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Abstract – A novel reconfigurable chipless RFID tag
to enhance encoding capacity is proposed in this paper.
The entire transmission network includes four non-
interacting ports that are independent separately. The
reconfigurability can be realized by combining differ-
ent ports to get different encoding results. To increase
the anti-interference capability of the tag, a method of
cross-combination for unit coders is proposed according
to the spacing distances of the unit coders. The encod-
ing ability of about 8-bit information can be obtained
by using the compact tag structure with a dimension of
70×70 mm2 and the encoding capacity can be increased
by increasing the number of unit coders. Code “1” or “0”
is defined by arranging the appearance or disappearance
of a unit coder. Typical encoding examples are presented
and the simulation results match well with the measure-
ment results, demonstrating the effectiveness of the pro-
posed tag. The proposed tag can be used for structural
health monitoring with the advantages of battery-free,
large information capacity, and flexible usage.

Index Terms – Chipless RFID, encoding capacity, notch
filter, reconfigurable RFID, tag antenna.

I. INTRODUCTION
Radio frequency identification (RFID) technology is

a kind of wireless information tracking and identification
technology and it has been widely used in various indus-
tries and people’s lives, such as traffic control, asset man-
agement, and health care, logistics, transportation, etc.
[1]. The tag is a vital component in the RFID system and
its primary function is to transmit the stored information
when requested. Traditionally, the RFID tag includes a
special silicon chip used for storing the information of
attached targets so that more information can be stored.
However, the inclusion of silicon chip will significantly
increase the cost of the tag and many cost-sensitive appli-
cations like cheap and large-amount fast-selling products

may not be able to accept [2]. To remarkably lower the
cost, the chipless RFID tag has been developed. Because
the chip is removed, no complex and costly operation is
required to connect the chip to an antenna, so that the
design and fabrication can be greatly simplified. As a
new branch of RFID technology, the chipless RFID has
received a wide attention and has also been extensively
applied in recent years [3–6].

There have been many different designs for the
chipless RFID tags which can be found in the liter-
ature [7–10]. However, the chipless RFID tag has a
very limited capacity of storing information since no
chip is used as a storage and the tag antenna usu-
ally has a weak coding capacity because it is hard
to obtain good responses used for encoding informa-
tion [11, 12]. To enhance the coding capacity, one has
proposed some effective encoding techniques and they
can be categorized into time-domain-based, frequency-
domain-based, phase-domain-based, and image-domain-
based encoding methods, respectively [13–16]. In prac-
tice, the frequency-domain-based and phase-domain-
based encoding methods could be the favorable choices
due to their easier fabrication and more efficient detec-
tion [17–25].

We employ the frequency-domain-based method to
propose a novel reconfigurable chipless RFID tag so as
to enhance its coding capacity. The tag includes four
independent ports with an isolation and its reconfig-
urability is achieved by using different port combina-
tions with different coding results. There are eight unit
coders which are clockwisely arranged on the microstrip
lines in the tag. When the detection signal is loaded
to one of the four ports, then we can obtain an out-
put signal from the other port. The four frequency
attenuations will be generated by the four unit coders,
but the detection signal will not be impacted by the
unit coders close to the other two ports. By setting
the presence or absence of unit coders, we can obtain
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Code “1” or Code “0” in the corresponding coding
bandwidth.

The proposed tag has been extensively simulated
by using the well-known HFSS for the S parameters
which are the transmission coefficients between every
two ports, i.e. S12, S13, S14, S23, S24, and S34 and the
optimal geometric parameters are obtained by using the
HFSS optimization. The final size of the tag is only
70 × 70 mm2 which is relatively small compared with
other similar chipless RFID tags. We also fabricate the
tag based on the optimal geometric parameters and then
measure its S parameters by using a vector network ana-
lyzer (VNA). It is found that the simulated results are
in good agreement with the experimental results, verify-
ing the performance of the designed tag. The tag includes
eight unit coders which can store 8-bit data. If we need 28

codes, only 28/6 tags are designed, so the coding capac-
ity can be significantly increased. Note that there is not
the code of 11111111 because it will be degenerated to
the code 00000000. Also, when the number of coders is
increased, the coding capacity can be further expanded
with a small increase of costs. Furthermore, the tag has a
high degree of isolation between different ports because
we use a cross combination for unit coders in terms of
their spacings, and such a cross combination can greatly
enhance the anti-interference ability of the tag.

II. NOTCH FILTER
We use the notch filter which is the first-order proto-

type circuit based on series-inductance-capacitance res-
onant circuits [26] in the design of tags. The inductance
and capacitance values can be calculated by the follow-
ing equations after the filter circuit is transformed from a
lowpass to a bandstop:

Ls =
1

WwcCcw0
, (1)

Cs =
WwcCc

w0
, (2)

where Ls is the inductance while Cs is the capacitance
and the subscript “s” denotes “series”. Also, W , w0, and
wc represent the relative bandwidth, the center frequency
of the stopband, and the cutoff frequency, respectively.
From the principle of microstrip lines, we know that an
open-ended microstrip line with a length of λ/4 can be
seen as an equivalent series-RLC resonant circuit and its
resistance (R), inductance (L), and capacitance (C) can
be determined by:

R = Z0iαli, (3)

L =
πZ0i

4ωi
, (4)

C =
4

πZ0iωi
, (5)

where Z0i, α , li, ωi are the characteristic impedance of
the open-ended microstrip line, the attenuation coeffi-

cient, the length of open-ended microstrip line, and angu-
lar frequency, respectively. Also, the capacitance Cc in
(1) and (2) can be calculated by the following analogy
formulas:

C =

(
R0

R′
0

)(
ω ′

0
ω0

)
C′, (6)

Cc =

(
R0

R′
0

)(
ω ′

c

ωc

)
C′

c, (7)

where ω ′
c = 1 is the normalized cutoff frequency of the

lowpass prototype filter. Substituting (7) to (1), we can
calculate the inductance Ls by:

Ls =
gi

WZ0oω0
, (8)

where Z0o is the characteristic impedance of the
microstrip transmission line and gi is the value of
Butterworth filter’s inductance or capacitance which is
given by:

gi = 2sin
[
(2i−1)π

2n

]
. (9)

Thus, the microstrip circuit of the notch filter used in
the chipless RFID tag can be designed by using the above
equations, i.e. (5), (8), and (9), which are summarized as
follows:

R = Z0iαli, (10)

L =
Z0i

8 f
, (11)

C =
2

Z0iπ2 f
, (12)

Z0i =
2Z0o

∆Wπ
, (13)

Z0i = F( fi,wsi,εr, t,h), (14)
Z0o = F( fo,wso,εr, t,h), (15)

where Z0i, fi, wsi, and li are the characteristic impedance,
working frequency, width and length of the ith open-
ended microstrip line, respectively. Here, fi = wi/2π .
Also, wso, fo, and ∆W are the width of microstrip trans-
mission line, the central frequency, and fractional band-
width. In addition, εr, t, and h are the common parame-
ters in the microstrip transmission line, which are the per-
mittivity, thickness of coating copper, and thickness of
substrate, respectively. Moreover, F is a common func-
tion used to calculate the characteristic impedance. After
obtaining the RLC values, we can apply the RLC circuit
to design the microstrip circuit by using the well-known
software ADS.

III. DESIGN AND ANALYSIS
Figure 1 shows a physical structure of the proposed

reconfigurable chipless RFID tag which consists of a
substrate, a ground plane, two crossed microstrip lines,
and eight open-ended microstrip lines. We define the
eight open-ended microstrip lines as eight unit coders,
which are distributed on the two crossed microstrip
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lines in a clockwise direction. Actually, the electrical
lengths of eight unit coders can be changed by using the
quarter-wavelength bandstop filter theory. Also, the real
lengths of eight unit coders are calculated, respectively,
by using the formulas of notch-filter theory in section II.
In order to better understand the calculating process for
the dimensions of coders, we summarize the calculating
steps as shown in Fig. 3.

Fig. 1. Physical structure.

Note that the final length and width of the coders
are obtained by optimizing these parameters through the
simulations of well-known HFSS. The optimized lengths
li and widths wi (i = 1,2, · · · ,8) of the eight coders are
presented in Fig. 2 and their values are summarized in
Table 1. Since one coder can produce one resonant fre-
quency, eight coders can generate eight resonant fre-
quencies with their bandwidths and they can be used to

Fig. 2. Top view of the tag.

Fig. 3. Calculating process for the dimensions of coders.

Table 1: Optimized lengths and widths of the coders
(Unit: mm)

l1 l2 l3 l4 l5 l6 l7 l8
28 24.7 21.8 19.4 16.9 15.8 14.3 13.1
w1 w2 w3 w4 w5 w6 w7 w8
1.7 1.34 1.1 0.8 1.0 0.52 0.42 0.31

encode information when excited. The correspondence
between the lengths of coders and encoding frequen-
cies is shown in Fig. 4. In order to miniaturize the tag,
we set the widths of two microstrip transmission lines
as g1 = 9.8 mm and g2 = 9.8 mm, respectively, and
set the total length and width of the tag as L = 70 mm
and W = 70 mm, respectively. Considering the favorable
properties of Rogers RT/duroid 5880 (tm) as a dielec-
tric medium, it is used as the substrate material in the
tag and its relative permittivity, dielectric loss tangent,
and thickness are 2.2, 0.0009, and 0.508 mm, respec-
tively. As a high-frequency laminate used for stripline
and microstrip circuit structures, Rogers RT/duroid 5880
(tm) is a microfiber-reinforced polytetrafluoroethylene
(PTFE) composite material that can maintain a consistent
dielectric constant between different layers of the lami-
nate and keep unchanged over a wide frequency range.
In addition, the material has the merits of low electri-
cal loss, low moisture absorption, and excellent chemical
resistance.

Fig. 4. Lengths of coders (mm) versus encoding fre-
quency.

The pairing of the eight coders is illustrated in Fig. 5.
Specifically, Coder 1 is paired with Coder 5, Coder 2
with Coder 6, Coder 3 with Coder 7, and Coder 4 with
Coder 8, respectively. These pairings are denoted as
Couple 1, Couple 2, Couple 3, and Couple 4, respec-
tively. Such a pairing scheme can minimize the coupling
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Fig. 5. Coupling schematic diagram of unit coders.

interference between unit coders and waste of spectrum
resource. If the coders are paired in order, for example,
Coder 1 and Coder 2 are paired in the same microstrip
line, they can easily produce a coupling interference and
even cause an encoding error because the lengths of the
two unit coders are close and they could produce simi-
lar resonant frequencies. On the other hand, we should
minimize the frequency bandwidth in case the spectrum
resource is wasted, hence the gap of neighboring reso-
nant frequencies should not be far away excessively. As
a trade-off, we select a total frequency range from 1.8
to 3.9 GHz as the encoding bandwidth. Eight resonant
frequencies with an average interval can be obtained by
selecting appropriate dimensions for the coders and they
are 1.8 GHz, 2.1 GHz, 2.4 GHz, 2.7 GHz, 3.0 GHz,
3.3 GHz, 3.6 GHz, and 3.9 GHz, respectively.

To demonstrate the proposed encoding scheme, we
present an example with the code of 00110011 and it is
shown in Fig. 6. In the figure, Code “1” and Code “0” are
achieved in the corresponding encoding bandwidths by
setting the appearance and disappearance of correspond-

Fig. 6. A coding display with the code of 00110011.

ing unit coders, respectively. The appearance of a unit
coder will produce a notch in the figure and we define
−30 dB as a threshold. If the notch is below −30 dB,
then the corresponding code is designated as “1”, other-
wise the code is designated as “0”.

IV. SIMULATED AND MEASURED RESULTS
Figure 8 shows the fabricated tag antenna sample

and the coaxial connectors are welded to four feeding
ports. The tag is fabricated under laboratory conditions
by the etching method which is a subtraction process
[27]. In the measurement experiment, as shown in the
Fig. 9, we connect the Vector Network Analyzer (VNA)
with chipless RFID tag using two coaxial lines, and we
measure the S parameter (transmission coefficient) val-
ues of every two ports S12, S13, S14, S23, S24, S34. We
define the number here as the port number. For example,
S12 indicates the transmission coefficient between Port 1
and Port 2.

To verify the independent port, all the coding cases
of connecting two ports are presented, respectively. It
can be seen from Fig. 7, no matter which two ports are
connected, their deep notches (the coding frequencies)
from attenuated frequencies are within a specific same
range. Although some deep notches of coders have small
deviations, they are all within the coding frequency band
1.95∼2.25 GHz. For example, the Coder 2 deep notch
has a gap of about 20 MHz between the purple curve
and the blue curve, and there is also a gap of about 20
MHz between the purple curve and the red curve. But it
will not affect the encoding results, and such small dif-
ferences are acceptable.

The software HFSS is applied in the simulations and
Fig. 10 shows the transmission coefficient S12 of the pro-
posed reconfigurable chipless tag. When we connect Port

Fig. 7. Port independence verification.
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Fig. 8. Fabricated tag antenna sample.

Fig. 9. Photo of device connection.

1 and Port 2, the four Coders, namely, Coder 3, Coder
4, Coder 7, and Coder 8 are excited, and correspond-
ing four resonant frequencies of 2.39 GHz, 2.72 GHz,
3.70 GHz and 4.06 GHz can be obtained with the code
of 00110011. At the same time, the other four coders are
not influenced. So, it has a good isolation effect as well,
which realize the chipless tag’s anti-interference abil-
ity. The other five codes can be obtained by connecting
other ports. Those are 01100110, 10101010, 01010101,
10011001 and 11001100, respectively. All of these codes
are depicted in Figs. 10–15.

Traditionally, the structure of chipless RFID tag is
not able to be changed after the tag being designed and
fabricated and one tag can only produce one code. The
proposed tag with 8 unit coders can produce 6 codes

Fig. 10. Transmission coefficient by connecting Port 1
and Port 2 and the code is 00110011.

Fig. 11. Transmission coefficient by connecting Port 1
and Port 3 and the code is 01100110.

Fig. 12. Transmission coefficient by connecting Port 1
and Port 4 and the code is 10101010.
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Fig. 13. Transmission coefficient by connecting Port 2
and Port 3 and the code is 01010101.

Fig. 14. Transmission coefficient by connecting Port 2
and Port 4 and the code is 10011001.

Fig. 15. Transmission coefficient by connecting Port 3
and Port 4 and the code is 11001100.

by connecting different ports. So only one-type tag is
needed to design in actual application if we need 6 codes.
Meanwhile, the code “1” or “0” can be obtained in the
corresponding encoding band by arranging the presence
or absence of unit coders. So the proposed tag can encode
8-bit data. Since one 8-bit tag can produce 28 codes, we
only need to design 28/6 electronic tags, significantly
enhancing the coding capacity.

The aforementioned experiments employed a vec-
tor network analyzer of Keysight which is connected to
two coaxial cables to conduct the wired measurement.
For cross-validation, we performed a second set of wired
measurements as shown in Fig. 16, utilizing a Rohde &
Schwarz vector network analyzer and replacing the pre-
vious coaxial cables with specialized test cables designed
for network analyzers. These cables have a characteristic
impedance of 50 ohms, a propagation velocity of 76%,
and a maximum operating frequency of 26.5 GHz. They
are characterized by low insertion loss and high durabil-
ity, which helps to mitigate the issue of significant mea-
surement errors.

Fig. 16. Wired measurement via a Rohde & Schwarz vec-
tor network analyzer.

Additionally, we conducted wireless measurements.
Figure 17 illustrates the scenario of performing the wire-
less measurements, including two orthogonally polarized
conical log-periodic antennas as the transmitting and
receiving antennas, respectively. Two ultra-wideband
monopole antennas are vertically integrated into the
designed miniaturized tag. The conical log-periodic
antennas are connected to the ports of a chipless reader
to measure the transmission coefficient response of the
integrated tag. The measurement distance between the
antennas and tag is approximately 15 cm.

Figures 18–23 display the comparison between
the results of the second wired measurements and the
wireless measurements. The results indicate a good
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Fig. 17. Scenario of performing the wireless measure-
ment.

Fig. 18. S12 of wired and wireless measurement.

Fig. 19. S13 of wired and wireless measurement.

Fig. 20. S14 of wired and wireless measurement.

Fig. 21. S23 of wired and wireless measurement.

Fig. 22. S24 of wired and wireless measurement.
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Fig. 23. S34 of wired and wireless measurement.

agreement between the wired and wireless measure-
ment outcomes. However, due to the presence of back-
ground noise, there is a certain discrepancy between
the results of the wired and wireless measurements.
Additionally, some resonant points exhibit errors, pos-
sibly due to the fact that the cables and connec-
tors used to connect the VNA and the antennas may
introduce additional losses in actual measurements.
These losses might not have been fully considered in
the simulations, leading to discrepancies between the
measured and simulated results. Particularly at high
frequencies, the losses in the cables become more
pronounced.

Table 2 shows the comparison of the tag we pro-
posed in this work with other chipless tags reported.
Although the proposed tag has a relatively low encoding
density, it still can reduce the size of the tag compared to
structures where encoding units are placed on both sides
of the microstrip line. This is because our proposed struc-
ture connects the coding unit (Coder) in a clockwise rota-
tion on the cross-microstrip line. Moreover, it possesses
reconfigurability, and the material used is the commonly

Table 2: Comparison between the proposed tag and other chipless tags
Tag Type Encode Density Size (mm×mm) Reconfigurability Substrate

Material
Reference

Re-transmission 0.4 bit/cm2 30×70 No SnO2/G [28]
RCS 0.45 bit/cm2 21×21 No FR-4 [29]
RCS 28.6 bit/cm2 3.5×4 No Taconic

TLX-0(high cost)
[30]

RCS 745.1 bit/λ 2
g 6.4×3.4 Yes Rogers RO4003 [2]

Re-transmission 0.16 bit/cm2 70×70 Yes Rogers RT/duroid
5880

our work

λg is the guided wavelength at the lowest resonant frequency.

Fig. 24. Surface current distribution at the frequency of
2.39 GHz.

utilized Rogers RT/duroid 5880, which is relatively cost-
effective.

The surface current distributions generate the elec-
tromagnetic signals and thus impact the coding qual-
ity. Figures 24–27 present the surface current distribu-
tions on the tag at different frequencies, where the red
region represents a larger current density. From the cur-
rent distributions, we can clearly see the activated states
of the tag. Taking the current distribution generated for
connecting ports 1 and 2 as an example. When we per-
form the parameter sweep analysis at the frequency of
2.39 GHz, 2.27 GHz, 3.70 GHz, and 4.06 GHz, respec-
tively, we can obtain the corresponding working codes,
i.e. Coder 3, Coder 4, Coder 7, and Coder 8, respec-
tively. There should be one coder activated for each fre-
quency theoretically and the red region indicates that
the coders are strongly excited. From Figs. 24–27, we
can validate this conclusion, even though there are the
cases that two coders are simultaneously activated at the
same frequency. However, this does not affect the other
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Fig. 25. Surface current distribution at the frequency of
2.72 GHz.

Fig. 26. Surface current distribution at the frequency of
3.70 GHz.

four coders, so the simultaneous activation is acceptable.
Taking Fig. 27 as an example, we can see that Coder
7 and Coder 8 are simultaneously activated, but the
encoding result remains 00110011, which is unchanged.
This is because the other four coders are located at
another microstrip line and they will not be affected.
In addition, since the tag is fabricated using an etching
method with chemical solution in a limited laboratory
environment, there is a big discrepancy between the mea-
surement results and simulation results. If we use a Laser
Direct Structuring (LDS) method to fabricate the tag,
the discrepancy can be greatly reduced because the LDS
method can more precisely control the geometry and
placement of conductive elements.

Fig. 27. Surface current distribution at the frequency of
4.06 GHz.

V. CONCLUSION
This paper proposes a novel reconfigurable chipless

RFID tag based on a notch filter. The tag consists of four
separated and noninteracted ports and the reconfigura-
bility of encoding results is achieved by combining dif-
ferent ports. Also, the tag has a strong anti-interference
capability because the cross-combination of unit coders
is used based on their spacings. The tag can encode the
information with about 8 bits by using Code “1” or “0”
to represent the appearance or disappearance of the unit
coders, respectively, and the encoding capacity can be
further enhanced if using more unit coders. The tag has a
compact structure whose size is only 70×70 mm2. The
encode density of the tag are 0.16 bit/cm2. We present
typical encoding examples to illustrate the proposed tag
and its good performance has been verified by both sim-
ulation results and measurement results.
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