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Abstract – In this paper, we proposed a data-driven
deep learning (DL) method to recognize various elec-
tromagnetic (EM) scattering mechanisms. With appro-
priate training data containing different EM scattering
mechanisms, the proposed network can accurately rec-
ognize the EM scattering mechanisms of complex mod-
els. Numerical experiments show that the DL network
architecture is effective for both vertical polarization and
horizontal polarization scattered field, and the average
relative recognition error of the proposed method is less
than 5%. This paper shows that deep neural networks
have a good learning capacity for EM scattering mech-
anism recognition. This provides a research strategy for
solving EM scattering mechanism identification in more
complex EM environments.

Index Terms – Convolutional neural network, deep
learning, electromagnetic scattering mechanisms, recog-
nition.

I. INTRODUCTION
When a target is illuminated by an electromagnetic

(EM) wave, the scatterer produces different scattering
mechanisms, which compose the whole scattered field of
the target. For example, smooth surface produces specu-
lar scattering, discontinuous structures such as edges or
tips produce diffraction mechanism, and concave struc-
tures like cavities or dihedral corners induce coupling
effects or multiple scattering. In addition, the whole scat-
tered field also includes other scattering mechanisms like
surface traveling waves and creep waves [1, 2].

Decomposing and recognizing different scattering
mechanisms is of great significance for deep understand-
ing and further controlling of the scattering character-
istics and has a wide range of applications in radar
detection such as to improve the accuracy in target
recognition based on radar image. Some examples in
the following section of this paper show the applica-
bility for recognizing scattering centers, which blur the
radar images, caused by edge scattering and multiple
scattering.

Some high-frequency asymptotic methods, such as
physical optics (PO), can produce the scattered field
including only specular mechanism [3, 4]. However, the
scattered field obtained by measurement or full-wave
numerical methods is commonly a total radar signal,
in which various scattering mechanisms are superim-
posed, and the specific scattering mechanism cannot be
directly distinguished. Li and Liu proposed the EM scat-
tering mechanism decomposition method based on time
difference [1], which can decompose different scatter-
ing mechanisms from the whole EM scattered field.
The ability to identify different scattering mechanisms
is lacking with this method, which must rely on radar
imaging and the experience of researchers to recognize
the various components of decomposition. This experi-
ential recognition method may not necessarily be com-
pletely accurate. Although attribute scattering center is
capable of recognizing different EM scattered fields of
canonical geometries, the accuracy and reliability of
this method are contingent upon the models employed
for the attribute scattering centers [5]. Furthermore, this
approach is unable to identify the finer scattering mech-
anisms present in the EM scattered field.

Moreover, time frequency analysis techniques have
been employed to extract scattering mechanisms. For
instance, an adaptive Gaussian method was utilized to
overcome the divergence of cavity scattering in radar
images [6]. However, these methods either have limi-
tations or can work only on specific scattering mech-
anisms. Consequently, there is currently no effective
method for identifying different scattering mechanisms.

The advent of deep learning (DL) has brought us a
new perspective. The method based on neural networks
has performed well in many fields, such as speech recog-
nition and image classification. Furthermore, it has found
extensive and effective use in inverse scattering prob-
lems. For example, the U-Net network is utilized to learn
the radar imaging mapping relationships from training
data [7]. Deep neural networks are also widely used in
synthetic aperture radar image classification and recog-
nition [8, 9]. In this paper, we study the feasibility of

Submitted On: July 23, 2024
Accepted On: January 28, 2025

https://doi.org/10.13052/2025.ACES.J.400102
1054-4887 © ACES

https://doi.org/10.13052/2025.ACES.J.400102


11 ACES JOURNAL, Vol. 40, No. 01, January 2025

applying DL techniques to recognize different EM scat-
tering mechanisms. We train a deep convolutional neu-
ral network (ConvNet) to recognize different scattering
mechanisms with the training data including specular
scattering, multiple scattering, and edge scattering. The
training dataset consists of EM scattering mechanisms
calculated by various computational asymptotic electro-
magnetic (CAEM) methods.

This paper is organized as follows. The problem
statement and methodology are presented in section II,
including the CAEM methods used in this paper, the
dataset used for network training, the proposed Con-
vNet framework, and the training results of the network.
Numerical results are exhibited in section III to validate
the performance of the proposed DL network. The con-
clusion is given in section IV.

II. METHODOLOGY
In this section, the CAEM methods used in this

paper are introduced; then, the generation of our dataset
used for network training, the framework, and the train-
ing results of the proposed ConvNet are demonstrated in
detail.

A. CAEM methods
Various scattering mechanisms can be decomposed

from the scattered field and identified through the expe-
rience of researchers [1]. This way may be used to
generate a training dataset, but it requires a significant
workload and may not meet the demand for training data
volume.

CAEM methods can calculate the scattered field
formed by different scattering mechanisms [10]. More
specifically, the PO method is an algorithm that utilizes
approximate integration of the induced electric field to
solve the EM scattering problem [3, 4, 11]. Compared
with high-precision algorithms such as the method of
moments, PO does not calculate the interaction between
the induced currents of different parts of the target sur-
face, so as to solve the approximate surface-induced cur-
rent independently. The scattered field calculated by PO
is represented as EPO.

The shooting and bouncing ray (SBR) method is a
high-frequency asymptotic method that combines geo-
metrical optics (GO) and PO for solving EM scattering
problems. It can obtain more accurate results by account-
ing for scattering caused by multiple interactions [12]. In
this paper, the SBR method is employed to generate the
EM scattered field containing multiple scattering. The
scattered field calculated by SBR is represented as ESBR.

The geometrical theory of diffraction (GTD) is a
generalization of GO. It is based on the exact solution
of the spiked diffraction field and solves the diffraction
field problem by linear correlation between the diffrac-

tion coefficients and incident field. The scattered field
calculated by GTD is represented as EGTD.

B. Dataset generation
Training of ConvNet relies on a dataset with a large

number of highly representative samples, so first, we
need to generate the dataset of different scattering mech-
anisms. As mentioned, specular scattering, multiple scat-
tering, and edge scattering in the training dataset can be
calculated by PO, SBR, and GTD, respectively. In this
paper, when calculating the target’s scattered field using
the PO, SBR, and GTD algorithms, the calculation sce-
nario assumes the far field of perfect electric conductor
(PEC) targets in vacuums.

(1) Specular scattering dataset

Since PO only considers specular scattering, the
scattered field computed by PO can be used as part of
the training dataset, as shown in equation (1). Note that
specular scattering is only extracted from the scattered
field of single canonical geometry, as the specular scat-
tered field of multiple geometries can be considered as
the superposition of single models. Table 1 gives the sin-
gle canonical geometry model and their structural param-
eters:

Datasetspecular scattering = EPO. (1)

(2) Multiple scattering dataset

Multiple scattering occurs among targets or in cou-
pling structures, and there are too many possible ways
to achieve this. Therefore, we only consider the multi-
ple scattering generated by the coupling between canon-
ical geometries. Table 1 shows two sets of dual mod-
els, including double cones and double cylinders, whose
scattered field is calculated by PO and SBR, respectively.
We can then obtain multiple scattering by equation (2). It
is important to note that the scattered field calculated by
SBR in this paper does not take into account edge scat-
tering:

Datasetmultiple scattering = ESBR −EPO. (2)

(3) Edge scattering dataset

Diffraction occurs at both the edge and the tip but,
due to very rapid attenuation of EM scattering at the tip,
it is usually ignored. Therefore, in this paper only edge
scattering is considered. GTD and PO are used to calcu-
late the scattered field of canonical geometries with edge
in Table 1. Then we obtain the contribution of the edge
to the scattered field by equation (3):

Datasetedg scattering = EGTD −EPO. (3)
To demonstrate the accuracy and reliability of the

data generation method, we use it to process the scattered
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Table 1: Dataset components

field of models with coupled structures. The double PEC
sphere model is illustrated in Fig. 1, wherein the spheres
exhibit a strong coupling effect when in close proximity.

The scattered field of the double PEC spheres is cal-
culated by PO and SBR, respectively. The direction of
incidence wave is fromθ =−20◦ϕ = 0◦ to θ = 20◦ϕ =
0◦ with 1◦ interval. The frequency is taken to be from
6 GHz to 12 GHz, with 0.15 GHz interval. Their cor-
responding radar images are shown in Figs. 2 and 3,
respectively. The y-range resolution and x-range reso-
lution of the radar imaging are 0.025m and 0.0239m,
respectively. In this paper, θ represents the angle between
the incident wave and the z-axis, while ϕdenotes the
angle between the projection of the incident wave onto
the xoy-plane and the x-axis. The radar imaging algo-
rithm used in this paper is the backward propagation

Fig. 1. Double PEC spheres. The diameter of both
spheres is 300mm, and the interval between them is
100mm.

Fig. 2. Radar image of the double PEC spheres by PO.

algorithm [13]. As illustrated in Fig. 2, only two scatter-
ing centers are evident. It can be observed that these cor-
respond to the specular scattering from the two spheres.
However, Fig. 3 demonstrates a pronounced presence

Fig. 3. Radar image of the double PEC spheres by SBR.
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of an extra scattering center at point (0, 0), indicating
a strong coupling between the two spheres. It is evi-
dent that this discrepancy is caused by the strong mul-
tiple scattering mechanism. In the absence of knowl-
edge regarding the number of metal spheres, it is pos-
sible to ascertain that the model comprises three metal
spheres based on the scattering center observed in Fig. 3.
However, this conclusion is not aligned with the actual
structural composition of the target. Furthermore, this
example highlights the significance of recognizing dif-
ferent scattering mechanisms. Subsequently, equation (2)
is employed to process the scattered field of the double
PEC spheres. Thereby we can get the multiple scattering,
as illustrated in the radar image of Fig. 4. A comparison
of Figs. 4 and 3 reveals that multiple scattering has been
accurately extracted from the scattered field computed
by SBR. The coupling mechanism between the targets is
strongly influenced by the distance between them. As a
result, when the distance between the targets is large, the
coupling effect weakens, and they do not form a promi-
nent scattering center in the radar image. To observe sig-
nificant coupling fields in the radar image, it is crucial
to carefully determine the optimal distance between the
targets.

Fig. 4. Radar image of multiple scattering of the double
PEC spheres.

As shown in Table 1, the selected CAEM meth-
ods calculate the scattered field of different geometries,
and both vertical polarization (VP) and horizontal polar-
ization (HP) are considered. The direction of incidence
wave is from θ = 0◦,ϕ = 0◦ to θ = 90◦,ϕ = 0◦ with
θ = 0.5◦ interval, and the frequency is from 6 GHz
to 18 GHz. The number of samples is 128. The train-
ing dataset consists of scattering mechanisms at differ-
ent incident angles, represented as complex numbers
with varying dimensions depending on the calculation
frequency. Both VP and HP datasets contain approxi-

mately 15,000 scattering mechanisms, with 12,000 used
for training and 3,000 for testing.

C. ConvNet
In theory, neural networks can approximate any con-

tinuous function. In this work, we employ ConvNet as
the DL method. ConvNet architecture is shown in Fig. 5.
It consists of six convolutional layers, which are respon-
sible for feature extraction. These layers apply a range
of filters to the input, detecting low-level features in
the early layers and higher-level features as the network
deepens. To reduce the number of parameters and retain
useful features, three max-pooling layers are inserted
between the convolutional layers. This also helps prevent
overfitting by making the model more invariant to small
translations in the input data. After the convolutional
and pooling layers, a flattening layer is used to con-
vert the multi-dimensional output into a one-dimensional
vector. This step is essential for linking the convolu-
tional part of the network to the fully connected layers,
enabling the network to perform classification based on
the extracted features. The network includes two fully
connected layers that follow the flattening layer. These
layers are responsible for the final classification task,
mapping the flattened features to output class probabili-
ties using learned weights. The first fully connected layer
processes the feature vector, while the second produces
the final class predictions.

The rectified linear unit (ReLU) activation func-
tion is applied in the convolutional layers to introduce
non-linearity, allowing the network to learn more com-
plex patterns. ReLU also mitigates the vanishing gradi-
ent problem, which can occur with other activation func-
tions. In the fully connected layers, the SoftMax activa-
tion function is used to convert the network’s output into
probability distributions, ensuring that the final output is
interpretable as class probabilities.

The input to ConvNet consists of two 1×128 vec-
tors, representing the real and imaginary parts of the scat-
tering mechanisms. These vectors serve as features for
the network to learn patterns for classification. The real
and imaginary components are essential for capturing the
complex nature of the scattering data, allowing the net-
work to learn both magnitude and phase information. As
shown in Fig. 5, ConvNet architecture is effective for
both HP and VP, although the kernel sizes differ. The
optimization algorithm used in ConvNet is the adaptive
moment estimation (ADAM) algorithm [14], an efficient
method for stochastic gradient-based optimization.

Moreover, the cross-entropy loss function widely
used in multi-classification problems is adopted in Con-
vNet, as shown in equation (4):

Loss =−
N

∑
i=1

yi • log ŷi, (4)
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Fig. 5. ConvNet architecture.

where yiand ŷi represent the true labels and predicted
labels, respectively, and Nis the number of categories.

Variations in accuracy during training and testing
epochs are shown in Fig. 6. It is evident that the accuracy
of training is better than that of testing when the model
is convergent. The training and testing accuracy curves
in Fig. 6 (a) converge to 0.98 and 0.95 after 100 and 50
iterations, respectively. Similarly, the training and testing
accuracy curves in Fig. 6 (b) converge to 0.96 and 0.95,
respectively, after 100 iterations. The hardware config-
uration includes an Intel 13th i9 CPU running at 3 GHz
with 128 GB memory. The entire dataset requires a train-
ing time of 10 minutes and utilizes 20 GB of memory for
the training process.

The confusion matrix in Fig. 7 illustrates three dis-
tinct scattering mechanisms, labeled as 1 (specular scat-
tering), 2 (edge scattering), and 3 (multiple scattering).
It can be seen from Fig. 7 that the overall classifica-
tion accuracy is above 95% and the individual classifi-
cation accuracy is above 93% for all different scatter-
ing mechanisms. As can be observed in Table 1, the
sources of specular scattering are particularly diverse.
In contrast, the sources of multiple scattering and edge
scattering are relatively limited, which makes specular
scattering more challenging to recognize. Consequently,
the network’s recognition of specular scattering is some-

(a) (b)

Fig. 6. Training and testing performance of ConvNet: (a)
and (b) are the accuracy curves of the VP dataset and HP
dataset, respectively.

what lower compared to the other two. Nonetheless, the
above results indicate that the proposed ConvNet has the
ability to accurately identify different scattering mecha-
nisms. To verify the robustness and generalization abil-
ity of ConvNet, in section III we use ConvNet to rec-
ognize the scattering mechanism of two scatters not in
Table 1.

(a) (b)

Fig. 7. Confusion matrix based on ConvNet: (a) and (b)
are the recognition results of VP and HP test sets, respec-
tively. 1 = specular scattering, 2=edge scattering, and
3 = multiple scattering.

III. NUMERICAL RESULTS
In this section, the proposed ConvNet is employed

to recognize different scattering mechanisms under more
complex conditions. The initial step is to identify the
scattering mechanism of a combinatorial model that is
not included in Table 1. Subsequently, the scattering
mechanism of a complex model formed by canonical
geometries in Table 1 is identified. The effectiveness of
the proposed method can be demonstrated through these
arithmetic examples.

A. Coupled scatter
Coupled scatter comprise two cylinders of differ-

ent sizes as illustrated in Fig. 8: one with a diameter
and height of 600mm and the other with a diameter and
height of 500mm, separated by a distance of 100mm.
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Fig. 8. Coupled scatter.

The scattered field of the coupled scatter is calcu-
lated by SBR, with the incident wave frequency rang-
ing from 6 GHz to 18 GHz and the VP and HP inci-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Radar images of coupled scatters: (a) and (b) are radar images calculated by SBR for VP and HP, respectively,
(c) is the radar image calculated by PO, (d-f) are radar images of the decomposition of VP scattered field, and (g-i) are
radar images of the decomposition of the HP scattered field.

dent wave angles ranging from θ = 90◦,ϕ = −15◦ to
θ = 90◦,ϕ = 15◦. There are 128 sampling points for
both frequency and angle. The y-range resolution and x-
range resolution of the radar imaging are 0.0125m and
0.0239m, respectively.

The radar images for VP and HP are illustrated in
Figs. 9 (a) and (b), respectively, which show multiple
scattering centers between the two cylinders. In order
to assist in the depiction of the scattering centers in
Figs. 9 (a) and (b), we have labelled the different scat-
tering centers. Figure 9 (c) shows the radar image of
the coupled scatter calculated by PO, and its comparison
with Figs. 9 (a) and (b) indicates that multiple scattering
between cylinders have formed strong scattering centers
333, which could interfere with radar recognition.

We use the decomposition algorithm [1] to decom-
pose different scattering components from the row scat-
tered field of the coupled scatters. Alternatively, methods
such as CLEAN can be employed to extract scattering



LIU, ZHENG, LI: AN ELECTROMAGNETIC SCATTERING MECHANISM RECOGNITION METHOD BASED ON DEEP LEARNING 16

centers from radar images [15], and the correspond-
ing scattering data can be inverted using these extracted
centers.

(a) (b)

Fig. 10. Confusion matrix of coupled scatter: (a) and (b)
are the recognition results of the scattering mechanisms
decomposed from VP and HP scattered field of the cou-
pled scatter, respectively.

The decomposition results of VP and HP scattered
field of the coupled scatters are shown in Figs. 9 (d-
i). ConvNet recognition results of the decomposed scat-
tering components are shown in Fig. 10. It is evident
from the confusion matrix in Fig. 10 that the decom-
posed scattering mechanisms corresponding to 313 and
323 have been identified as specular scattering and the
decomposed scattering mechanism corresponding to 333
has been identified as multiple scattering mechanism,
which is consistent with our analysis. It should be noted
that there is no edge scattering in the scattered field
of the coupled scatter, so the second row in confusion
matrix is 0.

B. Complex scatter
Complex scatter is composed of canonical geome-

tries, including two sets of wings, a hemisphere, an ellip-
soid, and a cylinder as shown in Fig. 11. The dimensions
of the complex scatter are shown in Table 2. The angle
between the axis of the complex scatter and the xoz-
plane is 40◦. The scattered field of the complex scatter
is calculated by GTD and PO, respectively, with the inci-
dent wave frequency ranging from 6 GHz to 18 GHz and
the VP and HP incident wave angles ranging from θ =
90◦,ϕ =−15◦ to θ = 90◦,ϕ = 15◦. There are 128 sam-
pling points for both frequency and angle. The y-range
resolution and x-range resolution of the radar imaging
are 0.0125m and 0.0239m, respectively.

Radar images of the scattered field calculated by
GTD are shown in Figs. 12 (a) and (b). In order to assist
in the depiction of the scattering centers in Fig. 12, we
have labelled the different scattering centers. Figs. 12 (a)
and (b) both exhibit a point scattering center 1⃝. How-
ever, there are three pairs of sheet scattering centers in
Fig. 12 (a) for VP, but four such pairs in Fig. 12 (b) for
HP. By comparing the radar image of the PO-calculated

Fig. 11. Complex scatter.

Table 2: Dimensions of complex scatter
L: Length, W: Width, T: Thickness, D: Diameter (mm)

Long
Wings

Short
Wings

Hemisphere Ellipsoid Cylinder

L: 521,
W: 178,

T: 51

L: 308,
W: 166,

T: 50

D: 508 D: 508,
L: 371

D: 508,
L: 840

scattered field as shown in Figs. 12 (c) and Figs. 12 (a)
and (b), it can be seen that the additional slab scattering
centers in Figs. 12 (a) and (b) are obviously caused by
edge scattering.

The scattered field of the complex scatter is decom-
posed to obtain the scattering contributions correspond-
ing to different scattering centers, and we then use the
trained ConvNet to recognize which scattering mech-
anism they belong to. The classification recognition
results of different scattering contributions are shown in
Fig. 13.

In Fig. 13 (a), 1⃝, 4⃝, and 5⃝ are identified as spec-
ular scattering, with a recognition rate of over 90%. 6⃝
and 7⃝ are identified as edge scattering with a recogni-
tion rate of about 90%. These recognition errors may
be caused by the occlusion between structures. Because
the edge scattering and specular scattering of the com-
plex scatter’s long wings for VP jointly form 2⃝ and
3⃝, ConvNet cannot accurately recognize 2⃝ and 3⃝. In

Fig. 13 (b), the scattering mechanisms corresponding to
each scattering center have been effectively identified,
with a recognition probability of no less than 86%. 1⃝,
2⃝, 3⃝, 4⃝, and 5⃝ are identified as specular scattering

mechanisms by the trained ConvNet, and 6⃝ and 7⃝ are
identified as edge scattering with a recognition rate of
about 90%.
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(a)

(b)

(c)

Fig. 12. Radar images of the complex scatter: (a) and
(b) are radar images calculated by GTD for VP and HP,
respectively, and (c) is the radar image calculated by PO.

There are two additional scattering centers 8⃝ and
9⃝ in Fig. 13 (b), which are identified as edge scattering.

This is due to the fact that the polarization characteristics

(a)

(b)

Fig. 13. Confusion matrix of the complex scatter: (a) and
(b) are the identification results of the scattering mech-
anisms decomposed from VP and HP scattered field,
respectively.

of the incident wave exert a considerable influence on the
edge scattering. In the HP case, a pair of slice scattering
centers is created in the radar image, which significantly
increases the probability of 2⃝ and 3⃝ being identified as
specular scattering compared to Fig. 13 (a).

It is worth noting that, for complex scatter, the com-
bination of canonical geometries results in a change in
their scattered field compared to that generated solely by
themselves. Therefore, although the recognition rate of
ConvNet for the scattering mechanism of complex scat-
ter is lower than that of the training dataset, the recog-
nition results in this paper have fully demonstrated the
effectiveness and generalization ability of the proposed
ConvNet.

Moreover, this paper validates the capacity of Con-
vNet to recognize different scattering mechanisms. Nev-
ertheless, due to the restricted quantity of data in the
dataset and the limited number of model types consid-
ered, we have not yet validated the network’s capacity to
identify scattering mechanisms for more complex mod-
els. However, we are gradually augmenting the dataset
with additional corresponding samples, which will allow
us to assess the network’s performance. This is a promis-
ing avenue for further investigation.

IV. CONCLUSION
This paper proposes a DL-based method for recog-

nizing scattering mechanisms, which demonstrates high
accuracy and robust generalization through numerical
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experiments. Results show that the method significantly
improves the identification of scattering mechanisms,
offering a reliable alternative to traditional experience-
based techniques. In particular, the method accurately
classifies different scattering centers in radar images,
even under challenging conditions. Moreover, the pro-
posed method exhibits strong potential for broader appli-
cations in radar imaging. For example, expanding its
use to scenarios such as traveling wave recognition
could further enhance both the precision and range of
scattering mechanism identification by incorporating a
wider variety of targets. The method’s ability to gen-
eralize across different scenarios highlights its versa-
tility, and future work will focus on exploring addi-
tional use cases to further optimize its performance and
applicability.
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