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Abstract – A three-dimensional (3-D) analytical model
with a high computational efficiency is proposed for a
surface-inset axial flux machine (SIAFM). Accounting
for the air-gap fringing field, the proposed 3-D ana-
lytical model is used to compute the magnetic field in
the SIAFMs with conventional, Hat- and T-shaped Hal-
bach arrangements. Based on the linear superposition
method, the 3-D scalar potential equations for different
regions with boundary condition equations are obtained.
On this basis, the air-gap magnetic field and electro-
magnetic parameters can be derived. To demonstrate
the advantages, the optimization performance of the T-
shaped Halbach machine model is compared with that
of conventional and Hat-shaped Halbach machine mod-
els. The prediction indicates that the optimized T-shaped
Halbach machine model has the greatest electromagnetic
torque. Finally, a 3-D finite element analysis (FEA) vali-
dates the 3-D analytical predictions.

Index Terms – 3-D analytical predictions, electromag-
netic torque, finite element analysis, surface-inset axial
flux machine, T-shaped Halbach arrangements.

I. INTRODUCTION
With the rapid development of various fields such

as industrial automation, electric vehicles, and renewable
energy utilization, the demand for efficient, compact, and
high-performance machine drive systems is becoming
increasingly urgent. Axial flux machines (AFMs) with
their significant structural and performance advantages
are gradually emerging among a wide variety of machine
types. Table 1 shows their specific applications in the
fields of new energy vehicles, aerospace, ship propul-
sion, and robotics [1, 2].

The topological structures of AFMs can be classified
as single-stator single-rotor, double-stator single-rotor,
single-stator double-rotor, and multiple-stator multiple-
rotor [3]. Specifically, using multiple-stator and/or rotor
in double-sided AFMs have been widely used in practice
due to its ability to effectively reduce single-sided unbal-
anced magnetic force [11]. Compared to single-stator
double-rotor AFMs, double-stator single-rotor AFMs

can achieve an increase in torque through the magnetic
fields interaction between the stators and provide signif-
icant advantages for the specific application areas with
high performance requirement [12].

Table 1: Specific application of AFMs
Application

Area
Specific Applications

New energy
vehicles

Mercedes Vision 1-11 electric
vehicle [4], McLaren new cars and

other plug-in hybrid models [5]
Aerospace The ”Spirit of Innovation” and

Evolito [6, 7]
Ship propulsion Propel D1 and Falcon electric

outboard machines [8, 9]
Robots Application of EMRAX188 AFMs

in robots [10]

As one machine type, surface-inset axial flux
machine (SIAFM) has the characteristics of compact
structure, relatively high torque density and power-to-
weight ratio [13]. With the advancement of technology,
SIAFMs have shown broader application prospects in
multiple fields. At present, due to complex production
processes and high precision requirements for compo-
nents, the manufacturing cost of SIAFMs is high, which
limits their large-scale application. It is believed that in
the near future, with the continuous maturity of technol-
ogy and the reduction of costs, its application scope will
continue to expand.

In recent years, researchers have shown great inter-
est in the application of Halbach arrangements. Com-
pared to those without Halbach arrangements, AFMs
equipped with Halbach arrangements exhibit numerous
attractive advantages. An AFM with multi-segment mul-
tipole ironless Halbach arrangements is investigated in
[14]. In order to improve the torque density, a type of
SIAFM with unequal thicknesses of Halbach arrange-
ments is proposed in [15]. The combination of surface-
inset and surface-mounted magnets for AFM is proposed
in [16]. A novel SIAFM structure with radially layered
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magnets is investigated in [17]. It has the parallel excited
radial Halbach arrangements and tangentially magne-
tized magnets, greatly improving the air-gap magnetic
flux density performance. With the equal area of primary
magnetic flux, the performance is enhanced by efficiently
utilizing the internal space.

A three-dimensional (3-D) finite element analysis
(FEA), as a solution of the magnetic fields of AFMs
[18], takes a long time in both calculation and opti-
mization processes. Instead, the analytical techniques
are more suitable for predicting the performance of 3-D
AFM models [19]. The method to convert a 3-D machine
model to a linear machine can solve the two-dimensional
(2-D) scalar magnetic potential equation and greatly
reduce computational complexity [20]. A method with
equivalence of solving the 2-D vector magnetic poten-
tial of a linear machine is proposed in [21, 22]. However,
the existing 3-D analytical methods are still limited to
solving the AFMs equipped with surface-mounted mag-
nets and are incapable of analysis of the magnetic field
in SIAFMs.

In this paper, a 3-D analytical model for SIAFM is
proposed. Different from the 2-D radial flux machines,
the air-gap fringing effect for SIAFMs needs to be con-
sidered. The 3-D analytical predictions are done for
SIAFMs with three different Halbach arrangements. The
stator slotting influence is considered by the Carter
coefficient. The electromagnetic performances of slotted
SIAFMs are analyzed, and the magnet parameters are
optimized. In the case of equal magnet volume, the T-
shaped Halbach optimized model exhibits significantly
superior electromagnetic performance compared to the
other models. Finally, a 3-D FEA model is utilized for
the verification of the analytical prediction results. Thus,
the 3-D model can effectively compute the magnetic
field, with relatively high accuracy and modest time.

II. 3-D PHYSICAL MODEL OF SIAFM
Figure 1 shows three different segmented Halbach

magnet arrangements for the rotor of SIAFMs. The con-
ventional and Hat-shaped three-segment Halbach mag-
nets are shown in Figs. 1 (a) and (b), respectively. The
T-shaped three-segment Halbach magnets are shown in
Fig. 1 (c).

Figure 2 shows the 3-D structure of a single-
rotor dual-stator SIAFM with T-shaped Halbach mag-
nets. The three-phase symmetric non-overlapping wind-
ing arrangement is utilized.

Figure 3 provides the parameters of the T-shaped
Halbach rotor model. h1 is the axial length of the mid-
magnet, h2 is the difference between the side-magnet and
mid-magnet in the axial length, g is the air-gap length,
θ 1 is the magnetization angle of both symmetric side-
magnets, and τ1 and τ2 are the arc angles of the whole

one-pole magnets and mid-magnets, respectively. τ3 is
the pole pitch. It is clearly seen that α1 = τ1/τ3 and
α2 = τ2/τ3 are the polar arc ratios. The analytical mag-
net domain is divided into two regions. One is the layer

(a) (b)

(c)

Fig. 1. Three types of PM structures for SIAFMs: (a)
conventional, (b) Hat-shaped Halbach magnets, and (c)
T-shaped Halbach magnets.

Fig. 2. 3-D SIAFM structure with T-shaped Halbach
magnets.

Fig. 3. Parameters of T-shaped Halbach magnets.
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magnet region near the air-gap and the other is that far
from the air-gap, as shown in Figs. 4 (a) and (b), respec-
tively.

(a)

(b)

(c)

Fig. 4. Linear superposition of T-shaped Halbach mag-
nets: (a) layer magnets near air-gap, (b) layer magnets
far from air-gap and (c) T-shaped Halbach magnets.

III. 3-D GENERAL SOLUTION EQUATIONS
Using the Cartesian coordinate system instead of the

cylindrical one, the 3-D magnetic field distributions in
SIAFMs are analyzed. In order to obtain high accuracy,
the rotor is split into nt (an odd number) hollow cylindri-
cal pieces from inside to outside in the radial directions,
with equal radial difference and unequal inner and outer
radii. The average radius of the j-th cylindrical piece is
denoted by:

R j = R1 +( j−1)
R2 −R1

nt
+

1
2

R2 −R1

nt
, (1)

where R1 and R2 are the inner and outer radii of rotor.
The initial spatial start point used for analytical cal-

culation is chosen at x = 0 and z = 0. For the solution
of 3-D field, general assumptions are necessary: the ideal
linear demagnetization for magnets, the infinite magnetic
permeability for the iron, and the ignored end effects
for the windings. The relationship between the magnetic
field intensity vector H and the scalar potential ϕ is:

H =−gradφ . (2)

The relationships between the flux density vector B
and the magnetization vector M are:{

B = µ0H in the air region
B = µ0µrH+µ0M in the magnet region , (3)

where µ0 is vacuum permeability and µr is magnet rela-
tive permeability.

For the linear 3-D analytical model, the principle
of superposition is adopted. In order to achieve the gen-
eral solutions of the scalar potential for 3-D Poisson or
Laplace equations in each subdomain, the equations with
the periodic symmetry are written as:

φ
j

1 (x,y,z) =−φ
j

1 (x+πR j/p,y,z)
φ

j
2 (x,y,z) =−φ

j
2 (x+α1πR j/p,y,z)

φ
j

3 (x,y,z) =−φ
j

3 (x+α1πR j/p,y,z)
φ

j
1,2,3(x,y,z) = φ

j
1,2,3(x,y+2R2 −2R1,z)

φ
j

1 (x,y,h1 +g) = φ
j

3 (x,y,0) = 0

, (4)

where p is the pole-pair number, ϕ1
j(x,y,z), ϕ2

j(x,y,z)
and ϕ3

j(x,y,z) are the scalar magnetic potentials in the
air-gap, the layer magnets near the air-gap and the layer
magnets far from the air-gap, respectively.

A. 3-D air-gap governing equation
In the air-gap domain, the governing 3-D Laplace

equation is expressed as:

∂ 2φ1

∂ r2 +
1
r

∂φ1

∂ r
+

1
r2

∂ 2φ1

∂θ 2 +
∂ 2φ1

∂ z2 = 0. (5)

Adopting the technique of separating variables,
according to (4), the 3-D analytical expression of (5) is:

φ
j

1 =
∞

∑
m=0

∞

∑
n=1,3...

A j
1mn

(ek j
1z − e2k j

1h1+2k j
1g−k j

1z)

× cos(ω j
nx)cos

{
ω

j
m

[
(y+

(
j− nt +1

2

) 1Ty

nt

]}
(6)

where: 
ω

j
n = np/R j

ω
j

m = mπ/(R2 −R1)

k j
1 =

√
ω

j
n 2 +ω

j
m2

, (7)

where A1mn
j is the unknown coefficient, 1Tx = α1πR j/p

and 1Ty = R2−R1 are the half cycles of the j-th group
of layer magnets near the air-gap in the x- and y-axis
directions, respectively.

B. 3-D governing equation for layer magnets near the
air-gap

For the layer magnets near the air-gap, during one
electrical period, the expressions of 3-D components of
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the magnetization are:
1M j

x = (Br/µ0)sin(θ1)
1M j

y = 0
1M j

z = (Br/µ0)cos(θ1)

−α1πR j
2p ≤ x ≤ −α2πR j

2p
h2 < z < h1

, (8)


1M j

x = 0
1M j

y = 0
1M j

z = Br/µ0

−α2πR j
2p ≤ x ≤ α2πR j

2p
h2 < z < h1

, (9)


1M j

x =−(Br/µ0)sin(θ1)
1M j

y = 0
1M j

z = (Br/µ0)cos(θ1)

α2πR j
2p ≤ x ≤ α1πR j

2p
h2 < z < h1

,

(10)
1M j

x =−(Br/µ0)sin(θ1)
1M j

y = 0
1M j

z =−(Br/µ0)cos(θ1)

α1πR j
2p ≤ x ≤ 2α1πR j−α2πR j

2p
h2 < z < h1

,

(11)
1M j

x = 0
1M j

y = 0
1M j

z =−Br/µ0

2α1πR j−α2πR j
2p ≤ x ≤ 2α1πR j+α2πR j

2p
h2 < z < h1

, (12)


1M j

x = (Br/µ0)sin(θ1)
1M j

y = 0
1M j

z =−(Br/µ0)cos(θ1)

2α1πR j+α2πR j
2p ≤ x ≤ 3α1πR j

2p
h2 < z < h1

,

(13)
1M j

x = 0
1M j

y = 0
1M j

z = 0
otherwise , (14)

where Br is the remanence of Halbach magnets, 1Mx
j,

1My
j and 1Mz

j are the x, y and z-axis components of the
j-th group of magnets magnetization in the region of the
layer magnets near the air-gap, respectively.

Adopting double Fourier decomposition, the
magnetizations in region S1 (−1Tx/2≤x≤31Tx/2,
−1Ty≤y≤1Ty) are written as:

1M j
x = ∑

∞
m=0 ∑

∞
i=1,3,5

{
1M j

xmi
sin(ω j

i x)

×cos
{

ω
j

m

[
(y+( j− nt+1

2 )
1Ty
nt

]} }
1M j

y = 0

1M j
z = ∑

∞
m=0 ∑

∞
i=1,3,5

{ 1M j
zmi

cos(ω j
i x)

×cos
{

ω
j

m

[
(y+( j− nt+1

2 )
1Ty
nt

]} } ,

(15)
where:

1M j
x0i

= 1
1Tx·1Ty

∫∫
S1

1M j
x sin(ω j

i x)dxdy
1M j

z0i
= 1

1Tx·1Ty

∫∫
S1

1M j
z cos(ω j

i x)dxdy
1M j

xmi
= 1

1Tx·1Ty

∫∫
S1

1M j
x sin(ω j

i x)

× cos
{

ω
j

m

[
(y+( j− nt+1

2 )
1Ty
nt

]}
dxdy

1M j
zmi

= 1
1Tx·1Ty

∫∫
S1

1M j
z cos(ω j

i x)

× cos
{

ω
j

m

[
(y+( j− nt+1

2 )
1Ty
nt

]}
dxdy

. (16)

During prediction of the magnetic field due to the
layer magnets near the air-gap, the region of the layer

magnets far from the air-gap is treated as a vacuum, as
shown in Fig. 4 (a). The governing 3-D Poisson equation
is:

∂ 2φ2

∂ r2 +
1
r

∂φ2

∂ r
+

1
r2

∂ 2φ2

∂θ 2 +
∂ 2φ2

∂ z2 =
1
µr

divM. (17)

Utilizing the technique of separating variables,
according to (4), the 3-D analytical expression of (17)
is:

φ
j

2 =
∞

∑
m=0

∞

∑
i=1,3...

[
A j

2mi
ek j

2z +B j
2mi

e−k j
2z − ωi

j ·1M j
xmi

µrk
j
2

2

]
× cos(ω j

i x)cos
{

ω
j

m

[
(y+( j− nt+1

2 )
1Ty
nt

]} ,

(18)
where: {

ω
j

i = ip/α1R j

k j
2 =

√
ω

j
i

2 +ω
j

m2
, (19)

where A2mi
j and B2mi

j are the undetermined coeffi-
cients in the region of the layer magnets near the air-gap.

C. 3-D governing equation for layer magnets far from
the air-gap

For the layer magnets far from the air-gap, in one
electrical cycle, the expressions of 3-D components of
magnetization are:

2M j
x = 0

2M j
y = 0

2M j
z = Br/µ0

−α2πR j
2p ≤ x ≤ α2πR j

2p
0 < z < h2

, (20)


2M j

x = 0
2M j

y = 0
2M j

z =−Br/µ0

2α1πR j−α2πR j
2p ≤ x ≤ 2α1πR j+α2πR j

2p
0 < z < h2

,

(21)
where 2Mx

j, 2My
j and 2Mz

j are the x, y and z-axis com-
ponents of magnetization for the j-th group of layer mag-
nets far from the air-gap, respectively.

Adopting the double Fourier decomposition,
the magnetizations in region S2 (−2Tx/2≤x≤32Tx/2,
−2Ty≤y≤2Ty) can be written as:

2M j
x = 0

2M j
y = 0

2M j
z =

∞

∑
m=0

∞

∑
i=1,3,5

2M j
zmi

× cos(ω j
i x)cos

{
ω

j
m

[
(y+( j− nt+1

2 )
2Ty
nt

]} ,

(22)
where:

2M j
x0i

= 2M j
xmi

= 0
2M j

z0i
= 1

2Tx·2Ty

∫∫
S2

2M j
z cos(ω j

i x)dxdy
2M j

zmi
= 1

2Tx·2Ty

∫∫
S2

2M j
z cos(ω j

i x)

× cos
{

ω
j

m

[
(y+( j− nt+1

2 )
2Ty
nt

]}
dxdy

, (23)

where 2Tx = α1πR j/p and 2Ty = R2-R1 are the half
cycles of the j-th group of layer magnets far from the
air-gap in the x- and y-axis direction, respectively.



83 ACES JOURNAL, Vol. 40, No. 01, January 2025

During prediction of the magnetic field due to the
layer magnets far from the air-gap, the region of layer
magnets near the air-gap is regarded as a vacuum. The
governing 3-D Poisson equation is:

∂ 2φ3

∂ r2 +
1
r

∂φ3

∂ r
+

1
r2

∂ 2φ3

∂θ 2 +
∂ 2φ3

∂ z2 =
1
µr

divM. (24)

Using the technique of separating variables, accord-
ing to (4), the 3-D analytical expression of (24) is:

φ
j

3 =
∞

∑
m=0

∞

∑
i=1,3...

A j
3mi
(ek j

2z − e−k j
2z)cos(ω j

i x)

× cos
{

ω
j

m

[
(y+( j− nt+1

2 )
2Ty
nt

]} , (25)

where A3mi
j is the undetermined coefficient in the region

of the layer magnets far from the air-gap.

IV. SOLUTION OF COEFFICIENTS
There are four unknown coefficients A1mn

j, A2mi
j,

B2mi
j and A3mi

j in the foregoing analytical equations.
They need to be uniquely determined by the specific
boundary conditions.

A. Boundary conditions at z = h2
At the boundary between different layer magnets

(z = h2), the flux density and the magnetic field intensity
are satisfied as:

2B j
z (x,y,z)

∣∣
z=h2

= 3B j
z (x,y,z)

∣∣
z=h2

2H j
x,y(x,y,z)

∣∣∣
z=h2

= 3H j
x,y(x,y,z)

∣∣∣
z=h2

, (26)

where 3Bz
j(x,y,z) and 3Hx,y

j(x,y,z) are the z-axis compo-
nents of the flux density and the magnetic field intensity
of the j-th group of layer magnets far from the air-gap,
respectively.

According to (26), the relationship between the
undetermined coefficients A2mi

j, B2mi
j, and A3mi

j can be
expressed as: A2mi

j = [k2(
1Mzmi

j−2Mzmi
j)+ωi

1Mxmi
j ]e−k2h2

2µrk22 +A3mi
j

B2mi
j = [k2(

1Mzmi
j−2Mzmi

j)−ωi
1Mxmi

j ]e−k2h2

2µrk22 +A3mi
j
.

(27)

B. Boundary conditions at z = h1
At the boundary between the air-gap and layer mag-

nets near the air-gap (z = h1), the flux density and the
magnetic field intensity are expressed as:

1B j
z (x,y,z)

∣∣
z=h1

= 2B j
z (x,y,z)

∣∣
z=h1

1H j
x,y(x,y,z)

∣∣∣
z=h1

= 2H j
x,y(x,y,z)

∣∣∣
z=h1

, (28)

where 1Hx,y
j(x,y,z) and 1Bz

j(x,y,z) are the z-axis compo-
nents of the magnetic field intensity and the flux density
in the air-gap domain. 2Hx,y

j(x,y,z) and 2Bz
j(x,y,z) are

the z-axis components of the magnetic field intensity and
the flux density for the j-th group of magnets in the layer
magnets near the air-gap, respectively.

According to (28), substituting (6) and (18) into (2)
and (3), the equations can be expressed as:



∫ α1πR j
2p

−
α1πR j

2p

∫ R2−R1
2

− R2−R1
2

1B j
z(x,y,h1)cos(ω j

i x)

cos
{

ω
j

m

[
y+

(
j− nt+1

2

) 1Ty
nt

]}
dxdy

=
∫ α1πR j

2p

−
α1πR j

2p

∫ R2−R1
2

− R2−R1
2

2B j
z(x,y,h1)cos(ω j

i x)

cos
{

ω
j

m

[
y+

(
j− nt+1

2

) 1Ty
nt

]}
dxdy∫ πR j

2p

−
πR j
2p

∫ R2−R1
2

− R2−R1
2

1H j
x (x,y,h1)sin(ω j

nx)

cos
{

ω
j

m

[
y+

(
j− nt+1

2

) 1Ty
nt

]}
dxdy

=
∫ α1πR j

2p

−
α1πR j

2p

∫ R2−R1
2

− R2−R1
2

2H j
x (x,y,h1)sin(ω j

nx)

cos
{

ω
j

m

[
y+

(
j− nt+1

2

) 1Ty
nt

]}
dxdy

. (29)

Accounting for the orthogonality of the trigonomet-
ric functions, from (27) and (29), a matrix equation can
be constructed as:[

C j
1m C j

2m
F j

1m F j
2m

]
·

[
A j

1m
A j

3m

]
=

[
G j

1m
G j

2m

]
, (30)

where C1m
j is a n×n matrix with m and n, C2m

j is a n×i
matrix with m, n and i, F1m

j is a j×n matrix with m, n
and i and F2m

j is an i×i matrix with m and i.
By solution of (30), the unknown coefficients can be

achieved. If the j-th group of magnets are calculated, the
total magnetic flux density is the superposition of multi-
ple groups of magnets and can be written as:

Bres =
nt

∑
j=1

Bj. (31)

V. 3-D ANALYTICAL PERFORMANCE OF
SIAFM ACCOUNTING FOR SLOTTING

AND AIR-GAP FRINGING EFFECT
The slotless flux density Bz at h1+g in the z-axis

direction can be written as:
Bz|h1+g =−2µ0 ∑

nt
j=1 ∑

∞
m=0 ∑

∞
n=1,3 A j

1mn
k j

1ek j
1(h1+g)

cos(ω j
nx)× cos

{
ω

j
m

[
(y+( j− nt+1

2 )
1Ty
nt

]} .

(32)
In order to compute the magnetic field in the slot-

ted SIAFMs, the slotting effect needs to be considered.
Thus, the Carter’s coefficient method is utilized. This
method uses several equivalent air-gap lengths instead of
the actual relatively complex air-gap distributions [23].

According to the analytically derived slotless mag-
netic field, the coefficient with the equivalent air-gap
length is given as:

C′
s =

{
Cs ((R2 +R1)/2Ns −ns,π (R2 +R1)/2Ns +ns)
1 others ,

(33)
where Cs is Carter’s coefficient, Ns is the slot number and
ns is the circumferential length of half one slot.

By Fourier decomposition of Carter coefficient in
one period, the coefficient is written as:
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C′
s =

∞

∑
ncs=0

csn cos
(

2mNs

R2 +R1
x
)
, (34)

where:

csn =


2Ns

π(R2+R1)

∫ π(R2+R1)/Ns
0 Cs

′ cos
(

2mNs
R2+R1

x
)

dx m ̸= 0
Ns

π(R2+R1)

∫ π(R2+R1)/Ns
0 Cs

′dx m = 0
.

(35)
The flux density in the air-gap of the slotted SIAFM

can be expressed as:

Bslotted =
Bres

C′
s
. (36)

Because of the continuous magnetic circuit, there
exists a magnetic field outside the air-gap and iron in the
3-D space. This is named the air-gap fringing effect. For
high computation accuracy, the air-gap fringing effect
cannot be ignored and needs to be considered. The air-
gap fringing magnetic field is shown in Fig. 5. The air-
gap fringing field coefficient is defined as:

Cfr = 1+
π(2|y|− 1Ty)

4g
. (37)

Thus, the slotted flux density in the z-axis direction
can be written as:
Bz|

′
h1+g =

Bz|h1+g
CsCfr

{
β −αcpR j/2 ≤ x ≤ β −αcpR j/2+ns
−1Ty ≤ y ≤−1Ty/2 or 1Ty/2 ≤ y ≤ 1Ty

Bz|h1+g
Cfr

{
β −αcpR j/2+ns ≤ x ≤ β +αcpR j/2−ns
−1Ty ≤ y ≤−1Ty/2 or 1Ty/2 ≤ y ≤ 1Ty

Bz|h1+g
CsCfr

{
β +αcpR j/2−ns ≤ x ≤ β +αcpR j/2
−1Ty ≤ y ≤−1Ty/2 or 1Ty/2 ≤ y ≤ 1Ty

Bz|h1+g
Cs

{
β −αcpR j/2 ≤ x ≤ β −αcpR j/2+ns
−1Ty/2 ≤ y ≤ 1Ty/2

Bz|h1+g

{
β −αcpR j/2+ns ≤ x ≤ β +αcpR j/2−ns
−1Ty/2 ≤ y ≤ 1Ty/2

Bz|h1+g
Cs

P
{

β +αcpR j/2−ns ≤ x ≤ β +αcpR j/2
−1Ty/2 ≤ y ≤ 1Ty/2

,

(38)
where:

β = R j[−ωrt +αcp(s−1)], (39)

Fig. 5. Air-gap fringing magnetic field in 3-D model.

where ωr is the angular speed, αcp is the coil pitch angle
and s denotes the s-th slot.

The flux linkage of one coil is:

Ψ = N
∫∫
S3

Bz

∣∣∣∣∣∣
′

h1+g

dS, (40)

where N is the number of coil turns. The scope of S3 is
β−αcpR j/2≤x≤β+αcpR j/2 and −1Ty≤y≤1Ty.

The back electromotive force (EMF) for the s-th coil
is expressed as:

es =−∂Ψ

∂ t
= 4Nu0

nt

∑
j=1

+∞

∑
m=0

+∞

∑
n=1,3

A j
1mn

k j
1ek j

1(h1+g)
ωrR j ·W1 ·W2,

(41)
where:

W1 = sin
{

ωnR j [−ωrt +αcp(s−1)]
}{ 2

Cs
sin

(
ωnns

2

)
×cos

[
ωn (R jαcp −ns)

2

]
+ sin

[
ωn (R jαcp −2ns)

2

]}
,

(42)

W2 =



1Ty +
4g
π

ln
(

1+ π1Ty
4g

)
m = 0

2sin(ωm
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cos
[
ωm
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j− nt+1

2

)
1Ty

]
+
∫ −1Ty/2
−1Ty

1
Cfr

cos
{

ωm

[
y+

(
j− nt+1

2

) 1Ty
nt

]}
dy

+
∫ 1Ty

1Ty/2
1

Cfr

cos
{

ωm

[
y+

(
j− nt+1

2

) 1Ty
nt

]}
dy m ̸= 0

.

(43)
The analytical calculation formula for the electro-

magnetic torque is:

Te =
eAiA + eBiB + eCiC

ωr
, (44)

where ia, ib and ic are the three-phase currents.

VI. 3-D ANALYTICAL COMPARSION AND
VERIFICATION

Using the given 3-D analytical equations, the per-
formances of the SIAFM with T-shaped segmented Hal-
bach magnets can be predicted. Table 2 presents its main
parameters. The performances of the SIAFMs for con-
ventional and Hat-shaped three-segment Halbach mag-
nets are also investigated for comparison. It is noted that
all SIAFMs have the same magnet usage.

For the SIAFM with T-shaped magnets, the polar-
arc ratio α2 and the magnetization angle θ 1 are cho-
sen as two optimization variables. The single optimiza-
tion objective is to maximize the electromagnetic torque.
Figure 6 shows the 3-D analytical average electromag-
netic torque with θ 1 and α2. It is derived that the optimal
variables are θ 1 =55◦ and α2 =0.27.
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Table 2: SIAFM model parameters
Symbol Parameter Value

p/Q Numbers of poles/slots 20/24
Br (T) Magnet remanence 1.1

µr Magnet relative permeability 1.05
N Number of turns of one coil 16

R1/R2 (mm) Inner/outer radii of rotor 25/35
g (mm) Air-gap length 1

α1 Pole-arc ratio 0.67
L (mm) Machine axial length 30

J (A/mm2) Current density 6.37
n (r/min) Rated rotational speed 3000

Fig. 6. 3-D analytical electromagnetic torque with vari-
ables for T-shaped Halbach magnets.

A 3-D FEA model is used for verification. The input
parameters include the geometric dimensions and mate-
rial properties and the three-phase currents. The applied
boundary conditions are that the scalar potentials on all
the outer surfaces are set to zero for the whole 3-D cylin-
drical solution region.

Figure 7 (a) compares the 3-D analytically pre-
dicted air-gap flux density waveforms for three SIAFMs.
Figure 7 (b) presents the main harmonic comparison
corresponding to their air-gap flux density waveforms
of three SIAFMs. Table 3 lists the air-gap flux density
comparison. It is obviously seen that the T-shaped Hal-
bach magnets has the best waveform. Figure 7 (c) com-
pares the air-gap flux density waveforms of optimized T-
shaped Halbach magnets from 3-D analytical and FEA
models. It can be clearly observed that the two wave-
forms match well.

Figure 8 (a) presents the comparison of phase back-
EMF waveforms for three different SIAFMs. Figure 8

Table 3: Air-gap flux densities of three SIAFMs
Conventional Hat-shaped T-shaped

Fundamental 0.74 T 0.62 T 0.87 T
THD 45.51% 34.69% 34.52%

(a)

(b)

(c)

Fig. 7. Comparison of air-gap flux density waveforms:
(a) 3-D analytical predictions of flux density waveforms
for three different SIAFMs, (b) flux density waveform
harmonics for three SIAFMs and (c) two flux density
waveforms for optimized T-shaped Halbach magnets
from 3-D analytical and FEA models.

(b) shows the main harmonic comparison corresponding
to their phase back-EMF waveforms of three SIAFMs.
Table 4 lists the back-EMF value comparison. It is obvi-
ously seen that the T-shaped Halbach magnet has the best
waveform. The two phase back-EMF waveforms of the
optimized T-shaped Halbach magnets from 3-D analyti-
cal and FEA methods show excellent consistency, as pre-
sented in Fig. 8 (c).

Electromagnetic torque is an important machine
operation performance. Figure 9 (a) presents the three
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(a)

(b)

(c)

Fig. 8. Comparison of back-EMF waveforms: (a) 3-D
analytical predictions of back-EMF waveforms for three
different SIAFMs, (b) back-EMF waveform harmonics
for three SIAFMs and (c) two back-EMF waveforms for
optimized T-shaped Halbach magnets from 3-D analyti-
cal and FEA models.

Table 4: Back-EMFs of three SIAFMs
Conventional Hat-shaped T-shaped

Fundamental 31.02 V 26.23 V 36.53 V
THD 17.12% 12.33% 11.63%

electromagnetic torque waveforms for the compared
SIAFMs. Table 5 lists the electromagnetic torque value
comparison. It can be observed that the T-shaped Hal-
bach arrangement has the largest fundamental and ripple

(a)

(b)

Fig. 9. Comparison of torque waveforms: (a) three
torque waveforms of three different SIAFMs and (b) two
torque waveforms of optimized T-shaped Halbach mag-
nets from 3-D analytical and FEA models.

Table 5: Electromagnetic torques of three SIAFMs
Conventional Hat-shaped T- shaped

Average 1.075 Nm 0.885 Nm 1.187 Nm
Ripple 0.0103% 0.00654% 0.0122%

values. The reason for the largest ripple value is inter-
esting. For the T-shaped Halbach arrangement, although
the 3rd harmonic of each-phase back-EMF is the lowest,
according to (44), the resultant electromagnetic torque
generated by all integer multiples of the 3rd harmon-
ics of three-phase back-EMFs multiplied by the funda-
mental component of three-phase currents is zero. In
addition, the two torque waveforms for the optimized T-
shaped Halbach magnets obtained from 3-D analytical
and FEA models show excellent agreement, as presented
in Figure 9 (b).

In addition, the amplitude of the reluctance torque
of the three compared machines is less than 1.1 mNm. It
can be ignored compared to the electromagnetic torque.
Thus, the reluctance torque waveform is not presented.

For actual industrial applications, the nonlinearity
of the iron core of machines usually needs to be con-
sidered. Different from linear magnetic permeability,
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the magnetic field can be determined through the rel-
atively complex iteration solution process with setting
a convergence value. Compared with the linear SIAFM
model, the flux density value of nonlinear SIAFM model
is low. Thus, due to the saturation effect, the EMF and
electromagnetic torque values of nonlinear SIAFM are
lower than those of corresponding linear SIAFM. The
specific numerical value depends on the saturation level.

VII. CONCLUSION
Different from the 2-D radial flux machines, it is

necessary to consider the air-gap fringing effect for
SIAFMs. Using the proposed 3-D linear analytical model
for SIAFMs, with the principle of linear superposition,
analysis of the 3-D magnetic field is made for SIAFMs
with T-shaped Halbach magnets, taking into account the
edge effects of the rotor. In addition, the two parame-
ters of the Halbach magnets are selected as the optimiza-
tion variables to optimize the electromagnetic torque.
With equal consumption of permanent magnets, com-
pared with the SIAFM models with conventional and
Hat-shaped Halbach magnets, the SIAFM with opti-
mized T-shaped Halbach magnets has the best air-gap
flux density and back-EMF, and the largest electromag-
netic torque. FEA results verify the correctness of the 3-
D analytical and optimization model with T-shaped Hal-
bach magnets.

For computational electromagnetics, firstly, compu-
tation time is of great significance. The proposed 3-D
analytical model can solve and optimize the magnetic
field in much less time than the 3-D FEA model. In
other words, the proposed model has very high compu-
tational efficiency. Secondly, computation accuracy is of
equal importance. It is known that the FEA model has
high computation accuracy with enough mesh. Based on
Maxwell’s equations, the proposed model can exhibit
high accuracy. Finally, the proposed 3-D analytical
model can show clearly the relationships between differ-
ent physical variables. These advantages are very useful
for design and development of novel machines for indus-
trial applications.

In future work, other performances of this kind
of machines with different magnet configurations will
be investigated. Based on electromagnetic computation,
thermal optimization solutions and advanced cooling
techniques to ensure operational stability in high-torque
applications will be explored. These in-depth explo-
rations not only reflect the foundational significance of
the existing work but also offer a perspective on the evo-
lutionary potential of research in this area.
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