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Abstract ─ A set of general purpose single-field 
finite-difference time-domain (FDTD) updating 
equations for solving electromagnetic problems is 
derived. The formulation uses a single-field 
expression for full-wave solution. This 
formulation can provide numerical results similar 
to those obtained using the traditional Yee 
algorithm with less computer resources. The 
traditional FDTD updating equations are based on 
Maxwell's curl equations whereas the single-field 
FDTD updating equations, used here, are based on 
the vector wave equation. Performance analyses of 
the single–field formulation in terms of CPU time, 
memory requirement, stability, dispersion, and 
accuracy are presented. It was observed that the 
single-field method is significantly efficient 
relative to the traditional one in terms of speed and 
memory requirements.  
 
Index Terms ─ FDTD, single-field approach.  

 
I. INTRODUCTION 

The first paper on finite-difference time-
domain (FDTD) was published in 1966 by Yee 
[1]. Since then, the FDTD has become widely used 
in computational electromagnetics [2]. Extensive 
research has been reported to improve the 
accuracy and speed of the method and different 
absorbing boundary conditions (ABCs) are 
developed to provide more accurate results [3, 4, 
5]. An improvement in speed of the method, 

however, has relied almost solely on progresses in 
computer hardware and software architecture.  

This paper investigates the single-field 
approach based on the vector wave equation 
(VWE) to derive the FDTD updating equations in 
a way that only one field component will be 
calculated and updated inside the iteration loop to 
eliminate iteration steps required to update the 
other field component. Since one field (E or H) 
can be calculated from the other field, whenever 
needed, the proposed method, hence, is able to 
provide simulation results similar to that obtained 
from traditional FDTD updating equations. 

There is not much published work 
investigating VWE-based updating equations as a 
complete alternative to the traditional Yee 
algorithm; Aoyagi et al. investigated a possible 
combination of scalar and vector wave equations 
as well as scalar wave equation and Maxwell's 
equations [6], however both approaches lose 
generality since they require partitioning of the 
problem domain; Okoniewski discussed the 
application of the vector wave equation approach 
to inhomogeneous wave-guide structure in terms 
of stability by using transverse field components 
[7]. Chu et al. studied the FDTD modeling of 
optical guided-wave devices based on the Yee 
algorithm and investigated scalar wave equation 
and its semivectorial version for the simulation of 
optical guided-wave devices, but the vector nature 
of the electromagnetic waves is either completely 
or partially ignored [8,9].  
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The single-field FDTD is an effort at reduction 
of FDTD variables in a Yee grid to only the three 
components of a single field variable, either E or 
H, while maintaining the ability to analyze full 
vector source injection. To compare the proposed 
updating equations with the traditional Yee 
algorithm, 2D TM, TE, and 1D electromagnetic 
problems are solved. Results of performance 
analyses: CPU time, memory requirement, 
stability, dispersion, and accuracy, are presented. 
It was observed that for 1D and 2D problems, the 
single-field method has advantages over the 
traditional one in terms of speed and memory 
requirements. 

 
II. FORMULATIONS 

The single-field formulation is derived by 
starting with Maxwell’s curl equations: 

 ∇ × ࡱ = ߤ− డࡴడ௧ − ௜ࡹ) + ∇ (1)                ,(ࡴ௠ߪ × ࡴ = ߝ డࡱడ௧ + ݅ࡶ) +  (2)                  .(ࡱ݁ߪ

 
where E is the electric field strength, H is the 
magnetic field strength, Ji is the impressed electric 
current density, Mi is the impressed magnetic 
current density,  ε is the permittivity, and µ is 
permeability, ߪ௘ and ߪ௠ are the electric and 
magnetic conductivity, respectively. Taking the 
curl of (1) we have: 

 ∇ × ∇ × ࡱ = ߤ− డడ௧ ߘ) × (ࡴ − ߘ × ௜ࡹ  − ߘ)௠ߪ ×         .(ࡴ
               (3) 
 
Replacing the curl of H in (3) with the right hand 
side of (2), (3) can be rewritten as: 

 ∇ × ∇ × ࡱ = ߤ− డడ௧ ቀߝ డࡱడ௧ + ௜ࡶ) + ቁ(ࡱ௘ߪ − ߘ  × ௜ࡹ ௠ߪ                                                 − ቀߝ డࡱడ௧ + ௜ࡶ) +   ቁ. (4)(ࡱ௘ߪ
 
Alternatively, taking the curl of (2) we have: 

 ∇ × ∇ × ࡴ = ߝ డడ௧ ߘ) × (ࡱ − ߘ × ௜ࡶ − ߘ)௠ߪ ×  (5)   .(ࡱ
 

Replacing the curl of E in (5) with the right hand 
side of (1), (5) can be written as: 
 

∇ × ∇ × ࡴ = ߝ డడ௧ ൬−ߤ డࡴడ௧ − ௜ࡹ) + ൰(ࡴ௠ߪ − ߘ × ௜ࡶ ௠ߪ                                         − ൬−ߤ డࡴడ௧ − ௜ࡹ) +  ൰. (6)(ࡴ௠ߪ

 
To implement (4) or (6) as FDTD updating 
equations, we have to write them in scalar form for 
each Cartesian component. 

 
A. 2D single-field E-based updating equations 

If we assume no variation with respect to the z 
direction, i.e. ࣔࣔࢠ = ૙, the x-component of the 
electric field from (4) is given as: 

 డమாೣడ௬మ − డమா೤డ௫డ௬ = ௫ܧ௘ߪ௠ߪ + ௘ߪߤ) + (௠ߪߝ డாೣడ௧ ߝߤ                         + డమாೣడ௧మ + డெ೥೔డ௬ + ௜௫ܬ௠ߪ + ߤ డ௃೔ೣడ௧ .         (7) 

 
To derive the FDTD updating equations for the      
x-component of the electric field, we have to 
evaluate all the spatial derivatives in (7) at their 
corresponding electric field node, i.e. Ex. Central 
difference formula is used to discretize the 

derivatives. Care must be taken for 
ࣔ૛࢟ࣔ࢞ࣔ࢟ࡱ term. Four 

field components need to be used to evaluate the 
second derivative of Ey at the corresponding electric 
field node as shown in Fig. 1. 
 డమா೤(௜,௝)డ௫డ௬ = ா೤೙(௜ାଵ,௝)ିா೤೙(௜ାଵ,௝ିଵ)ିா೤೙(௜,௝)ାா೤೙(௜,௝ିଵ)∆௫∆௬ .   (8)  

 
 
 
 
 
 
 

Fig. 1. Electric field components in 2D. 
,݅)௫௡ାଵܧ  ݆) = ,݅)௘௫௘௫,௡ܥ ,݅)௫௡ܧ](݆ ݆)] 
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The final expression of the updating equation for 
the x-component of the electric field is given in 
(9), where the C terms are constant coefficients as 
given in Appendix A. The source terms are only 
included at the source locations whereas the field 
terms are included in the updating equation 
throughout the entire problem domain.  

Similarly, updating equations for ܧ௬ and ܧ௭ 
can be derived in the same manner and are given 
below for completeness. 

,݅)௬௡ାଵܧ  ݆) = ,݅)௘௬௘௬,௡ܥ ,݅)௬௡ܧൣ(݆ ݆)൧ 
,݅)௘௬௘௬,௡ିଵܥ+                   ,݅)௬௡ିଵܧൣ(݆ ݆)൧ 
,݅)௘௬௘௬,௡,௫ܥ+                   ݅)௬௡ܧൣ(݆ + 1, ݆) + ݅)௬௡ܧ − 1, ݆)൧ 
,݅)௘௬௘௫,௡,௫௬ܥ+                   ,݅)௫௡ܧ](݆ ݆ + 1) − ,݅)௫௡ܧ ݆) 
݅)௫௡ܧ−                                    − 1, ݆ + 1) + ݅)௫௡ܧ − 1, ݆)] 
,݅)௘௬ெ௭,௡,௫ܥ+                   ௜,௭௡ܯൣ(݆ (݅, ݆) − ௜,௭௡ܯ (݅ − 1, ݆)൧ 
,݅)௘௬௃௬,௡ܥ+                   ௜,௬௡ܬൣ(݆ (݅, ݆)൧ 
,݅)௘௬௃௬,௧ܥ+                   ,݅)௜,௬௡ାଵܬൣ(݆ ݆) − ,݅)௜,௬௡ିଵܬ ݆)൧.       (10)  
 
and 
,݅)௭௡ାଵܧ  ݆) = ,݅)௘௭௘௭,௡ܥ ,݅)௭௡ܧ](݆ ݆)] 
,݅)௘௭௘௭,௡ିଵܥ+                   ,݅)௭௡ିଵܧ](݆ ݆)] 
,݅)௘௭௘௭,௡,௫ܥ+                   ݅)௭௡ܧ](݆ + 1, ݆) + ݅)௭௡ܧ − 1, ݆)] 
,݅)ா௭௘௭,௡,௬ܥ+                   ,݅)௭௡ܧ](݆ ݆ + 1) + ,݅)௭௡ܧ ݆ − 1)] 
,݅)௘௭ெ௜௬,௡,௫ܥ+                   ௜,௬௡ܯൣ(݆ (݅, ݆) − ௜,௬௡ܯ (݅ − 1, ݆)൧ 
,݅)௘௭ெ௜௫,௡,௬ܥ+                   ௜,௫௡ܯൣ(݆ (݅, ݆) − ௜,௫௡ܯ (݅, ݆ − 1)൧ 
,݅)௘௭௃௭,௡ܥ+                   ௜,௭௡ܬൣ(݆ (݅, ݆)൧ 
,݅)௘௭௃௜௭,௧ܥ+                   ,݅)௜,௭௡ାଵܬൣ(݆ ݆) − ,݅)௜,௭௡ିଵܬ ݆)൧.      (11) 
 

B. 1D single-field E-based updating equations 

FDTD updating equations for the one-
dimensional field components can be easily 
obtained from the two-dimensional updating 

equations by further assuming 
డడ௬ = 0. The y-

component of the electric field is then given as: 

 డమா೤డ௫మ = ௬ܧ௠ߪ௘ߪ + ௘ߪߤ) + (௠ߪߝ డா೤డ௧ + ߝߤ డమா೤డ௧మ −                                               డெ೔,೥డ௫ + ௜௬ܬ௠ߪ + ߤ డ௃೔,೤డ௧ ,   (12) 

 
which yields the following updating equation 
(݅)௬௡ାଵܧ  =  ௬௡ିଵ(݅)൧ܧൣ(݅)௘௬௘௬,௡ିଵܥ +   ௬௡(݅)൧ܧൣ(݅)௘௬௘௬,௡ܥ
݅)௬௡ܧൣ(݅)௘௬௘௡,௡,௫ܥ +               + 1) + ݅)௬௡ܧ − 1)൧   

௜,௭௡ܯൣ(݅)௘௬ெ௭,௡,௫ܥ +               (݅) − ௜,௭௡ܯ (݅ − 1)൧ 
௜,௬௡ܬൣ(݅)௘௬௃௬,௡ܥ +               (݅)൧  
(݅)௜,௬௡ାଵܬൣ(݅)௘௬௃௬,௧ܥ +               − ௜,௬௡ିଵ(݅)൧.                (13)ܬ                    

 
Similarly, updating equations for ܧ௭, ܪ௬, and ܪ௭ 
can be derived in the same manner.  

In the solution of 2D and 1D electromagnetic 
problems, one can utilize the proper updating 
equation to find the field in the problem domain at 
each time step. Moreover, frequency domain 
solution and scattering parameters can also be 
obtained by using the time domain field solution. 

 
III. PERFORMANCE ANALYSIS 

 
A. Memory/speed analysis of a 1D problem 

Next, we examine a one-dimensional 
electromagnetic problem given in [10]. The 
electric field components, due to a z-directed 
electric current sheet placed at the center of a 
problem space filled with air between two parallel 
perfect electric conducting plates extending to 
infinity in y and z directions, are computed. Figure 
2 shows the comparison of the CPU time required 
by the single-field and the traditional formulations 
for the same cell size and number of cells. The 
required number of floating-point addition 
operation per node (FLAOPn), floating-point 
multiplication operation per node (FLMOPn), and 
memory allocation needed for the field terms per 
node (MAFTn) are tabulated in Table 1. 

 

 
Fig. 2. Comparison of performance in 1D. 

 

B. Memory/speed analysis of a TM problem 
A two-dimensional problem is constructed as 

free space with a z-directed impressed electric 
current located at the origin. The current density 
has a Gaussian waveform with magnitude of 1 
[Amp/m]. Electric field generated by the 
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traditional and the single-field formulations are 
compared in time and frequency domains, the 
stability and dispersion analyses are also 
performed for both. Since the real benefit of the 
single-field formulation is the time required to run 
the simulation and required memory size, the two 
formulations are compared for different domain 
sizes. Figure 3 shows the CPU time verses domain 
size for both formulations for the same cell size 
and number of cells. To get a better insight for the 
simulation time and memory usage, the required 
number of FLAOPn, FLMOPn, and (MAFTn) are 
tabulated in Table 1. As for the memory 
allocation, only the field terms and their 
coefficients are taken into account since the source 
terms are updated at only source points, therefore 
the required memory for the source terms and their 
coefficients are negligible compared to the field 
terms. 

 
C. Memory/speed analysis of a TE problem 

A two dimensional problem is constructed as 
free space with a z-directed impressed magnetic 
current located at the origin. The current density 
has a Gaussian waveform with magnitude of 1 
[V/m]. Magnetic field generated by the traditional 
and the single-field formulations are compared in 
time and frequency domains, stability and 
dispersion analyses are, also, performed for both. 
Due to the symmetry in the formulation and 
duality in the problem, merits for CPU time, 
memory requirements, stability, and dispersion are 
the same as the previous TM problem. Therefore, 
Fig. 3 and Table 1 show the performance of the 
single-field formulation for 2D TE problems as 
well. 

 

 
Fig. 3. Comparison of performance in 2D. 

 
A speed up factor is calculated according to 

the formula given in (14) for different problem 
sizes and plotted in Fig. 4. 

 

Speed up Factor =  ஼௉௎ ்௜௠௘ (்௥௔ௗ௜௧௜௢௡௔௟)஼௉௎ ்௜௠௘ (ௌ௜௡௚௟௘ି௙௜௘௟ௗ).       (14) 

  

 
Fig. 4. Speed up factor in 2D. 
 
The single-field formulation appears to be faster 
than the traditional one, especially for greater 
domain sizes. 

 
Table 1: Summary of the required number of FLAOPn, 
FLMOPn, and MAFTn 

 
Formulation

# FLAOPn # FLMOPn # MAFTn 

2D 
Single-field 

5 4 6 

2D 
Traditional 

8 7 10 

1D 
Single-field 

3 3 5 

1D 
Traditional 

2 4 6 

 
D. Numerical validation 

An infinite line of a constant electric current is 
placed parallel and in the vicinity of a circular 
conducting cylinder of infinite length. We will 
examine the scattering of the cylindrical waves by 
the cylinder for ߩ ≥  ᇱ. The analytical solution forߩ
the total electric field is given in [11] as 

ఘ௧ܧ  = ఝ௧ܧ = 0,          (15) 
௭௧ܧ  = − ఉమூ೐ସఠఌ ∑ ାஶ௡ୀିஶ (ߩߚ)௡(ଶ)ܪ    

        ൤ܬ௡(ߩߚ) − ௃೙(ఉ௔)ு೙(మ)(ఉఘᇲ) ൨(ᇱߩߚ)௡(ଶ)ܪ ݁௝௡(ఝିఝᇲ), (16) 

 
where  ߩ is the distance from the center of the 
cylinder to the field point, its range is 0.1-1.1 m, ߩᇱ is the distance from the center of the cylinder to 
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the source point, its value is 0.1 m, ߮ is the 
azimuth angle of the field point, and  ߮ᇱ is the 
azimuth angle of the source point; its value is 0, a 
is the radius of the conducting cylinder and its 
value is 0.01 m. For the numerical simulation, the 
spatial and temporal steps used are Δx = Δy = 1 
mm and Δt = 2.2407 ps. The cylinder is modeled 
in FDTD domain by stair-casing. Electric field is 
computed with the single-field and the traditional 
formulation at 1000 different spatial points in time 
domain and converted to frequency domain to 
compare with the analytical solution results. The 
single-field and the traditional formulation show 
similar performance in terms of accuracy as shown 
in Figs. 5 and 6. 

 

 
Fig. 5. Comparison of the numerical solutions with 
the analytical solution; magnitude. 

 

 
Fig. 6. Comparison of the numerical solutions with 
the analytical solution; phase. 
 
E. Stability comparison 

Stability comparison was conducted by 
changing the value of the time-increment (∆ݐ) and 
observing the change in the field values generated 
by the single-field and the traditional formulations.  

The Courant-Friedrichs-Lewy (CFL) condition 
[12] requires that the time increment ∆ݐ be 2.35 ps 
for a stable result if the space increments in both 
directions, ∆ݔ and ∆ݕ, are 1 mm. Figure 7 shows 
the field comparison of such stable simulation 

results calculated at point (8, 8) mm in a 20 mm x 
20 mm free-space problem domain as described in 
Section B. If we set ∆ݐ to 2.37 ps, the single-field 
and the traditional formulation shows divergence 
from optimum field values. Figure 8 shows the 
divergence in terms of absolute value of the field 
versus time step. The single-field formulation 
provides comparatively less divergent results than 
the traditional formulation does, since it requires 
less numerical computation. 

 

 
Fig. 7. Field comparison for Δt = 2.35 ps. 

 

 
Fig. 8. Field comparison for Δt = 2.37 ps. 

 
F. Dispersion analysis 

Dispersion is defined as the variation of a 
propagating wave’s velocity with frequency. The 
analysis is done for Ez component of the electric 
field for 2D case under the assumption of lossless 
medium and monochromatic traveling wave 
solution 

,݅)௭௡ܧ  ݆) =  ௭଴݁௝൫ఠ௡∆௧ି௞ೣ௜ೣ∆ೣି௞೤௜೤∆೤൯,      (17)ܧ
 

where ݇௫ and ݇௬ are the x and y components of the 
numerical wavevector, ix and iy are space indices. 
By substituting this field expression into the 
electric field updating equation for Ez, and using 
the points per wavelength discretization (PPW) = ఒ೙௛ , ܿ = ଵඥఓబఌబ  and 

௖∆௧௛ = 0.5, one may obtain 
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஼೙஼బ = ఒ೙ఒ = ଶ௉௉ௐగ sinିଵ ቈଵସ − ቂଵସ cos ൬ గ௉௉ௐ (cos ߙ +
                   sin ቁ(ߙ cos ൬ గ௉௉ௐ (cos ߙ − sin ൰ቃ቉ଵ/ଶ(ߙ . (18) 

where cn is the numerical velocity, ߣ௡ is the 
numerical wavelength, and ߙ is the angle between 
the direction of the propagating wave and the 
positive x-axis. Equation (18) gives the ratio of the 
velocities or wavelengths as a function of PPW 
and ߙ for the 2D case. Figure 9 shows the 
variation of the normalized numerical phase 
velocity (cp/c0) versus PPW in two-dimensional 
FDTD grid for a plane wave travelling at 0 degree 
angle i.e., ߙ = 0. 

Dispersion performance of the single-field 
formulation shows a characteristic identical to the 
traditional formulation as given in [13].  
 
 

 
Fig. 9. Dispersion performance of the single-field 
formulation. 
 

IV. CONCLUSION 
The single-field finite-difference time-domain 

updating equations have been derived for two and 
one dimensional electromagnetic problems. In the 
traditional approach, electric field components are 
updated at integer time increments whereas 
magnetic field components need to be updated 
after a half-time-increment. Since the proposed 
updating equations are based on a single field 
only, updating field components takes place only 
at integer time increments [14]. Liao’s ABCs are 
used for both formulations in the verification of 
the examples presented [4]. One-dimensional case 
of the single-field formulation is evaluated with 
example geometry, and it is observed that the 
single-field formulation is about 20% faster than 
the traditional one, and provides around 20% 
memory reduction for solving the same size 
problem. The single-field formulation has great 

advantage in the two-dimensional case. A two-
dimensional TMz problem is constructed with an 
electric current source, and the field away from the 
source is calculated by the single-field and the 
traditional formulations. First, the stability and 
dispersion analyses are performed. Then, the speed 
and memory analyses follow; the single-field 
formulation happens to be around three times 
faster for reasonably big problem sizes and 
requires around 43% less memory than its 
traditional counterpart. A two-dimensional TEz 
problem evaluation is also discussed to show that 
the single-field formulation is advantageous for 
two-dimensional TMz as well as TEz problems. 
The 3D case is being worked on for non-dispersive 
and dispersive media. The results will be reported 
in a future article. 

 
APPENDIX A 

 
The Complete Expressions of the Coefficients 

,݅)௫ܥ  ݆) = − ௘ߪߤ)ݐ∆ଶ(ݐ∆)2 + (௠ߪߝ + ,݅)௘௫௘௫,௡ܥ(19) ߝߤ2 ݆) = ,݅)௫ܥ ݆) ൬ ଶ(ݕ∆)2 − ଶ(ݐ∆)ߝߤ2 + ,݅)௘௫௘௫,௡ିଵܥ௘൰ (20)ߪ௠ߪ ݆) = ,݅)௫ܥ ݆) ቆ ଶ(ݐ∆)ߝߤ − ௘ߪߤ) + ݐ∆௠)2ߪߝ ቇ (21)ܥ௘௫௘௫,௡,௬(݅, ݆) = ,݅)௫ܥ− ݆) ൬ ,݅)௘௫௘௬,௡,௫௬ܥଶ൰ (22)(ݕ∆)1 ݆) = ,݅)௫ܥ ݆) ൬ ,݅)௘௫௠௭,௡,௬ܥ൰ (23)ݕ∆ݔ∆1 ݆) = ,݅)௫ܥ ݆) ൬ ,݅)௘௫௝௫,௡ܥ൰ (24)ݕ∆1 ݆) = ,݅)௫ܥ ,݅)௘௫௝௫,௧ܥ(25) (௠ߪ)(݆ ݆) = ,݅)௫ܥ ݆) ቀ ,݅)௬ܥቁ (26)ݐ∆2ߤ ݆) = − ௘ߪߤ)ݐ∆ଶ(ݐ∆)2 + (௠ߪߝ + ,݅)௘௬௘௬,௡ܥ(27) ߝߤ2 ݆) = ,݅)௬ܥ ݆) ൬ ଶ(ݔ∆)2 − ଶ(ݐ∆)ߝߤ2 + ,݅)௘௬௘௬,௡ିଵܥ௘൰ (28)ߪ௠ߪ ݆) = ,݅)௬ܥ ݆) ቆ ଶ(ݐ∆)ߝߤ − ௘ߪߤ) + ݐ∆௠)2ߪߝ ቇ (29)ܥ௘௬௘௬,௡,௫(݅, ݆) = ,݅)௬ܥ− ݆) ൬ ,݅)௘௬௘௫,௡,௫௬ܥଶ൰ (30)(ݔ∆)1 ݆) = ,݅)௬ܥ ݆) ൬ ,݅)௘௬௠௭,௡,௬ܥ൰ (31)ݕ∆ݔ∆1 ݆) = ,݅)௬ܥ− ݆) ൬ ,݅)௘௬௝௬,௡ܥ൰ (32)ݔ∆1 ݆) = ,݅)௬ܥ (33) (௠ߪ)(݆
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,݅)௘௬௝௬,௧ܥ ݆) = ,݅)௬ܥ ݆) ቀ ,݅)௭ܥቁ (34)ݐ∆2ߤ ݆) = − ௘ߪߤ)ݐ∆ଶ(ݐ∆)2 + (௠ߪߝ + ,݅)௘௭௘௭,௡ܥ(35) ߝߤ2 ݆) = ,݅)௭ܥ ݆) ൬ ଶ(ݔ∆)2 + ଶ(ݕ∆)2 − +ଶ(ݐ∆)ߝߤ2  ௘൰ߪ௠ߪ
(36)

,݅)௘௭௘௭,௡ିଵܥ ݆) = ,݅)௭ܥ ݆) ቆ ଶ(ݐ∆)ߝߤ − ௘ߪߤ) + ݐ∆௠)2ߪߝ ቇ (37)ܥ௘௭௘௭,௡,௫(݅, ݆) = ,݅)௭ܥ− ݆) ൬ ,݅)௘௭௘௭,௡,௬ܥଶ൰ (38)(ݔ∆)1 ݆) = ,݅)௭ܥ− ݆) ൬ ଶ൰ (39)(ݕ∆)1

 
APPENDIX B 

 
2D Single-Field H-Based Updating Equations 

If we assume no variation with respect to the z 

direction, i.e.  
డడ௭ = 0, the x-component of the 

magnetic field from (6) is given as:  
 డమுೣడ௬మ − డమு೤డ௫డ௬ = ௫ܪ௘ߪ௠ߪ + ௘ߪߤ) + (௠ߪߝ డுೣడ௧ ߝߤ                            + డమுೣడ௧మ + డ௃೔,೥డ௬ + ௜,௫ܯாߪ + ߤ డெ೔,ೣడ௧ .   (12)  

 
To derive the FDTD updating equations for the    
x-component of the magnetic field, we have to 
evaluate all the spatial derivatives in (12) at their 
corresponding magnetic field node, i.e. Hx. Central 
difference formula is used to discretize the 
derivatives.  

The final expression of the updating equation 
for the x-component of the magnetic field becomes 

,݅)௫௡ାଵܪ  ݆) = ,݅)௛௫௛௫,௡ܥ ,݅)௫௡ܪ](݆ ݆)] 
,݅)௛௫௛௫,௡ିଵܥ +                   ,݅)௫௡ିଵܪ](݆ ݆)] 
,݅)௛௫௛௫,௡,௬ܥ +                   ,݅)௫௡ܪ](݆ ݆ + 1) + ,݅)௫௡ܪ ݆ − 1)] 
,݅)௛௫௛௬,௡,௫௬ܥ +                   ݅)௬௡ܪ](݆ + 1, ݆) − ,݅)௬௡ܪ ݆) 
݅)௬௡ܪ−                                   + 1, ݆ − 1) + ,݅)௬௡ܪ ݆ − 1)] 
,݅)௛௫௃௜௭,௡,௬ܥ +                   ௜,௭௡ܬൣ(݆ (݅, ݆) − ௜,௭௡ܬ (݅, ݆ − 1)൧ 
,݅)௛௫ெ௜௫,௡ܥ +                   ௜,௫௡ܯൣ(݆ (݅, ݆)൧  
,݅)௛௫ெ௜௫,௧ܥ +                   ,݅)௜,௫௡ାଵܯൣ(݆ ݆) − ,݅)௜,௫௡ିଵܯ ݆)൧, (14)            
 
where the C terms are constant coefficients. 
Similarly, updating equations for ܪ௬ and ܪ௭ can 
be obtained in the same manner and their final 
expressions are 
 

,݅)௬௡ାଵܪ ݆) = ,݅)௛௬௛௬,௡ܥ ,݅)௬௡ܪ(݆ ݆) 

,݅)௛௬௛௬,௡ିଵܥ +                   ,݅)௬௡ିଵܪൣ(݆ ݆)൧ 
,݅)௛௬௛௬,௡,௬ܥ +                   ,݅)௬௡ܪൣ(݆ ݆ + 1) + ,݅)௬௡ܪ ݆ − 1)൧ 
,݅)௛௬௛௬,௡,௫௬ܥ +                   ,݅)௬௡ܪ](݆ ݆ + 1) − ,݅)௬௡ܪ ݆) 
݅)௬௡ܪ−                                   − 1, ݆ + 1) + ݅)௬௡ܪ − 1, ݆)] 
,݅)௛௬௃௜௭,௡,௫ܥ +                   ௜,௭௡ܬൣ(݆ (݅ + 1, ݆) − ௜,௭௡ܬ (݅, ݆)൧ 
,݅)௛௬ெ௜௬,௡ܥ +                   ,݅)௜,௬ܯൣ(݆ ݆)൧ 
,݅)௛௬ெ௜௬,௧ܥ +                   ,݅)௜,௬௡ାଵܯൣ(݆ ݆) − ,݅)௜,௬௡ିଵܯ ݆)൧.(15) 
,݅)௭௡ାଵܪ  ݆) = ,݅)௛௭௛௭,௡ܥ ,݅)௭௡ܪ](݆ ݆)] 
,݅)௛௭௛௭,௡ିଵܥ +                   ,݅)௭௡ିଵܪ](݆ ݆)] 
,݅)௛௭௛௭,௡,௫ܥ +                   ݅)௭௡ܪ](݆ + 1, ݆) + ݅)௭௡ܪ − 1, ݆)] 
,݅)௛௭௛௭,௡,௬ܥ +                   ,݅)௭௡ܪ](݆ ݆ + 1) + ,݅)௭௡ܪ ݆ − 1)] 
,݅)௛௭௃௬,௡,௫ܥ +                   ௜,௬௡ܬൣ(݆ (݅ + 1, ݆) − ௜,௬௡ܬ (݅, ݆)൧ 
,݅)௛௭௃௫,௡,௬ܥ +                   ௜,௫௡ܬൣ(݆ (݅, ݆ + 1) − ௜,௫௡ܬ (݅, ݆ − 1)൧ 
,݅)௛௭ெ௜௭,௡ܥ +                   ,݅)௜,௭ܯൣ(݆ ݆)൧ 
,݅)௛௭ெ௜௭,௧ܥ +                   ,݅)௜,௭௡ାଵܯൣ(݆ ݆) − ,݅)௜,௭௡ିଵܯ ݆)൧. (16)  

 
APPENDIX C 

 
The Computing System Information 

All of the simulations presented in this paper 
are performed using a system whose specifications 
are given in the table below. 

 
Table 2: The computing system specifications 

Processor Intel(R) Core(TM) i7 
CPU 920 @ 2.67 GHz 

Memory 6.00 GB 
System Type 64-bit OS 
Operation System Windows 7 Pro 
Programming 
Language 

Matlab R2009a (32-
bit) 
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