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Abstract – This paper proposes a novel, four-port
multiple-input-multiple-output antenna system that is
considered for sub-6 GHz 5G applications. A com-
pact multi-band circular printed monopole antenna
(MCPMA) is designed for determining the appropri-
ate dimensions of size 110.16×360 mm. The device
operates from 0.6 to 1 GHz. To improve cell iso-
lation, four slits are positioned at an angle on the
common ground. Deep graph shallow attention neural
network with adaptive gold rush optimization algorithm
(DGSANN-AGROA) is employed to create a model
establishing the relationship among transmission coeffi-
cients and antenna geometric parameters. Following this,
an adaptive gold rush optimization algorithm (AGROA)
is utilized to enhance the antenna array’s decoupling. It
showcases pattern diversity, a valuable characteristic for
multiple-input-multiple-output implementation. Simula-
tions were conducted using HFSS19 software versions,
followed by an evaluation of the introduced antenna in
MATLAB. The multiple-input-multiple-output antenna
demonstrates favorable diversity characteristics with
acceptable diversity gain (>9.5 dB) and envelope cor-
relation coefficient (ECC) (≤0.009).

Index Terms – Circular printed monopole antenna,
deep learning, gold rush optimization, multiple-input-
multiple-output, peak gain, return loss.

I. INTRODUCTION
As the number of consumers continues to rise

and wireless communication technology evolves rapidly,
there is a growing demand for higher throughput
and channel capacity. Integrating multiple antennas
into a single portable device emerges as a viable
solution, promising an enhancement in communica-
tion network quality and transmission rates [1–3]. The

technology central to 5G research, known as multiple-
input-multiple-output (MIMO), plays a crucial role in
addressing these needs [4, 5]. Several countries have
already taken the lead by 5G networks.

Introducing an electromagnetic bandgap (EBG)
structure between four widely spaced monopole anten-
nas achieves a mutual coupling reduction [6, 7]. The
antenna demonstrates an envelope correlation coefficient
(ECC) of 0.3. Simplifying fabrication has been created
but operates above 2.0 GHz [8]. In order to fulfil the
needs of the sub-1 GHz and sub-6 GHz, a MIMO imple-
mentation featuring a four-port radiating antenna is intro-
duced, utilizing coplanar waveguide (CPW) feeding [9].
The antenna features four radiating elements with mul-
tiple ports, particularly targeting the sub-6 GHz 5G NR
frequencies. In this paper, a MIMO implementation fea-
turing a four-port common radiating element antenna fed
by CPW. The major contributions are as follows:

• The antenna with stub loading exhibits an omni-
directional radiation pattern, providing a pattern
diversity well-psuited for implementing MIMO sys-
tems.

• The antenna’s circularly polarized feature enables it
to mitigate multipath fading and provides flexibility
in polarization, unlike a linearly polarized antenna.

• The outcomes of optimization using deep learning
closely resemble those obtained through simulation
and experimentation. Also, indicating that the sug-
gested design is well-suited for 5G communication,
due to its high diversity gain (DG), low ECC and
significant isolation among radiators.

The manuscript is organized as follows. Section
II presents a literature survey related to the proposed
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methodology. Section III provides an in-depth explana-
tion of the proposed methodology. Section IV showcases
the results and discussions. In section V, the entire paper
is concluded.

II. RELATED WORKS
Wu et al. [10] introduced a MIMO antenna with an

asymptote-shaped design. The design achieves polariza-
tion diversity by arranging the antenna elements orthogo-
nally to one another. As a result, the antenna proves to be
highly suitable for various applications, such as indoor
positioning and tracking.

Ali and Ibrahim [11] suggested a flower-shaped
MIMO antenna. The MIMO antenna was suitable for
integration into portable electronic devices, enabling
their operation for a wide range of applications requir-
ing broad frequency bands.

Sarkar et al. [12] suggested an electromagnetic mod-
elling framework for ultra-wideband (UWB) MIMO
antennas. These machine learning models were imple-
mented and evaluated to assess their performance within
the modelling framework.

Elabd and Al-Gburi [13] suggested a specific
absorption rate (SAR) assessment for millimeter-wave
5G smartphones. The constructed antennas showed
enhancements in the overall active DG, reflection coef-
ficient (RC) and average gain. The simulation and test
results exhibited commendable alignment within the
desired frequency range, suggesting the potential appli-
cability of the design in millimeter-wave 5G smart-
phones.

A. Problem statement
The MIMO antenna described in existing works

employs a T-shaped decoupling structure between cells,
effectively achieving isolation exceeding 24 dB. In the
traditional MIMO antenna design, polarization diversity
and a docking floor operation contribute to an average
isolation level exceeding 26 dB within the operational
range. However, this antenna has drawbacks, including
high ECC and excessive size. Conventional microstrip
antennas commonly exhibit limitations like narrow fre-
quency bands and variations in parameters based on the
dielectric substrate. As a result, they are generally less
favored in the design of antennas. In order to achieve a
compact design, antennas in MIMO systems are posi-
tioned closely together. However, this proximity gives
rise to the unwanted mutual coupling effect, leading to
a degradation in the overall performance of the system.
These motivated us to do this research work based on
deep graph shallow attention neural network with adap-
tive gold rush optimization algorithm.

III. PROPOSED METHODOLOGY
As the consumer base expands and wireless com-

munication technology advances rapidly, the demand for

increased throughput and channel capacity has become
paramount. Integrating multiple antennas into a single
portable device emerges as a viable solution, ultimately
enhancing both the communication network’s quality
and transmission rates. Consequently, the pivotal role
of MIMO technology in the forefront of 5G research
becomes evident. This paper introduces the four-port
MIMO antenna, termed the deep graph shallow atten-
tion neural network with adaptive gold rush optimization
algorithm (DGSANN-AGROA). When it is designed
with a multi-band circular printed monopole antenna
(MCPMA) configuration, careful consideration of sev-
eral critical parameters is imperative.

Key design elements include resonant frequency,
RC, impedance bandwidth, stub position, parameters
associated with the displacement of the ground plane
to the right or left, and the antenna’s feed position.
These design parameters significantly influence the per-
formance characteristics of the MIMO system. There-
fore, optimization of these parameters is achieved using
DGSANN-AGROA to enhance predictive accuracy. The
resulting optimized stub-loaded antenna features four
radiating elements, providing pattern diversity conducive
to MIMO implementation. Subsequently, simulations
were conducted using HFSS19 software versions. The
analysis encompasses performance metrics, including
ECC and DG.

In the proposed design, integration of a deep graph
shallow attention neural network (DGSANN) with an
adaptive gold rush optimization algorithm (AGROA) is
crucial for achieving balanced and robust performance
across key parameters. To further enhance the antenna
configuration, characteristic mode analysis (CMA) is
employed. CMA, widely utilized for modal significance
interpretation, is instrumental in optimizing antenna
placement, bandwidth enhancement and decoupling,
ultimately crafting a multiband antenna capable of oper-
ating within the 0.6-6.0 GHz range to meet higher-band
communication needs.

A. Optimization to accomplish circularized polariza-
tion via the deep learning algorithm

As the number of antennas grows in higher-order
MIMO design, there is a proportional increase in both
required resources and costs. This phenomenon is recog-
nized as a fundamental drawback of higher-order MIMO
systems. Expanding the number of antennas in higher-
order MIMO design results in an escalation of necessary
resources and costs. Figure 1 illustrates the workflow of
the introduced method.

Simulation results suggest that modifying the geo-
metric values of parasitic elements (PEs) while pre-
serving their structures has minimal impact on S11. As
a result, the suggested DGSANN system must accu-
rately represent the mapping relationship among the
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Fig. 1. Procedure of introduced antenna design.

geometric variables of PEs and the antennas S21, exclud-
ing consideration of S11. Following initial DGSANN
training, AGROA aids predictions. The fitness function
aligns with the predicted objective. Due to incomplete
DGSANN training, predictions are imprecise. These are
incorporated into DGSANN training and testing data,
effectively reducing the number of training samples
and significantly enhancing prediction accuracy. These
design parameters collectively play a crucial role in
shaping the MIMO system’s performance characteris-
tics. DGSANN is a combination of a graph neural net-
work with a shallow attention module.

1. Graph shallow attention neural network (GSANN)
The graph attention network (GAN) presents a

structure based on multi-head attention to comprehend
the node’s higher-level features in a graph through the
utilization of a shallow attention strategy. Each attention
head possesses its own set of parameters. The majority of
both training and testing datasets comprises small param-
eters, resulting in substantial information loss during
the repeated down-sampling in convolutional neural net-
works (CNNs). In the realm of MIMO antenna design,
addressing this issue is essential. Shallow features

(
s f
)

play a vital role due to their high resolutions, offering
distinct object boundaries crucial for precise prediction.

Let us consider the impact of feedline (LF ) on modal
resonance frequency (Fm1) and the percentage change
in resonance frequency (∆F) for four cases. By choos-

ing LF/P1 appropriately (where P1 is the radius), con-
trol over Fm1 and ∆F is achieved to meet design require-
ments. Increasing LF from 0 on a fixed P1 reduces the
fundamental mode resonance frequency (Fm1) for the cir-
cular printed monopole, observed consistently across all
P1 cases. By raising LF/P1, Fm1 decreases for a given P1.
The figures also illustrate the LF/P1 effect on ∆F change,
which stabilizes around 10% for larger values. Notably,
operating at a specific Fm1 requires a smaller feed length
for a larger monopole radius and vice versa. This flexibil-
ity in choosing P1 and LF provides an additional design
parameter for crafting a compact monopole antenna.

Following the strategy guide, a CPW-fed antenna
along with P1=35 mm is chosen. Fm1 at (LF/P1=0)
is about 3 GHz, reduced to around 1.05 GHz with
LF =65 mm (LF/P1=2). Further lowering Fm1 is achieved
through additional metallic strip loading. Let us consider
the impact of adding a metallic sheet (SL ×SW ) on Fm1
and multimodal resonance frequencies Fmn (n=1,2,3...)
controlling bandwidth. Five modal frequencies, exclud-
ing mode#4 with MS < 0.5, are displayed. These modes
satisfy MS ≥ 0.85 over a wide frequency band. Addition-
ally, Fm1 at 0.652 GHz can be harnessed for a substantial
sub-1 GHz bandwidth. MS, the metallic strip SW × 2SL,
becomes the ground plane modified with a slit (s) for the
SMA connector.

These features have limitations related to the recep-
tive field and may be overshadowed by background
noise, posing challenges for direct utilization. To tackle
this, let us introduce the shallow attention module (SAM)
which utilizes coarse-boundary deep features

(
d f
)

to fil-
ter out background noise from

(
s f
)
.

The multi-layer’s input GAN consists of the node
feature matrix Y ∈ ℜM×D and the adjacency matrix B ∈
ℜM×M which represents the connections between nodes.

The iteration process is defined:

I(ℓ+1) = σ

(
Ẽ− 1

2 B̃Ẽ− 1
2 I(ℓ)MI(ℓ)

)
, (1)

where B̃ = B̃+LM (LM denotes the identity matrix), the
activation function is given as σ , Ẽ j j = ∑ j B̃ j j and the
learnable parameter is denoted as M. The outcome S ∈
ℜM×G is mathematically defined:

S = Ẽ− 1
2 B̃Ẽ− 1

2 Y Θ, (2)
where Θ ∈ ℜD×Gand the feature maps are denoted G.

The mathematical model for GSANN is given in:
Attention = ρ

(
up
(
d f
))

, (3)
s f = Attention⊗ s f , (4)

where up (·) denotes the up-sampling operation, ρ (·)
represents the ReLU function and ⊗ indicates element-
wise multiplication. Following SAM, shallow features(
s f
)

undergo a significant enhancement, becoming
clearer and offering crucial cues for small parameters.
SAM also plays a vital role in achieving feature balance
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across various blocks. The computation of output fea-
tures for nodes is expressed in:

g′j =

∥∥∥∥∥n = 1, . . . .N

(
β

n
j,iM g j + ∑

i∈M( j)
β

n
j,iM gi

)∥∥∥∥∥ , (5)

where g′j is the output feature, ∥∥ concatenates the out-
comes from various attention strategies, W represents
the count of attention heads and M ∈ ℜD′×D is a weight
matrix. The attention coefficient β j,i, which signifies the
relationship among every input node j and its first-order
neighbor, is computed by:

β j,i =
exp
(
elu
(
bT
[

Mg j
∥∥Mgi

]))
∑r∈V ( j) exp

(
elu
(
bT
[

Mg j
∥∥Mgr

])) , (6)

where exp represents the exponential function, Mg j,Mgi
and Mgr denote matrix of nodes i, j and r, Σr ∈ V ( j)
is the sum over all nodes r that are neighbors of node
j, bT ∈ ℜD′

represents a learnable weight vector, T is
its appropriate transpose, and elu is a activation function
where x equals 0 when y is negative. Subsequently, the
so f tmax function is used to normalize all neighbor nodes
i of j, which is mentioned in:

ρt = so f tmax(Mout ·bι +aout) , (7)

where ρt represents the probability of t, and Mout denotes
the weight matrix and aout denotes the bias vector.
The variables bι correspond to the embedding features
learned by preceding layers.

The GAN-based system employs three consecutive
GAN layers, each initiated by the ReLU operation. Tra-
ditionally, GANs are utilized for node classification,
where the outcomes are node-level feature vectors. To
derive graph-level features, employ max pooling method
collective features from all nodes within the graph and
assess their performance.

Evaluation reveals that incorporating a max pool-
ing layer within the GAN-based architecture yields supe-
rior results compared to other pooling methods. Conse-
quently, we integrate a global max pooling layer after the
final GAN layer to effectively extract and represent the
overall features.

By employing combinations with labels, the model
was trained using cross-entropy as the loss function. The
goal is to minimize the loss throughout the training pro-
cess:

L = minimum

(
−

V

∑
j=1

logQt j +
2
η
∥Θ∥

)
, (8)

where L is the loss, Θ denotes the set encompassing all
bias and trainable weight parameters within the system.
V represents the total number of samples, t j signifies the
jth sample’s label, and η represents an L2 regulariza-
tion hyper-parameter. In this work, the optimal parame-
ters are extracted with the help of AGROA approach.

B. AGROA for enhancing the antenna array’s decou-
pling

A significant historical occurrence related to gold is
the gold rush, signifying a remarkable influx of individ-
uals aspiring to amass wealth [14].

Table 1 provides the pseudocode for the GRO
method. The mathematical model for the fitness func-
tion is:

Fitness f unction = min
(
R f ,Rc,Sp

)
, (9)

where R f denotes the resonant frequency, Rc represents
RC, and Sp is the stub position. Cost function minimiza-
tion in antenna design is crucial for optimizing key per-
formance parameters such as R f , Rc, B and Sp. The reso-
nant frequency is targeted to ensure the antenna operates
effectively at the intended frequency, while the reflec-
tion coefficient is minimized to achieve better impedance
matching and reduce power loss. Stub positions are opti-
mized for fine-tuning impedance and other performance
metrics. The cost function combines these parameters
into a single metric that the optimization algorithm mini-
mizes, balancing trade-offs and guiding adjustments to
find the best configuration. By minimizing deviations
from desired values for R f , Rc and Sp, the cost function

Table 1: Pseudocode of AGROA




YEBES 2

1

2

1
~~~

  ,  (2) 

where GD and the feature maps are denoted G . 

The mathematical model for GSANN is given in: 
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Evaluation reveals that incorporating a max pooling 
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where L is the loss,   denotes the set encompassing all 

bias and trainable weight parameters within the system. 

V  represents the total number of samples, jt  signifies 

the j th sample’s label, and   represents an L2 

regularization hyper-parameter. In this work, the optimal 

parameters are extracted with the help of AGROA 

approach. 

 

B. AGROA for enhancing the antenna array’s 

decoupling 

A significant historical occurrence related to gold is 

the gold rush, signifying a remarkable influx of 

individuals aspiring to amass wealth [14]. 

  
Initialize the population of gold prospectors MjY j ,,2,1,   

Initialize the new positions of gold prospectors 

MjYY jnew j
,,2,1,   

Initialize 21,, t  

*Y is the optimal search agent 

while iterationt max  do 

      for all search agent j do 

              compute the present search agent’s fitness function ( F ) 

at 
jnewY (new position) 

              Update the current position of the search agent jY  derived 

from (9) 

         tYFtYFiftYtY jnewnewj jj
 111


  (9) 

Update optimal search agent *Y  

    end 

   Update 21, e (location) using (10) 
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maximummaximummaximum

iterationmaximum 11
2

1














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Update the p is calculated using (11), 

 33 _/01.11 iterationMaximumtp    (11) 

   for all search agent j do 

           compute present search agent’s 
jnewY next position with 

three primary concepts 

   end  

;1 tt  

end 

return *Y ; 



777 ACES JOURNAL, Vol. 39, No. 09, September 2024

ensures no parameter becomes a significant weak point,
leading to a well-rounded, robust and reliable antenna
design. This approach systematically enhances antenna
performance across all critical aspects for promoting
robust and reliable performance.

In this paper, DGSANN-AGROA is used to design
a novel four-port MIMO antenna system that is consid-
ered for sub-6 GHz 5G applications. Following this, an
AGROA is utilized to enhance the antenna array’s decou-
pling.

IV. RESULTS AND DISCUSSIONS
Simulations are performed using HFSS19 software,

followed by an assessment of the introduced antenna
in MATLAB. The performance measures which are uti-
lized to show the effectiveness of the introduced antenna
design are gain, ECC and DG.

Table 2 provides the introduced antenna design
parameters.

Table 2: Design parameters of introduced antenna
Parameters Ls Ws R1 L f WF GL GW g Lp g1
Value (mm) 110.16 80 24.6564 52 3.24 38 9 1.62 7 0.5
Parameters R1 R2 R3 S1 S2 S3 S4 S5 S6 S7

Value
(
mm2

)
5.2136 ×

2.97
5.0976 ×

3.3156
4.6764 ×

1.9548
39 ×
4.2444

16.9992
×

2.29608

13.0032
×

2.29608

6.00372
×

2.6352

9.3528
×
2.1168

23.8032
×

2.1168

28 ×
2

(a) (b)

Fig. 2. Antenna (a) structure and (b) circular printed monopole.

The antenna component, the surface current density
(Ir) at the frequency Fm1 = 0.643 GHz, and the RC
of the antenna are illustrated in Figs. 2 (a, b). Figure 2
(b) presents a depiction of the antenna modified with
stub loading. To improve the bandwidth, the antenna’s
impedance matching range is improved by introducing
stubs R1, R2 and R3, as illustrated in Fig. 2 (b). These
stubs improve the impedance matching range, allowing
the antenna to achieve better performance over a wider
frequency range.

As an outcome of these modifications, the antenna
exhibits resonance at an exceptionally minimum fre-
quency of 0.605 GHz, accompanied by a 34% fractional
bandwidth. This means the antenna can operate effec-
tively over a broader range of frequencies, making it
more adaptable to different applications. The use of
stub loading is key to this performance enhancement,
as it allows for precise tuning of the resonant frequency
and a significant increase in operational bandwidth.
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The resonant frequency and operational bandwidth are
subjected to modification through the application of stub
loading, as indicated in reference [15]. The parameters of
Fig. 2 are: Ws is the total antenna’s area, RI be the printed
circular monopole’s radius, WF is the feed-line width,
L f represents the feed-line, GW is denoted as ground
plane width, g denotes ground, the length of ground
plane is given as GL, (S1 −S7) are the stubs, (R1 −R3)
is represented as ground stubs, C1 denotes capacitances,
and length of the projecting part of the monopole is
given as Lp.

Due to frequency limitations, the antenna’s 2D radi-
ation patterns at 3.7 and 6.9 GHz were exclusively mea-
sured at all four ports using the standard horn. The results
exhibit reasonable coverage yet, at 6.9 GHz, elevated
cross-polarization occurs due to the anechoic chamber’s
limited noise floor. Despite some deviation caused by
substrate sagging and mechanical support issues, the
measurements offer valuable insights regarding the over-
all radiation characteristics of the antenna. Figure 3

(a) (b)

(c) (d)

Fig. 3. Continued

illustrates the 2D radiation pattern of the introduced
antenna.

The axial ratio of the introduced circularly polarized
antenna was measured at 3.7 GHz and 6.9 GHz using
a standard antenna. At 3.7 GHz, the antenna exhibited
reasonable coverage, with the axial ratio likely below 3
dB, indicating good circular polarization performance.
However, at 6.9 GHz, the measurements showed ele-
vated cross-polarization due to the limited noise floor.
This suggests a higher axial ratio at this frequency,
which impacts the ideality of circular polarization. Caus-
ing interference, nulls, zones of weak or no signal,
could also be identified, impacting desired coverage
areas. Analyzing beamwidth, the angle of strong signal,
is crucial. A narrow beam might be ideal for satellite
communication but unsuitable for a cell tower needing
broad coverage. Asymmetry in the pattern, potentially
caused by imperfections or nearby objects, can lead to
uneven signal strength. Figure 3 (a) illustrates the lobes
for port 1 may have a specific orientation, indicating
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(e) (f)

(g) (h)

Fig. 3. Computed 2D radiation pattern: (a) port 1, (b) port 2, (c) port 3, (d) port 4 at 3.7 GHz, (e) port 1, (f) port 2, (g)
port 3, and (h) port 4 at 6.9 GHz.

stronger radiation in particular directions. Figure 3 (b)
demonstrates the shape of the lobes might differ, with
port 2 having wider or narrower lobes compared to
port 1. In Fig. 3 (c), the pattern of port 3 appears
more consistent across different phi angles, whereas
port 4 shows more variation. Figure 3 (d) port 4 shows
more complexity in the side lobe structure, indicating
potential differences in antenna design. The port radia-
tion pattern in Fig. 3 (e) should exhibit a symmetrical
distribution.

Figure 3 (f) is similar to port 1. This port should
also show a symmetrical radiation pattern, ensuring good
coverage without significant nulls or weak zones.

The pattern in Fig. 3 (g) should be checked for uni-
formity and any deviations that might indicate interfer-
ence or reflection issues. The radiation pattern symmetry
and coverage in Fig. 3 (h) are crucial for ensuring con-
sistent signal strength and minimal interference.

In Fig. 4 (a), ECC curves show correlation levels
between port 1 and other ports. Figure 4 (b) displays

ECC curves among the remaining ports (2, 3, 4) meeting
the MIMO system requirements for antenna correlation
parameters. The ECC values are critical for determin-
ing the performance of MIMO systems, as it measures
the correlation between signals received or transmitted
by different antenna elements. All ports are excited at
a frequency of 3.5 GHz. ECC values should ideally
be below 0.5. In this graph, due to the antennas being
placed adjacent to each other, antenna pairs 1 and 2
show higher correlation compared to pair 1 and 3, and
pair 1 and 4. However, at desired frequencies like 1
GHz, 3.7 GHz and 6.9 GHz, the ECC values remain
below 0.31. These low ECC values signify minimal cor-
relation, validating the antenna’s suitability for MIMO
applications.

If all the ports are excited, ECC values should
be below 0.5. This minimal correlation is essen-
tial for ensuring efficient MIMO performance, as it
allows for better signal diversity and improved data
throughput. Thus, antenna design effectively meets the
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(a)

(b)

Fig. 4. Envelope correlation coefficient among (a) port 1 and others and (b) ports 2, 3, and 4.

requirements for MIMO systems, demonstrating its suit-
ability for applications that demand high-performance
multi-antenna configurations. In Fig. 4 (b), due to the
antennas being placed adjacent to each other, pair 2 and
3, and pair 3 and 4, exhibit higher correlation compared
to pair 2 and 4.

DG is a vital parameter characterizing the diversity
features of the model. It quantifies improvement in sig-
nal quality due to the use of multiple antennas to receive
or transmit the signal. High DG values indicate effec-
tive mitigation of fading and signal degradation, which
are common in wireless communication environments.
As indicated in Fig. 5, the DG at ports 1 and 2 for the
proposed antenna surpasses 100 dB. This is a remark-

ably high value, indicating that the antenna system has
excellent diversity performance. Such a high DG sug-
gests that the antennas are capable of effectively com-
bining signals from different paths, reducing the impact
of signal fading and improving overall signal reliabil-
ity and quality. This observation suggests that MIMO
antennas exhibit strong diversity properties, emphasiz-
ing their capability to enhance performance in diverse
signal conditions. Table 3 provides a comparison of
ECC metrics between the proposed method and existing
methods.

The antenna was fabricated using an EP42 auto pro-
totyping machine from Everprecision PCB. It was sub-
sequently tested in the anechoic chamber at the Antenna
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(a)

(b)

Fig. 5. Diversity gain among (a) port 1 and (b) port 2.

Table 3: Four-port antenna design comparison
Four-port Antenna Design ECC/dB

Koch fractal element (four-port antenna) [16] <0.4
Four-port MIMO antenna [17] <0.0408

Four-port millimeter wave MIMO antenna
[18]

<0.50

DGSANN-AGROA (proposed) 0.009

and Microwave Design laboratory. The resulting planar
four-port antenna is illustrated in Fig. 6.

Figure 7 illustrates the cost complexity comparison
of the proposed method with existing methods. This line
graph depicts the performance of three algorithms: Snow
Geese Algorithm (SGA) [19], Botox Optimization Algo-

(a) (b)

Fig. 6. Antenna: (a) fabricated prototype and (b) under
testing in the anechoic chamber.

rithm (BOA) [20] and Adaptive Gold Rush Optimiza-
tion Algorithm (AGROA). The graph tracks the aver-
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age cost function as the number of iterations increases.
AGROA appears superior as its cost function decreases

Fig. 7. Comparison of cost complexity.

(a)

(b)

Fig. 8. Continued

more significantly: 20-22 seconds is needed to train the
network.

Figure 8 (a) demonstrates the impact of stub load-
ing on the (Z (Re)) real and (Z (Im)) imaginary parts of
impedance. The addition of S1−S3 to the small ground
plane (SW = 8.4mm) increases inductance, improving
Z (Im) and enhancing impedance matching. This modi-
fication also alters Z (Re). Figures 8 (b,c) compare the
magnitude of RC with and without R1−R3, illustrating
that the increased Z (Im) leads to an improved −6 dB
impedance matching level above 3.9 GHz across a wide
range.

From the observations in Fig. 9, it is evident
that slight shifts occur in the RC at various end
ports for the antenna at varying frequencies. How-
ever, good matching is achieved in other regions. Note,
S (2,1) ,S (3,2) and S (3,4) maintain an isolation below
-11.77 dB, S (3,1) ,S (4,2) maintain an isolation below
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(c)

Fig. 8. Ground stubs effect: (a) impedance (b) RC (without R1−R3) and (c) RC (with R1−R3).

(a)

(b)

Fig. 9. MIMO antenna S-parameters: (a) RC with strips and (b) RC without strips.
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-21.66 dB and S (4,1) maintains an isolation below
-29.33 dB.

V. CONCLUSION
This paper presents the design of a compact four-

port MIMO antenna with strong isolation capabili-
ties. The proposed MIMO antennas achieve an isola-
tion of -29.33 dB without compromising the overall
antenna size. Simulated results show that the newly
introduced antenna maintains a consistent omnidirec-
tional radiation pattern, demonstrating outstanding gain,
efficiency and high isolation as a four-port system.
Furthermore, the MIMO antenna demonstrates favor-
able diversity characteristics with acceptable DG (>9.5
dB) and ECC (≤0.009), establishing its excellence
as a MIMO antenna with exceptional performance.
A four-port antenna setup with a co-surfaced ground
plane holds promise as a design for creating con-
formal and three-dimensional MIMO antennas in the
future.
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