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Abstract – In this study, a multi-strategy improved gold
rush optimizer (MIGRO) is proposed for the design
of multilayer broadband microwave absorbers (for nor-
mal incidence). The purpose of this optimization pro-
cess is to minimize the maximum reflection coefficient
of the absorber by selecting appropriate material layers
from existing literature databases within the desired fre-
quency range. To enhance the performance of a gold rush
optimizer (GRO), three improvement strategies are pro-
posed. This paper demonstrates the effectiveness of the
improved strategy and the superior reflection coefficient
of the MIGRO compared to other heuristic algorithms
used for the design of microwave absorbers through two
different simulation examples.

Index Terms – Absorbing material, gold rush optimizer,
multilayer microwave absorber, reflection coefficient.

I. INTRODUCTION
Microwave absorbing materials are widely applied

in fields such as aerospace, construction, and health-
care [1–4]. These materials interact with electromagnetic
waves through various mechanisms, including reflec-
tion, absorption, transmission, and secondary reflec-
tion. By converting electromagnetic energy into thermal
energy or other forms of energy, these materials attenu-
ate and absorb electromagnetic waves, thereby reducing
their reflection and transmission [5]. With the increas-
ingly complex electromagnetic environment, there is
a growing demand for lightweight, high-performance
microwave absorbing materials. However, absorbers
composed of a single absorbing material have limi-
tations, including narrow absorption bandwidth, lower
absorption efficiency, and larger size and weight. In

contrast, multilayer structured absorbing materials offer
design flexibility and the ability to compensate for these
material defects [6].

In the case of normal incidence, the reflection coeffi-
cient of multilayer microwave absorbers depends on var-
ious factors such as the frequency of the electromagnetic
waves, the electromagnetic parameters, and thickness of
each layer of materials. Determining the type of material
and adjusting its thickness to reduce the reflection coef-
ficient within the desired frequency range can be consid-
ered as an optimization challenge.

Michielssen et al. proposed a physical model
for multilayer microwave absorber structures.
They provided a set of predefined materials with
frequency-dependent electrical permittivity and mag-
netic permeability, and utilized a genetic algorithm (GA)
to determine the optimal material selection and thickness
for each layer [7]. Subsequently, various heuristic algo-
rithms have been introduced and successfully applied
in designing multilayer microwave absorbers, such as
particle swarm optimization (PSO) and its derivatives
[8, 9], differential evolution (DE) [10, 11], central force
optimization (CFO) [12], a hybrid algorithm of binary
lightning search algorithm and simulated annealing
(BLSA-SA) [13], and bald eagle search optimization
algorithm (BESOA) [14]. A comparative analysis of par-
ticle swarm optimization (PSO), bat algorithm (BAT),
and cuckoo search algorithm (CSA) was conducted in
[15]. With the emergence of new heuristic algorithms,
there is still room for further optimization of multilayer
microwave absorbers.

In this study, a multi-strategy improved gold rush
optimizer (MIGRO) which determines the optimal
layer sequence and corresponding thicknesses for the
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multilayer microwave absorbers design is proposed. To
enhance the convergence speed and global search capa-
bility of MIGRO, three improvement strategies were
introduced, including quasi-reverse learning, sigmoid
convergence weight, and golden sine algorithm. Through
two design examples, it was demonstrated that, com-
pared to other heuristic algorithms, MIGRO generated
superior reflection coefficients when designing multi-
layer microwave absorbers.

II. PHYSICAL MODEL OF MULTILAYER
ABSORBER

The physical model of a multilayer microwave
absorber is shown in Fig. 1, where a uniform plane
wave is incident normally on the surface of the absorber.
The absorber consists of N planar layers and is sup-
ported by a perfect electric conductor (PEC). Each layer
in the absorber varies in thickness and possesses mag-
netic/electrical properties that are dependent on fre-
quency. The thickness of each layer is represented by di,
while the dielectric constant and magnetic permeability
are denoted as εi and µi, respectively. By applying the
equivalent transmission line theory of electromagnetic
waves, the structure can be represented as a circuit model
consisting of cascaded N segment uniform transmission
lines [16], as shown in Fig. 2.

The electromagnetic wave absorption performance
of multilayer absorbers is evaluated by calculating the
return loss value, expressed as equation (1), and used as
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Fig. 1. Physical model of multilayer microwave absorber. 
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Fig. 2. Equivalent circuit of multilayer microwave 

absorber. 
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the objective function for optimization:
Fob j = 20log10(max |R|). (1)

The reflection coefficient at the interface between
free space and the medium is denoted as R, and can be
formulated as:

R =
Z1 −η0

Z1 +η0
, (2)

where η0 is the intrinsic impedance of free space. The
total impedance of the absorber is denoted as Z1. In the
case of normal incidence, the input impedance Zi of the
i− th layer is described as follows:

Zi = ηi
Zi+1 + jηi tan(βidi)

ηi + jZi+1 tan(βidi)
, i < N. (3)

The input impedance of the N− th layer can be con-
sidered as the input impedance of the transmission line
with a terminal short circuit, which is expressed as fol-
lows:

Zi = jηi tan(βidi), i = N, (4)
where βi, di, and ηi are the phase constant, thickness, and
wave impedance of the i− th layer, respectively. ηi and
βi are defined as follows:

ηi =

√
µi

εi
, (5)

βi =
2π f

c
√

µr,iεr,i, (6)

where µi and εi are the magnetic permeability and dielec-
tric constant of the material, µr,i and εr,i are the relative
magnetic permeability and relative dielectric constant of
the material, f is the frequency, and c is the speed of
light.

III. GOLD RUSH OPTIMZER
A. Basic gold rush optimizer

A gold rush optimizer (GRO) is a metaheuristic
algorithm based on population that incorporates three
fundamental principles of gold exploration: migration,
panning, and collaboration [17]. It has been successfully
applied to engineering optimization problems [18, 19].

(1) Migration of prospectors

The mathematical expressions for simulating the
process of gold prospectors approaching the gold mine
are as follows:

D1 =C1 ·Xbest(t)−Xi(t), (7)
Xnew,i(t +1) = Xi(t)+A1 ·D1, (8)

where Xbest , Xi, and t represent the values of the opti-
mal solution, the current solution i, and the number of
iterations, respectively. Xnew,i denotes the new position
of feasible solutions, and the expressions for A1 and C1
are as follows:

A1 = 1+ l1

(
k1 −

1
2

)
, (9)

C1 = 2k2, (10)



ZONG, KONG, LI, WANG, ZHANG, ZHOU, CHENG: OPTIMIZATION OF MULTILAYER MICROWAVE ABSORBERS 710

where k1 and k2 are uniformly distributed random num-
bers in the range [0, 1]. l1 is the convergence factor,
defined as follows:

l1 = 2+
(

1− t
tmax −1

)(
2− 1

tmax

)
. (11)

(2) Gold mining

In pursuit of the golden dream, gold prospectors
continuously adjust their positions to obtain more gold,
and the expression of the gold mining process is as fol-
lows:

D2 = Xi(t)−Xr(t), (12)
Xnew,i(t +1) = Xr(t)+A2 ·D2, (13)

where Xr represents the position of the gold prospector r
randomly selected from the feasible solution space, and
A2 is the vector coefficient, as shown in the following
equation:

A2 = l2(2k1 −1), (14)
where l2 is defined as follows:

l2 =
(
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)
+

1
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(3) Collaboration

At times, gold prospectors may collaborate with
each other to increase the probability of discovering
gold, and this collaborative behavior can be represented
by the following equation:

D3 = Xg2(t)−Xg1(t), (16)
Xnew,i(t +1) = Xi(t)+ k1 ·D3, (17)

where Xg1 and Xg2 are two prospectors randomly selected
from the expected gold-seeking region, and D3 is the col-
laboration vector.

B. Improved gold rush optimizer
A high-quality initial population can improve the

solution accuracy and convergence speed of the algo-
rithm. However, the basic GRO employs a random ini-
tialization method, which does not guarantee diversity
within the initial population. Therefore, the quasi-reverse
learning is utilized for the population initialization of
GRO. Previous studies have already demonstrated that
the utilization of quasi-reverse numbers has been found
to be more effective in locating the global optimal solu-
tion compared to the use of opposite numbers [20].

Assuming that the value of the i− th gold prospec-
tor is represented as Xi, where ubi is the upper bound of
the independent variable Xi and lbi is the lower bound
of the independent variable Xi. The corresponding oppo-
site point Xo

i
and quasi-reverse point Xqo

i
are shown as

follows:
Xi

o = lbi +ubi −Xi, (18)

Xi
qo =

lbi +ubi

2
+

∣∣∣∣Xo
i − lbi +ubi

2

∣∣∣∣ · rand(0,1). (19)

The GRO employs linear inertia weights, with the
value of l1 decreasing linearly from 2 to 0 as the num-
ber of iterations increases. Although this linear iner-
tia weight can partially balance global and local search
efforts, the actual search process is highly complex and
nonlinear. Consequently, linear weights may diminish
the optimization performance of the algorithm.

In this study, MIGRO utilizes the sigmoid function
as the nonlinear convergence factor S, replacing the orig-
inal convergence factor l1. The value of S nonlinearly
decreases from approximately 2 to nearly 0, as illustrated
in Fig. 3, with its corresponding expression defined as
follows:

S =
2(

1+ exp
(

10t
tmax

−5
)) . (20)

The sigmoid function is a nonlinear convergence
factor that effectively balances global and local search.
It improves the accuracy of population optimization and
accelerates optimization speed [21].
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Fig. 3. Graph for values of S during algorithm iteration.

The golden sine algorithm is inspired by the sine
function and the golden ratio, where individuals explore
the search space based on the golden ratio for approx-
imate optimal solutions. By combining the sine func-
tion and the golden ratio, the algorithm can quickly
locate the region where the optimal value lies and escape
local optima. As a result, the algorithm’s performance is
improved [22].

Building upon the gold mining and cooperation
stages of the GRO, this paper enhances the migration
stage of prospectors by incorporating the golden sine
algorithm. The position update formula for this pro-
cess, after integrating the golden sine algorithm, can be
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expressed as follows:
Xnew,i(t +1) = Xi(t) · |sin(R1)|+R2 · sin(R1) ·D∗, (21)

D∗ = d1 ·X∗(t)−d2 ·Xi(t), (22)
where R1 is a random number in the range [0,2π], R2 is
a random number between [0,π]. d1 and d2 are coeffi-
cient factors, which can be obtained from the following
equation:

d1 = a · τ +b · (1− τ), (23)
d2 = a · (1− τ)+b · τ, (24)

where a and b are the search interval, which are −π and
π . τ denotes the golden ratio, which is (

√
5−1)/2.

The flow chart of MIGRO is shown in Fig. 4.
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16 25 3.5 

Fig. 4. Flow chart of MIGRO.

IV. SIMULATION EXPERIMENT AND
RESULT ANALYSIS

A. Simulation process
In this simulation experiment, the reflection coeffi-

cient of the multilayer absorber physical model is deter-
mined by the electromagnetic parameters of each layer
material, layer thickness, layer arrangement order, and
the incident frequency of electromagnetic waves. Dur-
ing the initialization phase, the thickness and material of
each layer are randomly assigned, with constraints on the

number of layers, maximum thickness, and bandwidth.
As a result, the number of variables is twice the number
of layers. The purpose of optimization is to determine the
thickness and type of materials for each layer in order to
reduce the maximum reflection coefficient.

This database consists of 16 materials, which are
categorized into four groups: lossless dielectric materi-
als, lossy magnetic materials, lossy dielectric materials,
and relaxation magnetic materials. The relative dielec-
tric constant and magnetic permeability of these mate-
rials are summarized in Table 1. These materials are

Table 1: Database of absorbing materials
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f and mf  in GHz 

# m  mf  
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10 35 0.5 

11 30 1.0 
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13 20 1.5 

14 30 2.5 

15 30 2.0 

16 25 3.5 
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pre-defined and also used in [7–15]. The selection of
these materials is made in order to maintain consistency
in the comparison.

The mathematical modeling and optimization pro-
cess of multilayer microwave absorbers was imple-
mented using MATLAB R2022A software. CST Stu-
dio Suite is a powerful 3D electromagnetic field sim-
ulation software. The optimal material types and layer
thickness obtained through numerical calculations will
be imported into CST for electromagnetic simulation,
ensuring the accuracy of the optimization results.

B. Results and analysis
This section introduces two design examples to

demonstrate the advantages of MIGRO in designing mul-
tilayer microwave absorbers. The results obtained from
the MIGRO and the basic GRO are compared with those
of other heuristic algorithms published in the literature.

(1) First example: 5-layer absorber

This 5-layer absorber is designed to operate within
the frequency range 2-8 GHz, with a frequency step of
0.1 GHz and a total thickness constraint of 5 mm. For
this experiment, the population size for both MIGRO and
GRO is set to 50, with a maximum iteration limit of 1000
iterations. Each algorithm is independently run 20 times.
The optimization results obtained from the BESOA [14],
BLSA-SA [13], and CFO [12] methods are compared
with the results of the present experiment, as shown in
Table 2.

MIGRO achieves the best maximum reflection coef-
ficient within the frequency range 2-8 GHz, while also
maintaining the lowest average reflection coefficient.
The corresponding reflection coefficients are shown in
Fig. 5, with MIGRO reaching a peak of −33.2748 dB
at 2.4 GHz. Figure 6 displays the convergence curves of
MIGRO and GRO.

Table 2: The best optimization results of 5-layer microwave absorber
Algorithm MIGRO GRO BESOA [14] BLSA-SA [13] CFO [12]

Layers Type and Thickness
1 16 0.3771 16 0.4097 16 0.41701 16 0.3682 16 0.377
2 6 0.8308 6 1.0306 6 1.10903 6 1.9580 6 1.572
3 6 1.3524 6 1.2394 6 1.78825 6 1.1016 6 0.991
4 6 1.0659 11 0.8852 3 0.21456 14 0.4834 6 0.377
5 14 1.3550 13 1.0732 15 1.27113 15 0.9424 15 1.425

Total thickness
(mm) 4.9812 4.6381 4.79998 4.8536 4.744

Max. reflection
coefficient (dB) −25.8852 −24.2055 −25.765 −25.8528 −25.698

Avg. reflection
coefficient (dB) −28.7024 −25.3212 −27.7014 −27.8752 −27.4246
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MIGRO demonstrates higher convergence accuracy
in the later stages than GRO, indicating that the improved
strategies of the algorithm effectively prevent MIGRO
from getting trapped in local optima.
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(2) Second example: 7-layer absorber

In this instance, the 7-layer absorber was opti-
mized with a maximum total thickness constraint of
10 mm. To investigate the optimization results across
a broader frequency range, the absorption bandwidth
was extended to 0.1-20 GHz. The remaining exper-
imental parameters remain consistent with the initial
example.

The design results of MIGRO were compared with
the results of BLSA-SA [14], CAS [15], and DE [11]. As
shown in Table 3, the maximum reflection coefficients
of MIGRO, GRO, [14], [15], and [11] are −18.3183,
−18.0175, −18.0406, −18.0879, and −17.9 dB, respec-
tively. MIGRO exhibits the lowest maximum reflec-
tion coefficient. Additionally, MIGRO also has the low-
est average reflection coefficient of −19.6811 dB. In
Fig. 7, the reflection coefficients in the frequency range
0.1-20 GHz are calculated using five intelligent algo-
rithms. From Fig. 8, it can be seen that, compared to
GRO, MIGRO exhibits higher convergence accuracy in
iterations.

C. Verify simulation results with CST
Computer Simulation Technology (CST)

Microwave Studio Suite (MWS) is a commonly
utilized electromagnetic simulation software that has
been employed to validate the efficacy of numerous
multilayer microwave absorbers designs [23, 24]. For
this research, all simulations were carried out using the
Finite Element Method (FEM) and Frequency Domain
Solver (FDS) modules within CST.

Materials 3 to 16 from Table 1 were imported into
the CST material library. To incorporate the material
property parameters provided externally, CST Studio uti-
lized fitting techniques internally to store the provided

Table 3: The best optimization results of 7-layer microwave absorber
Algorithm MIGRO GRO BLSA-SA [14] CAS [15] DE [11]

Layers Type and Thickness
1 16 0.2131 16 0.2114 16 0.2080 16 0.2107 14 0.2064
2 6 2.0127 6 1.7644 6 1.7490 6 1.1066 6 1.8762
3 14 0.5994 14 0.5457 16 0.0850 6 0.7916 16 0.5391
4 6 0.9139 3 1.9669 6 0.0820 14 0.5482 6 0.9499
5 5 1.6448 6 2.2745 14 0.4922 5 1.3785 5 1.9596
6 4 0.6706 4 1.6528 5 1.5020 6 0.5570 4 0.7817
7 5 0.9627 6 0.2784 4 1.6602 4 1.7450 5 0.4864

Total thickness
(mm) 7.0172 8.6941 5.7784 6.3376 6.7993

Max. reflection
coefficient (dB) −18.3183 −18.0175 −18.0406 −18.0879 −17.9

Avg. reflection
coefficient (dB) −19.6811 −18.8682 −19.2074 −19.5157 −19.1169

data. The fitting error between the original provided
data and the fitted data will result in deviations between

Table 3: The best optimization results of 7-layer microwave absorber 
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Fig. 9. Comparison of supplied and fitted material dispersion curves in CST: (a) Material 8, (b) Material 12, (c) 
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Fig. 10. Model of the 5-layer absorber and the two 

Floquet ports used to excite the plane waves. 
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validating the accuracy of the mathematical modeling
and algorithm optimization process for the multilayer
microwave absorber.

V. CONCLUSION
This paper presents MIGRO that combines three

strategies for the optimization design of the multilayer
microwave absorbers under normal incident conditions.
This method can be used to obtain a set of coatings with
the minimum reflection coefficients within a specific fre-
quency and thickness range. Two multilayer absorbers
were designed for 2-8 GHz, 5-layer, and 0.1-20 GHz, 7-
layer scenarios, and their design results were compared
with those of other algorithms published in the litera-
ture. In both cases, MIGRO exhibits lower maximum and
average reflection coefficients compared to other algo-
rithms. Therefore, the effectiveness of the improvement
strategy has been validated, indicating that MIGRO have
stronger optimization capabilities.
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