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Abstract – The calculation of beamforming weights
takes time due to the constantly changing direction of
interference in highly dynamic environments. The tradi-
tional anti-jamming means under static or low dynamic
are almost all invalid, so the nulling widen algorithm is
studied. However, the commonly used cavitation widen-
ing and deepening algorithms are often accompanied by
a large amount of computational complexity, which may
lead to computational inefficiency and slow processing
speed in practical applications. In order to solve this
problem, a nulling widen and deepening algorithm using
a modified correlation subtraction algorithm multistage
Wiener filtering is proposed. The algorithm achieves the
deepening after nulling widening by constructing a new
covariance matrix, and then reduces the rank by trun-
cating the multilevel Wiener filter at the r-level. It finds
the blocking matrix with the normalized reference vec-
tors instead of calculating the blocking matrix directly
so that the normalized reference vectors are orthogo-
nal to each other, and finally completes the interference
suppression by using the power inversion algorithm to
improve the performance and reduce the amount of com-
putation. The computational complexity of the algorithm
based on the modified correlation subtraction algorithm
multistage Wiener filtering (MCSA-MWF) is O

(
rM2),

which is greatly reduced compared to the computational
complexity of the traditional null-spread class algorithm
with direct inversion O

(
M3
)
.

Index Terms – Adaptive anti-jamming, modified corre-
lation subtraction algorithm multistage Wiener filtering
(MCSA-MWF), nulling widen and deepening.

I. INTRODUCTION
Satellite navigation technology provides users with

coordinates in time and space, which is of great strate-
gic military importance in aviation, space and guided
weapons, as well as being of great economic interest,
and is nowadays indispensable in the transport industry.
Satellite navigation technology is in great demand both
in the military and civilian sectors.

Since the satellite is very far away from the receiver
and the transmit power of the satellite is very weak, the
navigation signal is very likely to receive interference
[1, 2]. However, under high dynamic conditions, tradi-
tional anti-jamming means under static or low dynamic
are almost all invalid, so the nulling widen algorithm is
studied.

The nulling technique forms a stable beam nulling
in the direction of the interference to provide cancella-
tion with the interfering signal. The nulling widen algo-
rithms are generally divided into interference-plus-noise
covariance (INC) and the nulling widen algorithms based
on covariance matrix taper (CMT) [4]. INC algorithms
are generally more computationally intensive and often
require some a priori information such as the direc-
tion of the interference and the direction of the desired
signal [5]. In cases where the incoming information
of the desired signal is known, the nulling is widened
by removing the expected signal from the covariance
matrix. In contrast, the CMT algorithm is much less
computationally intensive. The CMT algorithm was pro-
posed by Mailloux [4], which rewrites the covariance
matrix by setting up a virtual interference to widen the
nulling with a taper matrix.

Other scholars have proposed different methods for
nulling widen. Zatman [7] converts the narrowband inter-
ference signal into a virtual broadband interference sig-
nal to widen the nulling. Li et al. [8] established a Gaus-
sian distribution model based on the interference. Based
on the Gaussian distribution, Cong et al. [9] designed
an algorithm to deepen the nulling by perspective draw-
ing. Zeng et al. [10] theoretically deduced that the suf-
ficient condition for the FIR filter not to change the
zero value is the symmetry of coefficients or conju-
gate symmetry. On this basis, a nulling widen algorithm
based on virtual interference is proposed [11]. A new
method of space-time joint adaptive processing (STAP)
null-widen is deduced based on the Laplace distribution
model of the changing interference direction of arrival
(DOA) in a high-dynamic environment [12, 13] by taking
the moving interferences as discrete interference sources
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that obey the Laplace distribution. Thus, the average
covariance matrix can be calculated to broaden the width
of nulls. In [22], a procedure for the null widen algorithm
design with respect to the nonstationary interference is
proposed.

In addition, many more studies have focused on
covariance matrices. For nulling widen, [14] is imple-
mented by a simple modification of the measured covari-
ance matrix. Reference [15] explores the theory and
application of covariance matrix tapers for robust adap-
tive beamforming. In [16], CMTs and derivative con-
straints in the directions of jammers have been proposed
to widen the nulling in adaptive processing, thereby
improving the algorithms’ robustness. Reference [17]
develops a computationally efficient online implementa-
tion of the CMT technique based on a low-rank approxi-
mation of the taper matrix and the recursive least squares
(RLS) algorithm. In reference [18], by means of the
covariance matrix of the auxiliary elements, a nulling
widen method was realized based on the sidelobe can-
celler. This approach demonstrated good performance in
practical applications, but has increased hardware com-
plexity. Reference [23] proposed a computationally effi-
cient nulling widen method for sidelobe canceller, which
is a CMT based method and puts fictitious interfer-
ence into snapshots to broaden the sharp null. Based
on Mailloux’s methodology, the covariance matrix and
cross-correlation vector were tapered via random distur-
bance. Compared with the existing methods, the method
required much less computation, but its performance is
similar.

Meanwhile, some studies have reconstructed the
algorithmic correlation matrix (such as INC matrix and
covariance matrix) to achieve nulling widen. In [19, 20],
an adaptive null widen technique based on reconstruction
of the covariance matrix was proposed. Reference [21]
proposes an algorithm based on INC matrix reconstruc-
tion by setting up several virtual interference sources,
which can simultaneously broaden the nulls. Null depth
and width can be controlled by setting the parameters of
the virtual interference sources.

The multistage Wiener filter (MWF) [24] is a mul-
tilevel equivalent realization of the Wiener filter, which
uses a sequence of orthogonal projections to decom-
pose the array signal vectors at multiple levels, and then
performs multistage scalar Wiener filtering to synthe-
size the error signals of the Wiener filter. Depending
on the blocking matrix, the multilevel Wiener filter can
be implemented with different algorithms. The MWF
was first proposed by Goldstein, Reed, and Scharf in
[24], whose Appendix A gives a method for calculat-
ing the blocking matrix, and calls the algorithm GRS-
MWF, with GRS being an abbreviation of the authors’
names. References [25–28] proposed a MWF imple-

mentation method that effectively reduces the computa-
tional effort called the correlation subtraction algorithm,
denoted CSA-MWF. Reference [29] proposed a modi-
fied correlation subtraction algorithm multistage Wiener
filtering (MCSA-MWF) based on CSA algorithm, which
improves the blocking matrix of CSA-MWF so as to
have the advantages of GRS-MWF. The improved block-
ing matrix can be realized with the CSA structure. This
results in good numerical stability, i.e., reduced-rank
performance, and a further reduction in computational
effort.

In order to reduce the amount of computation and
make it more robust even in small snapshot environ-
ments, we combined the MCSA-MWF with the CMT
algorithm to propose a nulling widen and deepening
algorithm using a modified correlation subtraction algo-
rithm MWF.

The main contributions of this paper are as follows:
A new MCAS-MWF based nulling widen and deep-

ening algorithm is proposed, which can improve the sta-
bility of the algorithm for small snapshot data in highly
dynamic environments.

The normalized reference vectors are used to solve
for the blocking matrix instead of computing (construct-
ing) the blocking matrix, thus making the normalized ref-
erence vectors orthogonal to each other and effectively
reducing the arithmetic.

We compare the performance of the MCAS-MWF
based nulling widen and deepening algorithm through
typical experiments. The simulation experiments show
that the proposed algorithm has good performance under
both ideal circular array conditions and real measured
BeiDou data.

The rest of the paper is organized as follows: section
II introduces the signal model, section III describes the
nulling spread-and-deepen algorithm based on MCAS-
MWF, section IV demonstrates the simulation of the
algorithm under the ideal uniform circular array and the
real measured BeiDou data, and section V concludes the
work of this paper.

II. SIGNAL MODELLING
A. Arbitrary plane array system model

As is shown in [32], for a two-dimensional M-
element arbitrary array planar array, in the setting of L
signal, Q interference, the received data model of the sig-
nal in an environment with four interferences is:

X (t) = XS (t)+XI (t)+n (1)

=
L

∑
I=1

a(θ1,ϕ1)s1 (t)+
Q

∑
q=1

a(θq,ϕq)sq (t)+n,

where XS (t) is the received desired signal source, X1 (t)
is the interference signal received and n is the noise.
(θ1,ϕ1) and (θq,ϕq) are the incoming direction of the
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1th signal and the qth interference, respectively. θ and ϕ

are the pitch and azimuth angles. s1 (t) and sq (t) are the
1th signal and the qth interference, respectively. a is the
airspace guidance vector. For any 2D planar array, the
airspace guidance vector is:

a(θ ,ϕ) =
[
e juT (θ ,ϕ)P1 ,e juT (θ ,ϕ)P2 ,e juT (θ ,ϕ)Pm

]
, (2)

where Pm is the position vector of the mth array element
and u is the beam vector with the expression:

Pm = dm [cosrm,sinrm]
T , (3)

u(θ ,ϕ) =
2π

λ

[
sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

]
. (4)

π = 3.14, λ ∈ (380 ∼ 760)nm, dm expressed as dm =√
x2

m + y2
m, i.e., the Euclidean distance of each array ele-

ment from the reference array element. rm is the angle of
each array element.

The power inversion algorithm (PI) is used for the
anti-interference process and its weights are calculated
as follows:

wopt =
(
sHR−1s

)−1
R−1s, (5)

where s is the constraint vectors and, at the same
time, s = [1,0, ...,0]T . R is the covariance matrix of the
received signal. The superscript{·}H denotes the Emmett
transpose. The sampled data is used in practical engi-
neering to approximate R:

R̃ =
1
K

K

∑
k=1

X(k)XH (k) , (6)

where K is the number of sampling beats and R̃ → R
when K → ∞.

B. BeiDou signal model
The BeiDou Navigation Satellite System (BDS)

launched the construction of the BeiDou Satellite Nav-
igation Pilot System in 1994, completed the BeiDou II
regional service system in 2012, and completed the full-
scale construction of the BeiDou III system in 2020,
achieving the goal of global navigation and positioning.

According to the B3I interface control document
[30], the expression for the B3I signal is:

S j
B3I (t) = AB3IC

j
B3I (t)D j

B3I (t)cos
(

2π f3t +ϕ
j

B3I

)
, (7)

where AB3I denotes the amplitude of the B3I signal, C j
B3I

denotes the ranging code of satellite j, D j
B3I denotes the

data code of satellite j, f3 denotes the carrier frequency
of the B3I signal, and the nominal carrier frequency
is 1268.52 MHz. ϕB3I denotes the signal carrier initial
phase and the bandwidth of the B3I signal is 20.46 MHz.

The generation mechanism of the BeiDou signal is
shown in Fig. 1. One pseudo-random code cycle is mod-
ulo two-added to one NH code bit, and one NH code
cycle is modulo two-added to one navigation message
bit, followed by BPSK modulation to produce the space
RF signal. Each satellite has a unique ranging code, and

Fig. 1. Schematic diagram of BeiDou B3I signal coding
process.

the ranging code CB3I for B3I has a code rate of 10.23
Mcps and a period of 10230.

III. MCAS-MWF BASED NULLING
WIDENING AND DEEPENING

ALGORITHM
A. Principle of nulling widening and deepening algo-
rithm

Since the direction of interference in high-speed
environments changes constantly, the calculation of
beamforming weights takes time, and the calculated
weights are strictly applicable to the moment before the
calculation of the weights. Thus, the direction of interfer-
ence will change rapidly. Moreover, the width of the con-
ventional beamforming nulling is particularly narrow, so
once the direction of interference changes slightly, it will
be out of the generated nulling area, and the nulling will
not allow the interference to come in and generate an off-
set. Thus, the effect of interference suppression will be
rapidly degraded, which makes the anti-jamming algo-
rithm ineffective. In order to keep the anti-jamming algo-
rithm stable in the high-speed environment, the com-
monly used algorithm is the nulling widen algorithm.

Nulling widen is achieved using the CMT method.
The effect of change in the direction of the interference
is embodied in the covariance matrix R of the received
signal, under the action of the taper matrix T .

For a nulling spread of a line matrix [8], the taper
matrix T is:

Tk,l = e

{
1

2σ2
max[(k−1)π/180]2

}
, (8)

where σ2
max determines the width of the nulling. The

new covariance matrix R̄ is obtained from the Hadamard
product of the taper matrix Tk,l and the old covariance
matrix R. The conical covariance matrix is:

R̄L = R̃◦T̄L. (9)
Nulling widen can be produced by solving for

the beamforming weights using the tapered covariance
matrix. In order to achieve nulling widen and deepening
on this basis, the sampled covariance matrix of equation
(6) is eigen-decomposed:

R̃ =
M

∑
m=1

λmemeH
m , (10)
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where λm is the eigenvalue of R̃, em is the correspond-
ing eigenvector. λm in descending order, and its magni-
tude, reflects the power of the corresponding signal or
interference:

λ1 ≥ λ2 · · · ≥ λQ > λQ+1 = · · ·= λM = σ
2
n . (11)

In the navigation receiver the interference energy is
much larger than the navigation signal, so the first Q
large eigenvalues correspond to the subspace of the inter-
ference, so that the set is UI = [e1,e2, · · · ,eQ]. The equa-
tion is as follows:

span{a(θ1,φ1) ,a(θ2,φ2) , · · · ,a(θQ,φQ)}
= span{e1,e2, · · · ,eQ}

. (12)

Afterwards, a projection transformation is per-
formed to extract the interference components and then
weight the coefficients of the interference components to
obtain the processed sampled data as:

X̄ (k) = X (k)+gT X (k) = (Ik +gT )X (t) . (13)
Based on the characteristic subspace property, the

projection matrix of the interference subspace is found
to be:

T =UI
(
UH

I UI
)−1

UH
I , (14)

where g is a weighting factor that serves to change the
nulling depth in dB, UI is signal subspace.

Finally, the new covariance matrix after preprocess-
ing is:

R̃T =
1
K

K

∑
k=1

X̄ (k) X̄H (k)

= (IK +gT ) R̃(IK +gT )H , (15)
where R̃T is the covariance matrix after taper, IK is a unit
matrix of length K. This covariance matrix is used to
replace the previous sampling covariance matrix.

B. Correlated phase reduction MWF
MWF [31] is an equivalent algorithm to the Wiener

filter, which avoids matrix inversion and thus reduces
the volume of computation. Correlation subtraction algo-
rithm multistage Wiener filtering (CSA-MWF) further
reduces the forward recursion based on MWF and
avoids blocking matrix computation compared to MWF.

 

Fig. 2. MCSA-MWF structure block diagram. 
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Fig. 2. MCSA-MWF structure block diagram.

MCSA-MWF further reduces the number of dimensions,
and its block diagram is shown in Fig. 2. In GRS-MWF,
its blocking matrix uses the (N − i−1)× (N − i) rect-
angular matrix Bi, and the dimension of X (k) decreases
step by step, which is conducive to reducing the compu-
tation and storage. CSA-MWF is a Wiener multistage fil-
ter with subspace basis vectors orthogonal to each other,
the blocking matrices Bi are all N-dimensional square
matrices, and all levels of observation data Xi (k) are
also N-dimensional square matrices. From the princi-
ple of CSA-MWF, it can be seen that reduced-rank pro-
cessing does not lead to the reduction of dimension,
so the data redundancy is large. It can be envisioned
that if the blocking matrix is adopted as a (N − i−1)×
(N − i) rectangular matrix, it not only utilizes the CSA
structure of CSA-MWF without solving the block-
ing matrix, but also exploits the advantages of GRS-
MWF’s dimension reduction, making the Xi (k) dimen-
sion of the MWF reduce step by step. This structure is
referred to as MCSA-MWF, and the structure is shown
in Fig. 2 [31], which combines the advantages of GRS-
MWF and CSA-MWF to obtain almost the same perfor-
mance as CSA-MWF, but with less computational effort
than both.

In Fig. 2, the forward recursive formula for MCSA-
MWF level i is as follows:

hi =
rXi−1di−1√

rH
Xi−1di−1

rXi−1di−1

, (16)

di (k) = hH
i Xi−1 (k) , (17)

Bi = I(N−i−1)
N−i −h(N−i−1)

i hH
i , (18)

Xi (k) = BiXi−1 (k) = X (N−i−1)
i−1 (k)−h(N−i−1)

i di (k) ,
(19)

where hi is N-dimensional, Xi (k) is an N − i−1 dimen-
sional vector, and I(N−i−1)

N−i denotes the upper N −1 rows
of the N-dimensional unit array.
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C. An MCAS-MWF based nulling widen and deepen-
ing algorithm

According to [6], the MCSA-MWF weights are
solved for:

WMCSA−MWF = h0 −BH
0 TDWd . (20)

When using the power inversion algorithm:
h0 = [1,0, · · · ,0]T , (21)
TD = [t1, t2, · · · , tD] , (22)

ti =

(
i−1

∏
j=1

BH
j

)
hi, (23)

hi =
rXi−1di−1∥∥rXi−1di−1

∥∥ , (24)

included among these:
rXi−1di−1 = E

[
Xi−1d∗

i−1
]

(25)

= Bi−1

(
0

∏
r=i−2

Br

)
RXX

(
0

∏
r=i−2

Br

)H

hi−1,

Bi = I(M−i−1)
M−i −h(M−i−1)

i hH
i , (26)

Wd =
(
T H

D B0RXX BH
0 TD

)−1
T H

D B0RXX h0, (27)
where r is the order of the truncated reduced rank, and
hii = 1,2,3...,D) is the recursive weights in the MWF,
Bi is the blocking matrix, Wd is the backward Wiener
filter, RXX is the received signal autocorrelation matrix,
and ti is the basis vector of the reduced-rank subspace.
Equation (26) can be obtained from [3], the superscript n
of it denotes the upper n rows of the fetch matrix. After
derivation, the weights of MCSA-MWF-PI can be calcu-
lated as:

WMCSA−MWF−PI = h0

−BH
0 TD

(
T H

D B0RXX BH
0 TD

)−1 T H
D B0RXX h0

. (28)

By bringing equation (9) of RL into the above equa-
tion, then the Laplace nulling widen power inversion
algorithm based on the MCSA-MWF-LNW-PI is:

WMCSA−MWF−LNW−PI = h0

−BH
0 TD

(
T H

D B0R̄LBH
0 TD

)−1 T H
D B0R̄Lh0

. (29)

By bringing equation (15) of R̃T into the above
equation, then the Laplace nulling widen and deepening
power inversion algorithm based on the MCSA-MWF-
LNWD-PI is:

WMCSA−MWF−LNWD−PI = h0

−BH
0 TD

(
T H

D B0R̃T BH
0 TD

)−1 T H
D B0R̃T h0

. (30)

As shown in the Table 1, compared with the com-
putational complexity of the conventional nulling widen
algorithm for direct inverse O

(
M3
)
, the computational

complexity of the algorithm based on the MCSA-MWF-
LNWD-PI is O

(
rM2). If it is a N-tap null-time joint

algorithm, the computational complexity of the algo-
rithm changes from O

(
(MN)3

)
to O

(
r(MN)2

)
, which

greatly reduces the computational complexity.

Table 1: Comparison of the computational complexity of
the two nulling widen algorithms

Arithmetic Complexity N-tap Null-Time
Joint Algorithm

Conventional
algorithm

O
(
M3
)

O
(
(MN)3

)
Based on the MCSA-

MWF-LNWD-PI
O
(
rM2) O

(
r(MN)2

)

IV. ALGORITHM SIMULATION
In this section, we use the ideal seven-element uni-

form circular array and seven-channel measured Bei-
Dou data to carry out algorithm simulation separately
and compare the anti-jamming performance of different
algorithms.

A. MCSA-MWF performance analysis
There are several different algorithmic implemen-

tations of the multilevel Wiener filter, such as CSA-
MWF, GRS-MWF, and MCSA-MWF. In CSA-MWF,
the blocking matrices Bi are all N-dimensional square
matrices, and the observation data Xi (k) at each level
are all N-dimensional vectors. The blocking matrices
of MCSA-MWF adopt the rectangular matrices of size
(N − i−1)× (N − i), which can take advantage of the
CSA structure of CSA-MWF, which does not need to
solve the blocking matrices and reduces computation. An
advantage of the decreasing dimension of Xi (k) in GRS-
MWF is to further reduce computation while maintaining
the reduced-rank performance.

In adaptive beamforming based on the GSC frame-
work, in addition to the usual performance metrics (e.g.,
array orientation map, output signal-to-noise ratio), there
is also a special metric called mean square error (MSE).
Several implementations of MSE are defined [29]:

MSE =W H
X RWX , (31)

SMSE =W H
X RXWX , (32)

MMSE =W H
optRWopt . (33)

MSE is the result obtained by applying the sam-
pled adaptive weight vector print to the ideal array data
statistics. SMSE (sample mean square error) is the result
obtained by applying the sampled adaptive weight vec-
tor to the training data itself. MMSE (minimum mean
square error) is the result obtained by applying the ideal
adaptive weight vector to the ideal array data statistics.

Now let us compare the three MWFs mentioned
above using these metrics. Figure 3 shows the curve of
MMSE with the rank change of three different algo-
rithms in a uniform linear array with N=16 elements.
Since MMSE examines the performance of the algorithm
from the overall statistical characteristics, it can reflect
the performance of the algorithm under certain signal
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BeiDou data to carry out algorithm simulation separately 
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instead of CSA-MWF because the blocking matrix of 

MCSA-MWF is rectangular, which reduces the 
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Figures 4 and 5 show the relationship between the 

nulling angel/gain and the MWF order, demonstrating 

the orientation and gain at different ranks. The best 

results are obtained when r=6, the gain in this case did 

not disappear and is the minimum. Therefore, in later 

simulation experiments, we chose the rank of MCSA-

MWF as 6. 
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Fig. 3. The curve of MMSE with rank change of three
different algorithms in a uniform linear array.

statistical characteristics. Thus, MMSE is an important
indicator of the performance of the algorithm. In Fig. 3,
the MMSE curve of MCSA-MWF and CSA-MWF are
close to the minimum at r = 3.

Let the rank of the reduced-rank multilevel Wiener
filter be r and the number of snapshots be K, then the
computational amount (number of multiplications) of
the three r-order multilevel Wiener filters GRS-MWF,
CSA-MWF, MCSA-MWF can be compared as shown
in Table 2, which refers to the computational amount
of the forward recursion since the backward recursive
synthesis is exactly the same. It can be seen that the
computation amount of GRS-MWF is O

(
N2
)
, while that

of CSA-MWF and MCSA-MWF is only O(N), and the
number of multiplications of MCSA-MWF is lower than
that of CSA-MWF by Kr (r+1) times. It can be seen
that MCSA-MWF is especially suitable for large arrays
with more adaptive degrees of freedom, such as the spa-
tial adaptive processing in complex interference envi-
ronments. MCSA-MWF is finally used instead of CSA-

Table 2: Comparison of the computational complexity of
the two nulling widen algorithms

BeiDou data to carry out algorithm simulation separately 

and compare the anti-jamming performance of different 

algorithms. 

 
A. MCSA-MWF performance analysis 

There are several different algorithmic 

implementations of the multilevel Wiener filter, such as 

CSA-MWF, GRS-MWF, and MCSA-MWF. In CSA-

MWF, the blocking matrices iB  are all N-dimensional 

square matrices, and the observation data  kX i  at each 

level are all N-dimensional vectors. The blocking 

matrices of MCSA-MWF adopt the rectangular matrices 

of size    iNiN  1 , which can take advantage 

of the CSA structure of CSA-MWF, which does not need 

to solve the blocking matrices and reduces computation. 

An advantage of the decreasing dimension of  kX i  in 

GRS-MWF is to further reduce computation while 

maintaining the reduced-rank performance. 

In adaptive beamforming based on the GSC 

framework, in addition to the usual performance metrics 

(e.g., array orientation map, output signal-to-noise ratio), 

there is also a special metric called mean square error 

(MSE). Several implementations of MSE are defined 

[29]: 

 X

H

X RWWMSE  . (31) 

 XX

H

X WRWSMSE  . (32) 

 opt

H

opt RWWMMSE  . (33) 

MSE is the result obtained by applying the sampled 

adaptive weight vector print to the ideal array data 

statistics. SMSE (sample mean square error) is the result 

obtained by applying the sampled adaptive weight vector 

to the training data itself. MMSE (minimum mean square 

error) is the result obtained by applying the ideal 

adaptive weight vector to the ideal array data statistics. 

Now let us compare the three MWFs mentioned 

above using these metrics. Figure 3 shows the curve of 

MMSE with the rank change of three different 

algorithms in a uniform linear array with N=16 elements. 

Since MMSE examines the performance of the algorithm 

from the overall statistical characteristics, it can reflect 

the performance of the algorithm under certain signal 

statistical characteristics. Thus, MMSE is an important 

indicator of the performance of the algorithm. In Fig. 3, 

the MMSE curve of MCSA-MWF and CSA-MWF are 

close to the minimum at r=3. 

Let the rank of the reduced-rank multilevel Wiener 

filter be r and the number of snapshots be K, then the 

computational amount (number of multiplications) of the 

three r-order multilevel Wiener filters GRS-MWF, CSA-

MWF, MCSA-MWF can be compared as shown in Table 

2, which refers to the computational amount of the 

forward recursion since the backward recursive 

synthesis is exactly the same. It can be seen that the 

computation amount of GRS-MWF is  2NO , while 

that of CSA-MWF and MCSA-MWF is only  NO , 

and the number of multiplications of MCSA-MWF is 

lower than that of CSA-MWF by  1rKr  times. It 

can be seen that MCSA-MWF is especially suitable for 

large arrays with more adaptive degrees of freedom, such 

as the spatial adaptive processing in complex 

interference environments. MCSA-MWF is finally used 

instead of CSA-MWF because the blocking matrix of 

MCSA-MWF is rectangular, which reduces the 

computational effort. 

 

 
Fig. 3. The curve of MMSE with rank change of three 

different algorithms in a uniform linear array. 

 

Table 2: Comparison of the computational complexity of 

the two nulling widen algorithms 

 
Algorithm 

 

 
Calculated 

amount 

 

 kXB

kX

ii

i

1


 

 

 kXh

kd

i

H

i

i

1


 

GRS-MWF
])1(...

)1([

2

22





rN

NNK
 

)](...

)1([

rN

NNK




 

CSA-MWF )(rKN  )1( rKN  

MCSA-

MWF )](...

)1[(

rN

NK




 

)](...

)1([

rN

NNK




 

 

Figures 4 and 5 show the relationship between the 

nulling angel/gain and the MWF order, demonstrating 

the orientation and gain at different ranks. The best 

results are obtained when r=6, the gain in this case did 

not disappear and is the minimum. Therefore, in later 

simulation experiments, we chose the rank of MCSA-

MWF as 6. 
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rectangular, which reduces the computational effort.

Figures 4 and 5 show the relationship between the
nulling angel/gain and the MWF order, demonstrating
the orientation and gain at different ranks. The best
results are obtained when r=6, the gain in this case did
not disappear and is the minimum. Therefore, in later
simulation experiments, we chose the rank of MCSA-
MWF as 6.
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Reference source not found. The nulling after using the 

MCSA-MWF of order 6 is basically the same as the ideal 

case, which can be used in both nulling widen as well as 
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dimension, which reduces the computational effort. 

 
(a) (b) 

Fig. 6. Comparison of direction map nulling for MCSA-
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B. MCSA-MWF-LNW-PI algorithm ideal state simu-
lation

The BeiDou data used in this paper consists of seven
channels of data, with a total of seven rows, so we chose



LI, WANG: A NULLING WIDEN AND DEEPENING ALGORITHM USING A MODIFIED CORRELATION SUBTRACTION ALGORITHM MWF 724

to use a seven-element uniform circular array when per-
forming the simulation in the ideal case.

Simulation of the LNWD algorithm and the MCSA-
MWF-LNW-PI in a 2D uniform circular-center array.
A seven-element circular-center array is set up with a
signal-to-noise ratio of -20 dB, a dry-to-noise ratio of
60 dB, a snap count of 2046, a signal incoming direc-
tion (10◦, 45◦), and the incoming direction of the inter-
ference is (20◦, 50◦). The orientation diagram is shown
in Fig. 6. The nulling after using the MCSA-MWF of
order 6 is basically the same as the ideal case, which can
be used in both nulling widen as well as nulling widen
and deepening algorithms, which has a very low impact
on the nulling but serves to reduce the dimension, which
reduces the computational effort.
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7, it can be seen that the nulling case (i.e., the lowest gain 
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the same as the nulling of the ideal case, while the other 

two algorithms nulling cases are always different from 

the ideal case. So, it can be concluded that all the nulling 

cases after using MCSA-MWF with order 6 are basically 

the same as the ideal case, which can be used for the 

nulling widen and deepening algorithms, which have 

less effect on nulling but play the role of dimension 
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Fig. 6. Comparison of direction map nulling for MCSA-
MWF and ideal algorithm: (a) elevation orientation dia-
gram and (b) azimuth orientation diagram.

C. MCSA-MWF-LNW-PI algorithm simulation of
real data

The BeiDou data used in this paper consists of seven
channels of data, with a total of seven rows, so we chose
to use a seven-element uniform circular array when per-
forming the simulation in the ideal case.

According to the official documents of the BeiDou
satellite navigation system, the space constellation of
BeiDou-3 consists of three geostationary orbit satellites
(GEO), three inclined geosynchronous orbit satellites
(IGSO), and 24 medium circular earth orbit satellites
(MEO). The LNWD algorithm and the MCSA-MWF-
LNWD algorithm simulated for the sampled B3I signal.
The B3I signal is sampled with three interfering data of
seven channels, with a total of seven rows, and each row
represents the data of one channel, and the data time
length is about 100 ms. The sampled data is the signal of
the BD B3 frequency point, with a data sampling rate of
62 MHz, and an intermediate frequency of 80.52 MHz.

Figure 7 shows the comparison of the antenna gain
direction plots after using the PI algorithm in two cases,

where PI (blue line) is the ideal case. Its purpose is
to see the effect of the nulling widen algorithm using
the MCSA-MWF on the nulling. From the two graphs
in Fig. 7, it can be seen that the nulling case (i.e., the
lowest gain point) of the MCSA-MWF-LNW-PI algo-
rithm is almost the same as the nulling of the ideal case,
while the other two algorithms nulling cases are always
different from the ideal case. So, it can be concluded
that all the nulling cases after using MCSA-MWF with
order 6 are basically the same as the ideal case, which
can be used for the nulling widen and deepening algo-
rithms, which have less effect on nulling but play the
role of dimension reduction, thus reducing the amount of
computation.

 
Fig. 7. Comparison of directional map nulling between 

MCSA-MWF and ideal algorithm under BeiDou data. 

 

V. CONCLUSION 
In this paper, we solve the problem of large inverse 

matrix operation of invalid broadening in adaptive anti-

jamming algorithms under high dynamics. The 

performances of three commonly used MWF algorithms 

are compared, and the results show that MCSA-MWF 

greatly reduces the computational volume and 

dimension compared with CSA-MWF and GRS-MWF. 

Finally, we chose to combine the MCSA-MWF 

algorithm with the traditional zeroing and widening 

method and propose a new MCSA-MWF-LNWD 

algorithm, which improves the stability when using 

small snapshot data in real high dynamic environments. 

In addition, several simulations including the ideal 

case of seven-element uniform circular array test and 

using seven-element real BeiDou data are conducted, 

and the results show that the nulling using MCSA-MWF 

is very close to the ideal case. This approach can be 

effectively applied to both cavitation widening and 

cavitation deepening algorithms. Although the cavitation 

effect may be degraded, it plays a key role in 

dimensionality reduction, which greatly reduces the 

computational effort. Compared with the computational 

complexity of the conventional nulling widen class 

algorithm for direct inverse O(M3). The computational 

complexity of the algorithm based on the MCSA-MWF 

is  O(rM2) , which greatly reduces the computational 

complexity. 
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V. CONCLUSION
In this paper, we solve the problem of large inverse

matrix operation of invalid broadening in adaptive anti-
jamming algorithms under high dynamics. The per-
formances of three commonly used MWF algorithms
are compared, and the results show that MCSA-MWF
greatly reduces the computational volume and dimen-
sion compared with CSA-MWF and GRS-MWF. Finally,
we chose to combine the MCSA-MWF algorithm with
the traditional zeroing and widening method and propose
a new MCSA-MWF-LNWD algorithm, which improves
the stability when using small snapshot data in real high
dynamic environments.

In addition, several simulations including the ideal
case of seven-element uniform circular array test and
using seven-element real BeiDou data are conducted, and
the results show that the nulling using MCSA-MWF is
very close to the ideal case. This approach can be effec-
tively applied to both cavitation widening and cavita-
tion deepening algorithms. Although the cavitation effect
may be degraded, it plays a key role in dimensional-
ity reduction, which greatly reduces the computational
effort. Compared with the computational complexity of
the conventional nulling widen class algorithm for direct
inverse O

(
M3
)
. The computational complexity of the

algorithm based on the MCSA-MWF is O
(
rM2), which

greatly reduces the computational complexity.
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