, respectively.
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Fig. 7. Reconstruction images of different layers of the 

esophagus: (a) GN (Laplace prior), (b) Tikhonov 

regularization (TK), and (c) MTV. 

 

The results in Table 5 show that the imaging 

correlation coefficient of the MTV algorithm ranges 

from 0.797 to 0.845, and it has the smallest relative error. 

The imaging quality using the Laplace prior Gauss-

Newton method and Tikhonov regularization algorithm 

is reduced by an average of 24.02% and 16.96%, 

respectively. Therefore, due to its superior imaging 

quality and real-time performance, the MTV algorithm 

is particularly suitable for EIT in clinical esophageal 

detection scenarios that require handling large-scale 

high-dimensional data. 

 

Table 5: Evaluation of reconstructed images from 
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TK 4 cm 0.814 0.232 
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TK 7 cm 0.782 0.237 

MTV  0.830 0.193 

GN  0.692 0.247 

TK 8 cm 0.812 0.239 

MTV  0.823 0.201 

 

Using the MTV algorithm, the conductivity was set 

to 3.65 S/m, 3.94 S/m, and 4.28 S/m according to the 

conductivity range for a tumor radius of 3 mm as shown 

in Table 1. Voltage data were collected for each 

conductivity setting, and image reconstruction was 

performed using the conjugate gradient algorithm. 

Figure 8 shows that as the conductivity increases, the 

color of the esophageal lesion in the reconstructed image 

becomes darker, which corresponds to the actual 

situation. 

 

 
Fig. 8. Tumor reconstruction image slice. 

 

D. Positioning analysis 

Using the MTV algorithm for EIT, the 3D 

reconstructions of two different esophageal shapes with 

2 mm tumors located at 5 cm and 8 cm are shown in Fig. 

8. The tumor locations are indicated by black arrows in 

Figs. 8 (b-d). Table 6 presents the tumor layer height h 

after imaging and the results of evaluating the 3D 

reconstructed esophageal tumor positions using height 

error ΔH. Quantitative analysis shows that ΔH is within 

1 mm, further demonstrating that the esophageal 

reconstruction images obtained using this impedance 

imaging algorithm are closer to the original model, 

making tumor localization more accurate. This also 

proves the feasibility of using EIT for detecting 

esophageal tumors and its capability in localizing tumor 

regions. 
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Fig. 7. Reconstruction images of different layers of the
esophagus: (a) GN (Laplace prior), (b) Tikhonov regu-
larization (TK), and (c) MTV.

The results in Table 5 show that the imaging cor-
relation coefficient of the MTV algorithm ranges from
0.797 to 0.845, and it has the smallest relative error.
The imaging quality using the Laplace prior Gauss-
Newton method and Tikhonov regularization algorithm
is reduced by an average of 24.02% and 16.96%, respec-
tively. Therefore, due to its superior imaging quality
and real-time performance, the MTV algorithm is par-
ticularly suitable for EIT in clinical esophageal detec-

Table 5: Evaluation of reconstructed images from differ-
ent positions

Algorithm Position CC RE
GN 0.706 0.268
TK 4 cm 0.814 0.232

MTV 0.845 0.196
GN 0.723 0.256
TK 5 cm 0.784 0.244

MTV 0.797 0.213
GN 0.687 0.236
TK 6 cm 0.765 0.241

MTV 0.811 0.217
GN 0.715 0.258
TK 7 cm 0.782 0.237

MTV 0.830 0.193
GN 0.692 0.247
TK 8 cm 0.812 0.239

MTV 0.823 0.201

tion scenarios that require handling large-scale high-
dimensional data.

Using the MTV algorithm, the conductivity was
set to 3.65 S/m, 3.94 S/m, and 4.28 S/m according to
the conductivity range for a tumor radius of 3 mm as
shown in Table 1. Voltage data were collected for each
conductivity setting, and image reconstruction was per-
formed using the conjugate gradient algorithm. Figure 8
shows that as the conductivity increases, the color of the
esophageal lesion in the reconstructed image becomes
darker, which corresponds to the actual situation.

Fig. 8. Tumor reconstruction image slice.

D. Positioning analysis
Using the MTV algorithm for EIT, the 3D recon-

structions of two different esophageal shapes with 2 mm
tumors located at 5 cm and 8 cm are shown in Fig. 8.
The tumor locations are indicated by black arrows in
Figs. 8 (b-d). Table 6 presents the tumor layer height h
after imaging and the results of evaluating the 3D recon-
structed esophageal tumor positions using height error
∆H. Quantitative analysis shows that ∆H is within 1 mm,
further demonstrating that the esophageal reconstruction
images obtained using this impedance imaging algorithm
are closer to the original model, making tumor localiza-
tion more accurate. This also proves the feasibility of
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(a) (b) (c) (d)

Fig. 9. Results of three-dimensional reconstruction of the
esophagus based on simulation data: (a) model 1, (b)
model 2, (c) model 3, and (d) model 4.

Table 6: Height error of tumors at different locations
Parameter Model 1 Model 2 Model 3 Model 4

H (mm) 50.42 80.90 40.26 80.86
∆H (mm) 0.42 0.90 0.74 0.68

using EIT for detecting esophageal tumors and its capa-
bility in localizing tumor regions.

IV. CONCLUSION
This study employed the UD method to optimize

the electrode array and established EIT models for both
healthy esophagus and esophagus with tumors at dif-
ferent locations. We discussed the boundary voltage
changes of tumors at different positions on the same
horizontal plane, noting that the measurement electrode
pairs nearest to the tumor exhibited the most significant
changes. This trend was used for the preliminary local-
ization of the tumor. The Laplace prior Gauss-Newton
method, the Tikhonov regularization algorithm, and the
MTV algorithm were employed for image reconstruction
of the esophageal model. The MTV algorithm achieved
the highest imaging correlation coefficient and the small-
est relative error, while requiring the least amount of time
and providing the best imaging quality. MTV method
was used to reconstruct the 3D structure of the esoph-
agus, and tumor position evaluation through height error
∆H showed that all errors were within 1 mm. This
demonstrates the capability of EIT in localizing tumors.
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