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Abstract – In order to deal with the nonlinear problems
associated with the Alford force and active bearing rotor
system in fluid machinery, an integral sliding mode con-
trol with exponential reaching law is proposed in this
paper. An integral term is incorporated into the switch-
ing function, and an exponential approaching law, along
with a boundary layer saturation function that replaces
the symbolic function, is adopted to suppress the chat-
tering and tracking error of sliding mode control. Sim-
ulation and experimental results show that, under the
magnetic bearing force and Alford force, the system
exhibits improved anti-disturbance performance com-
pared to a PID controller. Moreover, the rotor ampli-
tude is reduced by 33% when using this controller. The
proposed controller demonstrates good dynamic perfor-
mance and strong robustness, even when the parameters
of the entire system are perturbed.

Index Terms – Active magnetic bearings, Alford force,
Sliding mode control, Vibration control.

I. INTRODUCTION
An active magnetic bearing (AMB) is widely used in

fluid machinery because of its advantages of no mechan-
ical contact, no friction and wear, longer life, high effi-
ciency and active control [1]. Nevertheless, issues during
the manufacturing and assembly process can result in rel-
ative eccentricity between the impeller and volute. When
the magnetic suspension fluid machinery operates at high
speeds, a differential pressure is generated in the circum-
ferential direction of the impeller. This differential pres-
sure creates a transverse force acting on the rotor [2],
commonly referred to as the Alford force. The Alford
force can potentially induce instability in the equipment.

Generally, the rotor cannot remain suspended at the
center due to multiple disturbances, which causes the
electromagnetic force of the AMB to exhibit strong time-

variant and nonlinear characteristics. What’s more, the
Alford force aggravates the nonlinearity which makes
the controller more difficult and complicated. Shata
et al. [3] and Anantachaisilp and Lin [4] applied a
fractional order PID controller to the magnetic bear-
ing rotor system and optimized the control parameters.
The effect of the improved PID controller was veri-
fied by comparative experiment. Raafat and Akmeli-
awati [5] developed a robust H2/H∞ controller for AMB
systems by employing adaptive neuro-fuzzy inference
systems (ANFIS) for intelligent uncertainty estimation,
thereby achieving wide bandwidth and enhanced per-
formance while accurately compensating for modeling
errors and nonlinearities Ran et al. adopted H∞ [6] and
µ [7] controllers, and their research confirmed that by
using these two controllers, rotor vibration was effec-
tively suppressed and successfully passed through the
critical speed. Di and Lin [8] applied the all-coefficient
adaptive control (ACAC) to control the flexible mag-
netic bearing rotor and the orbit was smaller than µ.
This method did not rely on modeling accuracy, which
is simpler to realize compared with H∞ and µ. Guan
et al. [9] introduced extended state observer (ESO)
into the adaptive controller and used it in magnetic
bearing rotor systems. Research showed that the con-
troller can significantly suppress interference in the
system.

As a robust controller, sliding mode control (SMC)
is suitable for dealing with nonlinear systems and
remains insensitive to variations in parameters and exter-
nal disturbances. In recent years, SMC has been widely
used in magnetic bearings. Chen and Lin [10] presented a
robust nonsingular terminal sliding mode control. Com-
pared with the conventional sliding mode control with
linear sliding surface, it provides faster, finite time con-
vergence, and higher control precision. Huynh and Tran
[11] designed a new integral sliding mode control for the
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3-pole AMB system and demonstrated the efficacy of the
proposed method. Rong and Zhou [12] built an adaptive
backstepping sliding mode control for a zero-bias cur-
rent AMB system and the effectiveness was verified by
simulation and experiment. Mystkowski [13] dealt with
sliding mode nonlinear observers and designed a Lya-
punov sliding mode observer for a flux-controlled AMB.
The stability and effectiveness of the proposed observer-
based feedback were verified by means of numerical
simulations. Rahmatullah and Serteller [14] employed
SMC for DC motor speed control, investigating its per-
formance and parameter effects in MATLAB/Simulink,
and compared its effectiveness with Fuzzy Logic Con-
trol, PID and PI methods.

However, the aforementioned research primarily
focuses on internal disturbance within the AMB rotor
system, with relatively little attention given to the effects
of external disturbance. In this paper, an integral slid-
ing mode control with an exponential approximation law
is implemented to solve the Alford force disturbance
in magnetic suspension fluid machinery. The switching
function is augmented with an integral term, and an
exponential approach, along with a boundary layer sat-
uration function, is adopted in place of the symbolic
function. This approach suppresses chattering and track-
ing errors in the sliding mode control, thereby enhanc-
ing the system’s anti-disturbance performance. Using a
five degrees of freedom AMB rotor system rig as the
test object, the effectiveness of this controller is demon-
strated through comparison with a PID controller.

II. FUNDAMENTALS
A. Modeling of the AMB rotor system considering the
Alford force

The AMB rotor system is divided into five degrees
of freedom in radial and axial directions. The radial
AMB offers two translational and two rotational degrees
of freedom, while the axial AMB provides one transla-
tional degree of freedom. The axial rotational degree of
freedom is enabled by the motor. In this paper, modeling
analysis and controller design for the AMB rotor system
are conducted to validate the effectiveness of the con-
troller. Figure 1 shows the model of an AMB rotor sys-
tem.

By using Newton’s law and ignoring the influence of
gravity, the dynamic model of a magnetic bearing rotor
system can be described as follows:

mẍ = FAMB +FA+∆F, (1)
where ẍ is acceleration, m is the mass of the rotor, FAMB
is the electromagnetic force and defined in equation (3),
FA is Alford force and defined in equation (4), and ∆F is
various disturbances.

The electromagnetic force of a magnetic bearing is
driven by the power amplifier in the form of current dif-
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where the Taylor expansion of the above equation at ix =
0, x0 = 0 and ignoring the higher-order term, the mag-
netic bearing force on the rotor can be expressed as:
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where µ0 is vacuum permeability, A is area of a single
magnetic pole, N is total number of turns of the coil on a
pair of magnetic poles, C0 is unilateral air gap when the
rotor is at the magnetic center, i0 is coil bias current, ix
is coil control current, x0 is rotor displacement, kh is dis-
placement stiffness coefficient, x is displacement signal,
and ki is current stiffness coefficient.

The Alford force model can be expressed as [15]:
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C =V 2 sinβ1ρ0 (cosβ1 +ζ cosβ2) , (7)

where e is eccentricity, RT is tip radius, RB is root radius,
β 1 is inlet angle, β 2 is outlet angle, ρ0 is airflow density,
ζ is speed coefficient, δ is average tip clearance, and V
is inlet speed.

If equation (3) is substituted into equation (1):

mẍ = khx+ kiix +FA+∆F (8)

then, according to the state-space representation of the
system, equation (9) is obtained as follows:

ẋ = Ax+Bu+CFA +D∆F (9)
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The block diagram of an AMB rotor system con-
sidering the Alford force is shown in Fig. 2. In the
AMB rotor system, significant nonlinear perturbations
arise from a variety of disturbances. This paper presents
the design of a sliding mode controller equipped with
an exponential approach law, which can still maintain
the characteristics of low overshoot, rapid response, and
strong robustness in the case of multi-source external dis-
turbances.
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where φ is boundary layer thickness, which indicates that 

the trajectory of the system is limited to a neighborhood 
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B. SMC design for an AMB system
Exponential reaching law sliding mode control can

guarantee the quality of sliding mode control and weaken
chattering to a certain extent [16]. Guo and Bo [17] pro-
posed a new exponential reaching law based on the tra-
ditional exponential reaching law, enhancing the robust-
ness of the control system. Wang et al. [18] designed a
new variable exponential reaching law, introducing sys-
tem state variables into the constant velocity term, which
accelerates the reaching speed while reducing the sys-
tem chattering, but the overshoot issue was not resolved.
Wang et al. [19] introduced a weighted integral term
based on the variable exponential reaching law, elimi-
nating the system overshoot.

Based on the above analysis, an exponential reach-
ing integral sliding mode control method will be utilized
to design the controller, including the design of the slid-
ing surface function and the control law for the sliding
mode reaching phase, and further analysis of the sys-
tem’s robustness will be conducted.

(1) Controller design

According to the control objectives of the system, the
sliding mode switching function is designed as follows:

s(t) = ce(t)+ ė(t) (10)
where c must satisfy the Hurwitz condition, meaning that
c>0, and its numerical value determines the exponential
convergence rate of the error.

To enhance the tracking performance of the control
system and to eliminate the steady-state error, integral

action is incorporated into the sliding mode switching
function. Equation (10) can be rewritten as follows:

s(t) = ce(t)+ ė(t)+ ci

∫
∞

0
e(t)dt (11)

where ci is integral sliding mode gain.
If we define the tracking error e(t) = xr − x and its

derivative ė(t), where xr is 0 in the ideal state, then the
sliding mode switching function is defined as:

ṡ = cė(t)+(ẍr − ẍ)+ cie(t). (12)
Neglecting other external interference factors, sub-

stituting this into the preceding equation yields:

ṡ = cė(t)− khx+ kiix +FA

m
+ cie(t). (13)

Due to the characteristics of the AMB rotor system,
the rotor deviates from the equilibrium position when the
system boots. To ensure the system reaches the sliding
surface without chattering in a short time, an exponen-
tial approach law is adopted. The designed exponential
approach law is:

ṡ =−εsgn(s)− ks. (14)
By combining and simplifying equations (13) and

(14), the subsequent equation is derived:

u =
m
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[εsgn(s)+ ks+ cie(t)+ cė(t)]− khx
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− FA

ki
. (15)

In practical applications, the use of a symbolic func-
tion can result in high-frequency chatter, which may
excite additional vibrations within the system, poten-
tially leading to instability. Consequently, it is imperative
to mitigate this chatter. In this paper, the saturation func-
tion of the boundary layer is used to replace the symbolic
function:
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where ϕ is boundary layer thickness, which indicates
that the trajectory of the system is limited to a neigh-
borhood of ϕ and the larger the value, the smaller the
chattering, but it will make the static error larger and the
control effect worse.

(2) Stability analysis

Integrating the designed SMC, the robustness of the sys-
tem is investigated. In accordance with the stability cri-
teria for control systems, the subsequent Lyapunov func-
tion is selected:

V =
1
2
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The sufficient condition for ensuring the stability of
the system is that the derivative of the Lyapunov function
must be less than or equal to zero, which is then substi-
tuted into equation (13):
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Substitute (12) into (18) and simplify to:

V̇=−εssgn
(

s
ϕ

)
− ks2 ≈−ε |s|− ks2. (19)

Since the parameters ε , k are positive, when s ̸=0,
the equal sign applies, and the aforementioned equation
remains consistently less than 0, thus satisfying the Lya-
punov stability condition. Consequently, the controller is
capable of stabilizing the system.

III. SYSTEM SIMULATION ANALYSIS
In order to test the effect of the SMC proposed in

this paper, the controller is verified by Matlab/Simulink.
In the simulation, the AMB rotor system parameters are
as shown in Table 1.

Table 1: Parameters of an AMB rotor system
Parameter Value

m (kg) 14.56
ki (N/A) 338.54

kh (N/µm) 2.502e6
RT (mm) 29
RB (mm) 7.5

β 1 (◦) 25
β 2 (◦) 30

V (m/s) 42

To facilitate the tuning process, the impact of three
parameters on the controller’s performance was inves-
tigated through the application of a step response. The
results are depicted in Fig. 3. As observed from Fig. 3,
the rise time of the step response tracking decreases with
an increase in ε . Variations in k exhibit minimal influ-
ence on the system’s behavior. However, as ϕ increases,
the overshoot becomes more pronounced, and a certain
degree of chattering is observed. The optimized param-
eters for the improved SMC controller are presented in
Table 2.

Table 2: Parameters of SMC
Parameter Value

ε 80
k 3000
ϕ 10
ci 500

Following the controller tuning, its performance was
simulated and experimentally validated. The system was
accelerated to 100 Hz, and the rotor orbit was subse-
quently obtained, as depicted in Fig. 4. The figure illus-
trates that the radial vibration is effectively controlled
within 0.02 V by the improved SMC, signifying the con-
troller’s robust control performance.
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Since the parameters ε、k are positive, when s≠0, the 

equal sign applies, and the aforementioned equation 

remains consistently less than 0, thus satisfying the 

Lyapunov stability condition. Consequently, the 

controller is capable of stabilizing the system. 

 

III. SYSTEM SIMULATION ANALYSIS 
In order to test the effect of the SMC proposed in 

this paper, the controller is verified by Matlab/Simulink. 

In the simulation, the AMB rotor system parameters are 

as shown in Table 1. 
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To facilitate the tuning process, the impact of three 

parameters on the controller’s performance was 

investigated through the application of a step response. 

The results are depicted in Fig. 3. As observed from Fig. 

3, the rise time of the step response tracking decreases 

with an increase in ε. Variations in k exhibit minimal 

influence on the system’s behavior. However, as φ 

increases, the overshoot becomes more pronounced, and 

a certain degree of chattering is observed. The optimized 

parameters for the improved SMC controller are 

presented in Table 2. 
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Fig. 3. Influence of different parameters on SMC:(a)
influence of parameter ε on SMC, (b) influence of
parameter k on SMC, and (c) influence of parameter ϕ

on SMC.

Subsequently, the anti-interference performance of
the improved SMC was simulated. The Alford force
model was introduced for comparison with the PID
controller. The rotor’s response to this is presented in
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Since the parameters ε、k are positive, when s≠0, the 

equal sign applies, and the aforementioned equation 

remains consistently less than 0, thus satisfying the 

Lyapunov stability condition. Consequently, the 

controller is capable of stabilizing the system. 
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Fig. 4. Rotor orbit under SMC.

Fig. 5. The simulation results indicate that both con-
trollers influence the Alford force, although the improved
SMC exhibits a more pronounced effect. In compar-
ison with the PID controller, the amplitude reduction
achieved by the enhanced SMC is approximately 25%.

Subsequently, the anti-interference performance of 

the improved SMC was simulated. The Alford force 

model was introduced for comparison with the PID 

controller. The rotor’s response to this is presented in 

Fig. 5. The simulation results indicate that both 

controllers influence the Alford force, although the 

improved SMC exhibits a more pronounced effect. In 

comparison with the PID controller, the amplitude 

reduction achieved by the enhanced SMC is 

approximately 25%. 
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IV. EXPERIMENT
To validate the accuracy of the preceding analyses,

an AMB test rig was employed for experimental pur-
poses. The experimental apparatus is depicted in Fig. 6.

Initially, step and sinusoidal disturbances were
introduced to the rotor while in the suspended state,
and the resulting displacement response of the rotor was
recorded, as depicted in Fig. 7. The figure clearly indi-
cates that, in the suspended state, the controller exhibits
robust performance in the presence of disturbances. The
rotor returns to the suspended position within 0.35 s fol-
lowing perturbation by the step signal.

To further substantiate the efficacy of the con-
troller, a rotation experiment was conducted. The rotor’s
response to the introduction of step and sinusoidal distur-
bances is illustrated in Fig. 8. The figure reveals that, in

Subsequently, the anti-interference performance of 

the improved SMC was simulated. The Alford force 

model was introduced for comparison with the PID 

controller. The rotor’s response to this is presented in 

Fig. 5. The simulation results indicate that both 

controllers influence the Alford force, although the 

improved SMC exhibits a more pronounced effect. In 

comparison with the PID controller, the amplitude 

reduction achieved by the enhanced SMC is 

approximately 25%. 
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Subsequently, the anti-interference performance of 

the improved SMC was simulated. The Alford force 

model was introduced for comparison with the PID 

controller. The rotor’s response to this is presented in 

Fig. 5. The simulation results indicate that both 

controllers influence the Alford force, although the 

improved SMC exhibits a more pronounced effect. In 

comparison with the PID controller, the amplitude 

reduction achieved by the enhanced SMC is 

approximately 25%. 
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Subsequently, the anti-interference performance of 

the improved SMC was simulated. The Alford force 

model was introduced for comparison with the PID 

controller. The rotor’s response to this is presented in 

Fig. 5. The simulation results indicate that both 

controllers influence the Alford force, although the 

improved SMC exhibits a more pronounced effect. In 

comparison with the PID controller, the amplitude 

reduction achieved by the enhanced SMC is 

approximately 25%. 
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Fig. 7. Rotor response to different disturbances under
suspension: (a) step interference and (b) sinusoidal inter-
ference.

the rotating state, the amplitude is reduced compared to
that in the suspended state. This discrepancy is attributed
to rotor imbalance and external disturbances present
in the rotating state, which necessitate a control effort
that generates a compensation quantity counteracting the
interference. As a result, the interference is manifest in
the vibration displacement, characterized by a quicker
response and reduced vibration amplitude.

Finally, the AMB test rig was utilized to simulate
the Alford force and to compare the suppression effects
of the PID and SMC controllers. The rotor orbit at 100
Hz under the influence of both controllers is depicted in
Fig. 9. As shown in Fig. 9 (a), due to the Alford force
and flow field effects, the rotor orbit at the impeller side
is larger than that at the non-impeller side. Furthermore,
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Subsequently, the anti-interference performance of 

the improved SMC was simulated. The Alford force 

model was introduced for comparison with the PID 

controller. The rotor’s response to this is presented in 

Fig. 5. The simulation results indicate that both 

controllers influence the Alford force, although the 

improved SMC exhibits a more pronounced effect. In 

comparison with the PID controller, the amplitude 

reduction achieved by the enhanced SMC is 

approximately 25%. 
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Fig. 8. Rotor response to different disturbances under 

rotating: (a) step interference and (b) sinusoidal 

interference. 

 

Finally, the AMB test rig was utilized to simulate 

the Alford force and to compare the suppression effects 

of the PID and SMC controllers. The rotor orbit at 100 

Hz under the influence of both controllers is depicted in 

Fig. 9. As shown in Fig. 9 (a), due to the Alford force 

and flow field effects, the rotor orbit at the impeller side 

is larger than that at the non-impeller side. Furthermore, 

the SMC controller outperforms the PID controller, as 

indicated by a 33% decrease in the rotor orbit amplitude 

shown in Fig. 9 (b). This demonstrates the superiority 

and reliability of the designed SMC controller. 
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Fig. 9. Comparison of rotor orbit of different controllers 

considering the Alford force: (a) impeller side and (b) 

non-impeller side. 

 

V. CONCLUSION 
A model of a magnetic bearing rotor system 

considering the Alford force is established in this paper. 

On this foundation, an integral sliding mode control with 

exponential approximation law is designed to solve the 

system nonlinear and chattering. Moreover, a stability 

analysis of the system is carried out. Experimental 

results show that the proposed controller can effectively 

mitigate chattering and exhibits robust anti-interference 

ability. It is noteworthy that the rotor orbit at the impeller 

side is reduced by 33% under the controller presented 

here, when compared to the performance of the PID 

controller, highlighting the superiority and significance 

of this approach for the AMB rotor system. 
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Fig. 9. Comparison of rotor orbit of different controllers
considering the Alford force: (a) impeller side and (b)
non-impeller side.

the SMC controller outperforms the PID controller, as
indicated by a 33% decrease in the rotor orbit amplitude
shown in Fig. 9 (b). This demonstrates the superiority
and reliability of the designed SMC controller.

V. CONCLUSION
A model of a magnetic bearing rotor system consid-

ering the Alford force is established in this paper. On this
foundation, an integral sliding mode control with expo-
nential approximation law is designed to solve the sys-
tem nonlinear and chattering. Moreover, a stability anal-
ysis of the system is carried out. Experimental results
show that the proposed controller can effectively miti-
gate chattering and exhibits robust anti-interference abil-
ity. It is noteworthy that the rotor orbit at the impeller
side is reduced by 33% under the controller presented
here, when compared to the performance of the PID con-
troller, highlighting the superiority and significance of
this approach for the AMB rotor system.
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