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Abstract – With the development of wireless commu-
nication, satellite, and radar technologies operated at
millimeter wave (MMW) frequency range, it is essen-
tial to consider the adverse health effects of the radi-
ated electromagnetic (EM) fields at MMW frequency. In
most EM dosimetry analyses for the human body mod-
els, bare human models have been considered. How-
ever, the presence of fabrics such as cotton and wool
on the human body can affect the accuracy of the EM
dosimetry analysis. At the MMW frequency range, the
effect of fabrics on EM dosimetry analysis in a human
body model has not been extensively investigated using
the finite-difference time-domain (FDTD) method. In
this study, the effects of fabrics on the human body on
the power transmission coefficient, specific absorption
rate, absorbed power density, and heating factor due to
EM MMW exposure are investigated using the FDTD
method. Numerical results show that the thickness of the
fabrics and air gap introduced between the fabrics and
the skin surface significantly affects the accuracy of EM
dosimetry analysis at the frequency range 1-100 GHz.

Index Terms – Absorbed power density, electromagnetic
exposure, fabric effects, FDTD method, heating factor,
millimeter wave, SAR.

I. INTRODUCTION
With the development of 5G and 6G wireless

communication, satellite, and radar technologies, which
require high data speeds and secure communication, the
use of millimeter wave (MMW) frequencies [1–4] has
increased significantly. Devices operated at MMW fre-
quency range radiate electromagnetic (EM) fields that
comply with EM field exposure limits for human safety
determined by international guidelines. These guide-
lines are defined by the International Commission on
Non-Ionizing Radiation Protection (ICNIRP) [5] and
the IEEE International Committee on Electromagnetic
Safety (IEEE-ICES) [6].

Below 6 GHz, IEEE and ICNIRP guidelines rec-
ommend basic restrictions which are specific absorption

rate (SAR) over 1-gram and 10-gram tissues and incident
power density (IPD) for EM field exposure limits. In the
frequency range 6-300 GHz, the basic restrictions and
limitations determined by the guidelines are absorbed
power density (APD), IPD, and whole-body average
SAR for a given IPD.

Interaction between the human body and EM field
exposure generated by far-field and near-field sources
has been extensively investigated in [7–23] at different
frequency of interest. In most studies [7–18], human
body models with bare skin have been used for EM
dosimetry analysis at below and above 6 GHz. How-
ever, electromagnetic power absorption by biological tis-
sues can be affected by the presence of fabrics on the
human body [19–23]. Power transmission coefficients
(PTC) [19] in the presence of a fabric on the skin surface
with and without an air gap between the fabric and skin
surface have been analytically calculated up to 300 GHz.
Therefore, it is important to consider the impact of fab-
rics on the accuracy of EM dosimetry analysis, especially
at MMW frequency range. In several studies [1, 2, 19–
23], the effect of fabrics on the human body has been
investigated due to EM field exposure at MMW frequen-
cies, and it could be concluded that the presence of fabric
on the human body acts as impedance matching layers
affecting EM field absorption. The effects of most com-
mon fabrics, cotton and wool, on APD, PTC, and temper-
ature rise of a one-dimensional (1D) four-layered model
are investigated in [20] using the finite element method
(FEM) due to EM far-fields exposure and in [20] using
CST software employing the finite integration technique
(FIT) at 26 GHz and 60 GHz. The effect of fabrics on
the human body for body centric communication has
been studied in terms of path gain at 60 GHz in [21].
Two-dimensional (2D) clothed skin models with cotton
and wool fabrics experiencing EM field exposure with
oblique incident angle at 60 GHz in [22] and over the
frequency range from 20 GHz to 100 GHz in [23] have
been investigated using Monte Carlo simulations. How-
ever, to the best of our knowledge, 1D clothed multi-
layered human body models exposed to an EM field at
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MMW frequency range have not been investigated using
the finite-difference time-domain (FDTD) method.

The FDTD method has been widely used in EM
dosimetry analysis of three-dimensional (3D) human
body voxel models without clothing. However, it is dif-
ficult to create 3D clothed human body voxel models
for EM dosimetry analysis based on the FDTD method,
especially at MMW frequency range. Therefore, a 1D
multi-layered head model obtained from a realistic head
voxel model as in [11] can be used in EM dosimetry anal-
ysis using the FDTD method based on the Debye model
to show the effect of different fabric materials on the EM
field exposure metrics at wide range of frequencies from
1 GHz to 100 GHz.

In this study, a 1D multi-layered head model clothed
with cotton or wool fabrics is analyzed using the FDTD
method based on the Debye model to show the effect
of fabrics in the human body over the frequency range
from 1 GHz to 100 GHz. Furthermore, the effect of fabric
thickness and effect of an air gap between the fabrics
and the skin surface in the 1D multi-layered model on
the accuracy of EM dosimetry analysis are investigated
using the FDTD method at frequencies up to 100 GHz.
Numerical results obtained in this study show that PTC,
APD, and heating factor based on the temperature rise
and APD in the 1D multi-layered model are significantly
affected by the presence and thickness of fabrics and air
gap.

II. METHOD AND MODELS
A. 1D multi-layered model and fabrics

A 1D multi-layered model extracted from the fore-
head region of 3D realistic human head model [24]
shown in Fig. 1 (a) is used in the EM dosimetry anal-
ysis. The tissue arrangement and thicknesses in the 1D
multi-layered model, shown as dashed lines in Fig. 1 (b),
are shown in Fig. 1 (c).

The 1D multi-layered forehead model in Fig. 1 (b)
covered by cotton/wool fabrics, such as a hat, is used in
this study to show the effect of clothing on EM dosime-
try analysis. The complex relative permittivity [ε∗r (ω)]
of the cotton and wool, which are 2− j0.04 and 1.22−
j0.036, respectively, are given in [20]. The thickness of
fabrics (t f abric) varies from 0.5 mm to 3 mm or more. The
thickness of air gap (tair) between the fabric and the skin
surface varies from 0 mm to several mm.

B. FDTD method based on the Debye model
The FDTD method mostly used in the EM dosime-

try analysis provides solutions at a wide range of fre-
quencies when the Debye model [25, 26] is integrated
into the FDTD method to analyze frequency-dependent
biological tissues as in [10, 11]. The three-term Debye
parameters (ε∞ relative permittivity at infinite frequency,
εk static relative permittivity, and τk relaxation time at
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Fig. 1 (a) 3D human head model [24] (red band shows 

the 2D cross sectional of forehead region), (b) 1D multi-

layered forehead model (black dashed line), and (c) types 
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Fig. 1. (a) 3D human head model [24] (red band shows
the 2D cross sectional of forehead region), (b) 1D multi-
layered forehead model (black dashed line), and (c) types
of tissues and their thickness in the 1D model.

kth term) of head tissues provided in [27] are used in the
Debye model to obtain solutions up to 100 GHz. These
Debye parameters were obtained from a numerical pro-
cedure presented in [28] and provide EM solutions at fre-
quencies up to 100 GHz in a single FDTD simulation:
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In the FDTD method, cell size is set to 0.0625 mm
which satisfies the Courant-Friedrichs-Lewy (CFL) con-
dition [26]. The FDTD computational domain is ter-
minated by 10-cell convolution perfect matched lay-
ers (CPML) with 15-cell air layers. A Gaussian wave-
form considered as an incident plane wave including all
frequency of interest up to 100 GHz is generated on
the total-field scattered-field (TF-SF) boundary [26] to
excite the FDTD computational domain. The IPD of the
incident plane wave based on the public exposure sce-
nario in the ICNIRP guideline [5] is set to 5 W/m2 at
1 GHz and 10 W/m2 over the frequency range from
2 GHz to 100 GHz.

C. Calculations of power transmission coefficient,
SAR, absorbed power density, and heating factor

In order to evaluate transmission from air to skin
tissue, the power transmission coefficient (PTC) is cal-
culated by dividing the total power deposition (TPD) by
the IPD. The TPD of the 1D model is expressed in [29]
as:

T PD =
1
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where imax is larger than penetration depth in the 1D
model, and Ei [V/m] and σi [S/m] are the electric field
strength and the electric conductivity of the ith indexed
cell of the tissues, respectively. The APD [30] for 1D
multi-layered models can be expressed as:

APDi =
|Ei|2

|η | , (3a)

where:

|η |= ηo

√
µr

ε ′r[1+(ε ′′r /ε ′r)]
0.25 , (3b)

where ηo is the characteristic impedance in free space
and µr is the relative permeability of a material. The SAR
defined in [5, 6] is calculated to determine how much EM
power is absorbed per unit mass of tissues:

SAR(i) =
σi

2ρ

(
|Ei|2

)
, (4)

where ρ is the mass density of the tissues.
The temperature rise distribution in the 1D multi-

layered model due to EM field exposure has been cal-
culated by using the Pennes bioheat equation [31].
This equation can be solved using the finite-difference
approximation as follows:

T n+1(i) = T n(i)+
∆t
C

·
[

SAR(i)−B
ρ
· [T n (i)−Tb] (5)

+
K

ρ ·∆2 · [T n(i+1)+T n(i−1)−2 ·T n(i)]
]
,

where C [J/(kg·◦C)], K [W/(m·◦C)], and B [W/(m3·◦C)]
are the heat capacity, the thermal conductivity, and the
blood perfusion rate, respectively, and ∆ is the resolution
of 1D multi-layered model. T n (i) is the temperature [◦C]
at time n and at ith indexed cell, and Tb is the blood tem-
perature [◦C] set to 37◦C. The thermal increment (∆t) for
the iterative calculation of equation (5) must satisfy the
thermal stability numerically:

∆t ≤ 2 ·ρ ·C ·∆
12 ·K+B ·∆2 . (6)

The convection boundary condition for a clothed 1D
model without an air gap can be solved using the finite
difference approximation as implemented in [10, 11].
However, the boundary conditions in the presence of an
air gap between the fabric and skin surface can be con-
sidered in [32, 33] as a closed enclosure. The convective
boundary condition is expressed as:

T n+1(imin) =
K ·T n+1(imin+1)+Tair ·H ·∆

K+H ·∆
, (7)

where Tair is the air temperature set to 20◦C, n is the unit
normal vector to the interfaces, and H is the convection
heat transfer coefficient of 10.5 [W/(m2·◦C)]. The mass
density and thermal parameters of the tissues used here
are provided in [34]. The steady-state temperature distri-
bution in the human body model is calculated when SAR
= 0. Then, the final temperature rise distribution is com-
puted by solving the bioheat equation again when SAR ̸=

0. Finally, the temperature rise distribution is difference
of the steady-state and final temperature distributions.

The heating factor, defined as the steady-state tem-
perature rise divided by APD, is calculated as a function
of frequency up to 100 GHz. The heating factor is a use-
ful assessment of thermal effect due to EM wave expo-
sure at frequencies above 6 GHz. Above 6 GHz, the max-
imum heating factor should be at most 0.025 [◦C·m2/W]
based on [13].

III. NUMERICAL RESULTS
To verify the validity of the FDTD method based

on the Debye model, the 1D multi-layered forehead bare
model is analyzed to obtain APD and local SAR values at
60, 77, and 100 GHz when IPD is 10 W/m2. In Table 1,
the maximum values of APD and local SAR of the 1D
human forehead model are compared with the results
presented in [1, 14, 19]. The results obtained in this study
are in good agreement with the published results, despite
analyzing different multi-layered models. The 1D multi-
layered models clothed with cotton/wool fabrics of dif-
ferent thickness (t f abric) in contact with the skin surface
(tair = 0) are analyzed in this study to calculate the PTC
and APD values at 60 GHz for IPD of 10 W/m2. For
comparison, Table 2 shows the results obtained in this
study and obtained using FEM in [20].

Table 1: Max. APD and local SAR values at different
frequencies of interest for IPD of 10 W/m2

Models Freq.
[GHz]

Max. APD
[W/m2]

Max. SAR
[W/kg]

[1]
60

6.2 26.0
[19] 5.9 27.6

This study 6.2 20.6
[14] 77 N/A 27.2

This study 6.5 25.4
[14] 100 N/A 33.9

This study 6.9 29.3

Table 2: PTC and max. temperature rise at 60 GHz
Cotton (mm) Models TPC APD

1 [20] 0.79 7.8
This study 0.78 7.8

2 [20] 0.72 6.4
This study 0.63 6.4

3 [20] 0.77 6.3
This study 0.65 6.4

A. Effect of cotton/wool thickness on EM exposure
metrics

The effects of cotton/wool thickness in contact with
skin surface in the 1D multi-layered forehead models
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are analyzed using the FDTD method over the frequency
range up to 100 GHz. PTCs of the 1D bare and clothed
models with cotton/wool fabrics of 1, 2, and 3 mm thick-
ness are calculated and shown in Fig. 2 as a function
of frequency. It can be realized that power transmis-
sion between the fabrics and skin surface is significantly
affected by the fabric type and thickness, and the fre-
quency of EM field exposure. As frequency changes,
there may be an oscillation in power transfer to the skin
surface. PTCs for clothed models in Fig. 2 have max-
ima and minima at certain frequencies because the fab-
ric acts as impedance matching layers. In PTC values
for the 3 mm thick cotton, the first highest occurs at a
frequency of 17 GHz, where the thickness of cotton is
equal to t f abric = λ f /4 [19] where λ f is the wavelength
in the fabrics. Similarly, other maxima of PTC occur at
frequencies of 51 and 85 GHz when t f abric = 3λ f /4 and
t f abric = 5λ f /4, respectively. It can be deduced that peak
values of PTCs appear at frequencies where the thick-
ness of fabrics is equal to odd multiples of λ f /4 [19] and
expressed as:
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t f abric = (2n+1)
λ f

4
= (2n+1)

ϑp

4 f
, (8)

where ϑp is phase velocity in the fabrics, f is the fre-
quency of the EM field, and n is an integer number. In
Table 3, frequencies calculated from equation (8) and
obtained from Fig. 2 are the frequencies at which peak
power absorption occurs for different thicknesses of the
cotton and wool fabrics. The frequencies obtained from
Fig. 2 are in good agreement with those obtained from
exact calculation in equation (8). Additionally, it can be
seen from Fig. 2 that PTC values below 10 GHz are not
affected by the presence of fabrics because the thick-
ness of fabrics is smaller than the wavelengths of the EM
waves at frequencies below 10 GHz.

Figure 3 shows the PTCs of 1D models clothed with
cotton fabric as a function of its thickness at frequen-
cies of 30, 60, and 100 GHz. In Fig. 3, the maximum
PTC values for each frequency of interest occurs when
the cotton thickness is equal to odd multiples of λ f /4
in equation (8). Table 4 shows the cotton thickness at
which PTC values are maximum at 30, 60, and 100 GHz,
calculated from equation (8) and obtained from Fig. 3.
The cotton thickness calculated using equation (8) and
obtained from Fig. 3 are in acceptable agreement.

Table 3: Frequencies for peak PTCs in Fig. 2 and calcu-
lated from equation (8) for fabrics with different thick-
ness

Models Thickness
[mm]

Exact Freq. in
(8) [GHz]

Freq. in
Fig. 2 [GHz]

Cotton
1 53.03 51
2 26.51/79.55 26/77
3 17.68/53.03/88.38 17/51/85

Wool
1 67.9 74
2 33.95 34
3 22.63/67.90 23/68
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Fig. 3. PTCs at 30, 60, and 100 GHz as a function of
tcotton for the 1D multi-layered forehead models clothed
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Table 4: Cotton thickness for peak PTCs in Fig. 3 and
calculated from equation (8) at 30, 60, and 100 GHz

Freq.
[GHz]

Exact Thickness
in (8) [mm]

Thickness in
Fig. 3 [mm]

30 1.8/5.3 1.5/5.125
60 0.88/2.7/4.4 0.625/2.5/4.25

100 0.53/1.6/2.7/3.7
/4.8/5.8

0.5/1.5/2.5/3.625
/4.625/5.75

Heating factors for cotton and wool fabrics with the
thickness of 1, 2, and 3 mm are shown in Fig. 4 over
the frequency range up to 100 GHz. The calculated heat-
ing factors are compared to those obtained for a 1D
multi-layered bare model presented here and a simple
1D bare model presented in [12]. The heating factors are
frequency-dependent below 30 GHz, whereas they are
little affected by frequency changes above 30 GHz. They
are significantly affected by the thickness of the fabric
and not so much by the type of fabric.
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Fig. 4. Heating factors of the bare and clothed 1D mod-
els with different thickness for (a) cotton (tcotton) and (b)
wool (twool) fabrics when tair = 0.

The frequency-dependent local SAR values are cal-
culated for the 1D multi-layered forehead model clothed
with cotton/wool fabrics having different thicknesses
when tair = 0. Peak local SAR values for clothed with
different thickness and bare 1D multi-layered models are
shown in Fig. 5 as a function of frequency. From Fig. 5,
peak SAR values of 1D models, especially at frequencies
above 20 GHz, are affected by the presence of fabrics and
their thickness on the 1D model. It can be realized from
Figs. 2 and 5 that the frequencies at which the maxima
and minima values in the PTC curves occur are the same
as the frequencies at which the maximum and minimum
values occur in the SAR curves.

(a)

(b)

Fig. 5. Peak local SAR of bare and clothed 1D models
for different thickness of (a) cotton and (b) wool fabrics
when tair = 0.

B. Effect of air gap thickness between fabrics and
skin surface

To demonstrate the effects of different thickness for
an air gap between fabric and skin surface on the EM
field absorption, 1D multilayer forehead models clothed
with 1 mm thick cotton/wool fabrics in the presence of
an air gap with different thicknesses (tair = 0, 1, 2, 3 mm)
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are analyzed up to 100 GHz. PTCs for the different thick-
ness of air gap in the 1D multi-layered model are shown
in Fig. 6. It can be seen from Fig. 6 that PTCs of clothed
1D models are increasing and decreasing in the pres-
ence of the air gap over the frequency range. The air gap
and fabrics act as impedance matching layers between
the fabrics and the skin surface, and they create fluc-
tuations over the frequency band. Cotton fabric causes
larger fluctuations in the PTC values over the frequency
band due to its higher relative permittivity compared to
the permittivity of wool fabric. In Fig. 7, the PTCs of the
1D model clothed with 1 mm thick cotton at frequen-
cies of 30, 60, and 100 GHz are shown as a function
of air gap thickness. From Fig. 6, it can be noticed that
PTC values are significantly affected by the change of
thickness of the air gap between the fabric and the skin
surface.

Heating factors of the 1D multi-layered models
clothed with 1 mm thick cotton and an air gap of 1, 2,
and 3 mm thickness are shown in Fig. 8. At the fre-
quency band above 10 GHz, heating factors for cotton
fabric are slightly higher than those for wool fabric due
to having higher relative permittivity of the cotton fabric.
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Fig. 8. Heating factors of 1D models with 1 mm thick (a)
cotton and (b) wool fabrics when tair = 0, 1, 2, 3 mm.

They are not affected by the presence of an air gap larger
than 1 mm thick.

The peak values of local SAR over the frequency
band are shown in Fig. 9 for clothed 1D multi-layered
model with different thickness of air gap. The local SAR
values in Fig. 9 are significantly affected by the type of
fabric and the presence of an air gap and its thickness.
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Above 20 GHz, the cotton fabric causes larger fluctua-
tions for local SAR values than wool fabric. It can be
realized from Fig. 9, the air gap between fabrics and skin
tissue acts as an impedance matching layer.
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Fig. 9. Peak local SAR of 1D model clothed with 1 mm
thick (a) cotton and (b) wool when tair = 0, 1, 2, 3 mm.

IV. CONCLUSION
EM field exposure of 1D multi-layered head mod-

els clothed with cotton and wool fabrics is investigated
using the FDTD method with Debye model in the fre-
quency range from 1-100 GHz. The impact of the thick-
ness of cotton and wool fabrics on EM field exposure
metrics is analyzed up to 100 GHz. In addition, it is
investigated how the presence of an air gap with dif-
ferent thickness between the fabric and the skin sur-
face could affect power transmission to the skin surface,
APD, and heating factor. Numerical results show that the
presence of fabrics and air gap introduced between the
fabric and the skin surface significantly affects power
transmission to the skin surface, APD, and heating factor.
Power transmission to the skin surface strictly depends
on the thickness of the fabric and the air gap, resulting

in decreased and increased EM power deposition in the
tissues.
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