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Abstract – This paper presents a deep learning model for
fast and accurate radar detection and pixel-level local-
ization of large concealed metallic weapons on pedes-
trians walking along a sidewalk. The considered radar
is stationary, with a multi-beam antenna operating at 30
GHz with 6 GHz bandwidth. A large modeled data set
has been generated by running 2155 2D-FDFD simula-
tions of torso cross sections of persons walking toward
the radar in various scenarios.

Index Terms – Concealed object, deep learning,
millimeter-wave radar, object detection, semantic seg-
mentation, U-Net.

I. INTRODUCTION
Developing a solution to address threats to soft tar-

gets and crowded spaces such as schools, stadiums, hos-
pitals, train stations and places of worship is a complex
challenge. Soft targets are civilian sites where a lot of
unarmed people gather and can be vulnerable to active
shooters. SENTRY (Soft-target Engineering to Neutral-
ize the Threat Reality) is a DHS Center of Excellence
that addresses the challenges of protecting soft targets
and crowded places (STCPs). The ideal solution is a
semi-autonomous procedure that keeps the human in the
loop and takes advantage of an integration of sensor data
to create a cost effective pipeline to support and help
decision makers and first responders to detect, deter, and
mitigate threats. Such system can be helpful in prevent-
ing a scenario like Boston marathon bombing from hap-
pening.

This paper discusses the role of radar in SENTRY
Advanced Sensor Concept projects, and provides a deep
learning-based real-time solution for detecting potential
threats and shooters among large crowds in one specific
scenario. A radar system has been designed to moni-
tor the pedestrians walking along the sidewalk for large
metallic weapons such as guns and knives. A large data
set of radar images has been generated using Finite Dif-
ference Frequency Domain (FDFD) simulations and a
2D U-Net model has been trained to perform the image

segmentation task and predict pixel-level masks of con-
cealed weapons from the FDFD-generated radar image.

Image segmentation is an important computer vision
task that has many key applications in scene understand-
ing [1, 2], robotic perception [3], video surveillance [4],
medical image analysis [5, 6], augmented reality [7],
image compression [8], human-computer interface [9,
10], satellite imagery analysis [11], self-driving vehi-
cles [12, 13], and pedestrian detection [14, 15]. The goal
of image segmentation task is to provide a pixel-level
label of the image and predict the category of each pixel.
Instance segmentation is an extension of semantic seg-
mentation which tries to detect and delineate each object
in the image [16, 17]. The categories in this paper are
human body, anomaly or metallic weapon, and the back-
ground image.

In recent years, deep learning has been widely used
in various applications due to its capability in handling
large amounts of data accurately. Fully convolutional
models (FCMs) [18], CNN with graphical models [19–
21], encoder-decoder based models [22–25], multiscale
and pyramid network based models [26], R-CNN based
models [27, 28], Dilated convolutional models [29–32],
RNN models [33–37], attention-based models [38–40],
generative models and adversarial training [41–43], and
CNN models with active contour [44–46] are among
famous deep learning models used for the image segmen-
tation task.

Encoder-decoders are a family of deep learning
models that can learn to map data points from one
domain to another using a two-stage network. The first
stage is used to capture the context of the image and the
second stage provides object localization. These models
are useful in several image to image translations such
as image debluring or super resolution, and image seg-
mentation [16]. The U-Net model developed by Ron-
neberger et al. [47] is a famous encoder-decoder model
that is mainly used for analyzing medical images. Simi-
lar to medical images of biological samples, CT and MRI
scans, radar images are very different from the typical
RGB images that most deep learning models are trained
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on. Because of this similarity, U-Net models are good
candidates for analyzing radar images.

Multiple studies have used deep-learning to detect
pedestrians [48]. In most of these studies, data sets
contain RGB images captured by cameras. In [49], a
random forest method has been used to detect pedes-
trians, using surveillance camera information. In [50],
two-stream deep convolutional neural networks have
been trained to learn multispectral human-related fea-
tures under different illumination conditions. There also
have been various studies where radar data has been used
to detect pedestrians[51, 52]. In [53], Fast-RCNN has
been applied to NuScenes dataset [54] to detect humans
on input images. In [55], radar cross sections along
with RGB camera images have been used for pedes-
trian detection. There also have been some studies where
authors have used deep learning models to detect peo-
ple as well as weapons. For example in [56] researchers
have developed single-shot and multi-shot prediction
networks to detect anomalies like laptops, phones, and
knives based on the captured data from a commercial
radar working at 77 GHz.

Many of these studies have focused on detection of
human subjects and only a few have looked at detecting
body-worn anomalies. Only some are using radar signals
as the input and all of them are providing a bounding box
of the detected human body and anomaly. This paper
takes advantage of image segmentation to find body-
worn anomalies which is by definition a deeper task than
classification (detection). The trained model is capable of
detecting anomalies on pedestrians as well as providing
a pixel-level mask that shows the location and general
shape and size of the anomaly.

This paper presents the results of training a 2D U-
Net model on FDFD-generated radar scattering of cross
sections of human torsos parallel to the ground to detect
potential threats among pedestrians walking along side-
walks and localize the concealed weapon. It is worth
mentioning that the simulated radar images in this paper
have been generated by a minimum radar imaging sys-
tem that uses only three receivers and one transmitter.
Because of the location of radar with respect to passen-
gers, only parts of the human torsos are visible on recon-
structed radar images, which makes it harder to perform
the image segmentation task.

This research proposes a novel approach in detect-
ing body-worn anomalies using radar, a technique not
widely explored in existing research and introduces a
deep learning model that performs pixel-level segmen-
tation on radar images. These images are generated
using a minimal radar system, consisting of just three
receivers and one transmitter, which captures only par-
tial views of human torsos. This partial view signifi-
cantly complicates the image segmentation task, making

the challenge of localizing concealed weapons more dif-
ficult. By overcoming this limitation, this paper offers
a groundbreaking solution for real-time, high-accuracy
threat detection in crowded, soft-target environments.
This approach enables more precise identification and
localization of potential threats, enhancing decision-
making and threat mitigation capabilities in public safety
scenarios.

The remainder of the paper is structured as follows.
Section II discusses the details of FDFD simulations
used to generate the radar image data set, and section III
goes over the process of creating the radar data set from
FDFD simulations. Section IV talks about the training
process, evaluation metrics, and illustrates the segmenta-
tion results. Finally section V provides a brief summary
of the paper.

II. FDFD SIMULATIONS
The data set used for training the U-Net model has

been generated by running 2155 FDFD simulations of
human torso in various scenarios. The considered imag-
ing system is a 30 ± 3 GHz TX/RX radar designed to
monitor pedestrians walking along a sidewalk for large,
concealed metal objects. The TX is modeled by a uni-
form aperture of length 37.5 cm and there are also three
collinear RX apertures, each of length 50 cm so this sys-
tem can illuminate and image only the 40 cm width of
a torso at 30 m range. The TX/RX antenna system gath-
ers scattering signals for a given pedestrian as he moves
toward the stationary radar and the resulting TX/RX sig-
nals processed using the inverse synthetic aperture radar
(ISAR) technique to generate torso images with bright
spots in the images corresponding to areas with strong
reflectivity. Figure 1 illustrates the imaging setup.

Fig. 1. Imaging setup, showing various instances of a
torso cross section moving towards a fixed radar antenna.

The radar is installed on a light pole and takes six-
teen snapshots of the pedestrian walking towards it at
sixteen frequency steps between 27 and 33 GHz. Three
receive focal points are considered in each simulation:
x = 0 m which is approximately the middle of the torso,
x = ± 0.25 m which correspond to approximate location
of left and right arms.
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Each of the 768 simulations (16 positions × 16 fre-
quencies × 3 receive focal points) used to create these
images is performed by analytically generating the TX
aperture (source) fields in a computational region sur-
rounding the torso, computing the scattered electromag-
netic fields in that region using the 2D FDFD algorithm
assuming no z variation (d/dz = 0), and then finding the
RX fields far outside the computational region using the
Stratton-Chu near-to-far field transform [57, 58]. This
near-to-far field transform requires computing both elec-
tric and magnetic transverse scattered fields and the 2D
scalar Green’s function on a rectangular bounding box
enclosing the torso. The bounding box is centered in the
FDFD computational region and is about 70% of its size;
the four computational boundaries are each terminated
by a PML [59].

Accurate FDFD simulations of scattering from
human torsos at frequencies above 30 GHz requires sig-
nificant computational storage, even for 2D calculations.
The grid size for FDFD is defined by equation 1:

h = λskin/ppw, (1)
where the number of points per wavelength (ppw) is typ-
ically greater than about 16. The grid size is determined
by the shortest wavelength in the computational grid,
which in these simulations is the wavelength of skin (the
total electric and magnetic fields within metal regions are
always zero and so are not directly computed). For skin
with complex dielectric of 20 + j 16 at 16 ppw and 30
GHz [60], the grid size will be h = 0.13 mm, which is
computationally expensive to simulate.

In this radar system, the goal is to distinguish
torsos with metal objects (e.g. guns) attached from
non-threatening (non-metal containing) torsos. Model-
ing skin as metal is therefore counterproductive. But
because skin is quite lossy, radar fields attenuate quickly
as they penetrate the torso (within about a wavelength).
Using the coarser grid spacing of 16 ppw in air (rather
than 16 ppw in skin) does introduce a small amount
of error in the FDFD simulations because within the
skin region, the coarse grid spacing is now about 3.3
ppw. However, skin and metal responses are distin-
guishable and the coarse field plots closely resem-
ble the fine (expensive) field plots for a range of test
cases.

III. DATA SET
FDFD simulations were performed by MATLAB

and were run on CPUs. On average each simulation took
about 15 hours. In total, 53 torso shapes of various sizes
(including both male and female) were simulated. The
data set includes 198 cases of rotated torsos at various
angles as well as some cases with two bodies in one
image. Figure 2 shows a simulated torso shape as well
as the metallic anomaly attached to it.

Fig. 2. Cross section of simulated torso with arms and
metallic anomaly (yellow).

The data set includes torsos with and without metal-
lic anomalies. The anomalies are randomly located at
different parts of torso contours. The data set also
includes various cases with multiple objects attached to
the torso(s). Although the attached anomalies in most
simulations were circular, other shapes such as rectan-
gle, square, and barrel guns (a rectangle with a half circle
attached to it) were considered in generating the data set.
Table 1 illustrates the dimensions of each anomaly.

Since three receive focal points have been con-
sidered for the radar system, three reconstructed radar
images can be produced by applying the appropriate
relative phase for the three antenna apertures for rudi-
mentary SAR processing of simulated files. Considering
the ground truth file of Fig. 2, when radar is focusing
on x = −0.25 m, radar image of Fig. 3 (a) is gener-
ated where the left arm shows high intensity. And when
radar illuminates x = 0 m, and x = 0.25 m, reconstructed
images with brighter response for torso (Fig. 3 (b)), and
right arm (Fig. 3 (c)) are achieved.

By combining these three images in a complex form,
Fig. 3 (d) will be generated. Since these images are in
grey scale format and only have amplitude, each of them
can be assumed as a channel in an RGB image. Here,
the complex combined reconstructed image, the recon-
structed image illuminating torso and right arm have
been considered the red, green and blue channels in a
colored image. Figure 4 (a) shows the resulting RGB
image. Since the radar is located at subject’s right side,
the left arm is sometimes blocked by the presence of

Table 1: Canonical shape anomalies representing large
weapon cross sections

Anomaly’s Shape Dimensions
Circle Radius = 12 mm

Small circle Radius = 10 mm
Rectangle 5×13 mm

Square 15×15 mm
Barrel gun Rectangle (13×30 mm)

Half circle (radius = 17 mm)
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Fig. 3. Reconstructions of torso and arm cross section for three focusing cases and their combination: (a) focus on left
arm, (b) focus on middle of torso, (c) focus on right arm and (d) complex combination of three images.

Fig. 4. The processed radar image of Fig. 2 along with its corresponding masks fed into the deep learning model for
training: (a) RGB image, (b) body mask, (c) anomaly mask.

torso, making the reconstructed image of the left arm
weaker and less reliable. By considering the complex
combined image instead of the left arm image, the signif-
icance of torso and right arm are intensified while reduc-
ing the emphasis of the left arm in inputs.

The typical torso and anomaly image of Fig. 2 is
used to produce the body and anomaly ground truth
masks. For training the deep learning model, the RGB
image is considered the input and both body and anomaly
masks are considered labels (outputs). Figure 4 illus-
trates an example data point used in training the U-Net
model.

The 2155 FDFD simulations which correspond to
8620 grey-scale radar images, are divided into training,
validation and test sets. The training set includes 1775
FDFD simulations (7100 grey-scale images), and the val-
idation and testing sets each include 190 FDFD simula-
tions (760 grey-scale images).

IV. TRAINING AND EVALUATION
The evaluation metrics used to examine the pre-

dictability of the trained model are the F1-score, and the
Intersection over Union (IoU). The F1-score can be cal-
culated using equation (2).

F1 = 2× precision× recall
(precision+ recall)

, (2)

where precision = TP/(TP + FP), recall = TP/(TP +
FN), and TP, FP and FN are true positive, false posi-
tive, and false negative cases respectively. Additionally
the IoU metric can be obtained using equation (3).

IoU =
area of overlap
area of union

=
T P

T P+FP+FN
, (3)

U-Net is one of the popular techniques used in
semantic segmentation and various extensions of it have
been used in medical image analysis. In this paper, effi-
cientnetb3 [61] has been used as the backbone of U-Net

Table 2: Model’s performance
Metric Training Validation Testing

F1 score 96% 86% 86%
IoU 93% 81% 81%

with about 17 million trainable parameters. Categorical
focal loss has been used as the model’s loss function.

The reconstructed radar images and the RGB image
are 128×256 in size. The U-Net model is trained for
70 epochs with learning rate of 0.001. Each epoch took
about 20 minutes to run on V100 GPU. Table 2 shows the
final F1 and IoU score on training, validation and testing
sets.

Figure 5 illustrates some of the test cases and the
predicted torso and anomaly masks. The first column
shows the input RGB images. The second and fourth
columns correspond to the ground truth masks consid-
ered for each FDFD simulation and finally the third and
fifth columns show the predicted masks for the human
torso and the attached metallic anomaly. As Fig. 5 shows,
the predicted and ground truth masks are very similar
and the model can accurately estimate the location and
shape of the torso and the body-worn anomaly based
on the available RGB image. In case the subject is
not carrying a metallic weapon, the predicted anomaly
mask will be an empty image (Fig. 5 (e)). Since most
anomalies in the data set are circular metals, the pre-
dicted anomalies tend to have curved edges. The images
show that the trained model is capable of predicting the
correct body and anomaly masks for both male (Fig.
5 (a)) and female (Fig. 5 (b)) torso shapes, various
torso sizes (Fig. 5 (c)). Moreover, the model can pre-
dict multiple anomalies and multiple torsos in the image
(Fig. 5 (d)).
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Segmentation results on five typical test cases showing the complex combined reconstructed image in the first
column, and in the successive columns, the true body geometry, AI predicted body geometry, the true and the AI
predicted anomaly: (a) large male torso and a barrel anomaly, (b) female torso and a large circular anomaly, (c) small
female torso and multiple anomalies, (d) two small male torsos and multiple anomalies, (e) small male torso with no
anomaly.

(a)

(b)

Fig. 6. Examples of undetected anomalies from the test set: (a) left object is partially inside the body mask, (b) object
located between the torso and right arm.

Figure 6 shows two examples where the model could
not detect the anomalies correctly. In general there were
two common features among undetected cases. If any of

the anomalies are partially inside the body (similar to the
left anomaly on Fig. 6 (a)), the model is less likely to
detect it. Also, if the anomaly is located between one of
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the arms and the torso (similar to the case shown in Fig.
6 (b)), the model is more prone to miss it. Out of 190
test cases, 51 cases had two or three anomalies present.
The trained model was able to detect 39 cases with two
or three anomalies correctly but could not detect all the
anomalies on the remaining 12 cases. However, in all
these 12 cases, the model was able to detect at least one
anomaly on the image and did not miss the potential
shooter. The remaining 139 cases included zero or one
anomaly. Out of these 139 cases, the model predicted the
masks correctly for 126 cases corresponding to 90%.

V. SUMMARY AND CONCLUSION
This paper presented the results of training a U-Net

model with the backbone of efficientnetb3 for detection
and localization of large concealed metallic objects on
pedestrians. A large data set was generated by running
FDFD simulations of a person walking toward a 6 GHz
bandwidth radar operating at 30 GHz. The body and
anomaly mask prediction results are very promising and
the model can be used to detect and localize anomalies
accurately in real time.
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