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Abstract – In this paper, we propose the design of
a zigzag antenna using machine learning (ML) tech-
niques. We trained the deep neural network that was
to be employed for the ML model using training data,
after which we evaluated the maturity of the trained
model using mean squared error and R-squared met-
rics. Next, we utilized random search in conjunction
with the trained model to derive a design of the opti-
mal zigzag antenna having good impedance matching
characteristics. We then validated the applicability of the
ML techniques in antenna design based on the agreement
between measured and simulated reflection coefficients.

Index Terms – Deep neural network, machine learning
technique, random search, zigzag antenna.

I. INTRODUCTION
Recently, the continued development of wireless

communication systems has led to antennas being con-
sidered as some of the most important components in a
wireless communication system [1]. In a wireless com-
munication system, the antennas located at the end-
point in the system architecture play an important role
in transmitting or receiving electromagnetic waves that
include various types of information. When designing
antennas for wireless communication, various character-
istics are generally considered, including antenna size,
impedance matching, radiation efficiency, radiating gain
and pattern, and polarization in the frequency band of
interest. Among the aforementioned characteristics of
antennas, antenna size is often evaluated to be important
because the size of the designed antenna determines the
applicability to the wireless communication. Therefore,
small antennas with antenna performance that satisfies
the demands for the target application are generally pre-
ferred.

In attempts to reduce antenna size, studies have
historically focused on the structure and material of
antennas. The zigzag-shaped antenna (zigzag antenna)
structure is representative to miniaturize antennas. The
zigzag-shaped wire is effective for achieving a compact
antenna design for use in constrained spaces due to the
bent wire at specific angles across multiple positions [2].

The zigzag-shaped wire is also effective for achieving the
desired antenna impedance by finely adjusting the pitch
angle and the electrical length of each wire-subsection.
This characteristic can facilitate good impedance match-
ing in the desired frequency band. Moreover, the zigzag
antenna offers the capability of having directional radi-
ation characteristics in a target direction by modifying
the arrangement of the wire-subsections [3]. It is there-
fore necessary to optimize antenna structure because the
aforementioned characteristics of the zigzag antenna are
dependent upon the shape of the zigzag wire [4–8].

To optimize the antenna structure, a genetic algo-
rithm (GA) and a particle swarm optimization (PSO)
technique have been employed in [4–6] and [7, 8],
respectively. Even though both GA optimization and
PSO provide globally optimum results, they have some
limitations; for example, when using either method, it
is necessary to verify the performance of sample anten-
nas through numerical analysis. The computation time
required for numerical analysis is an even more signif-
icant limitation in applying the optimization algorithm
to antenna design. In response to these limitations of
global optimization, we alternatively propose an antenna
performance prediction technique that utilizes machine
learning (ML) for time-efficient prediction of antenna
performance. We also validate this proposed method
for estimating antenna performance by comparing the
antenna performance predicted by ML with the corre-
sponding predictions of a commercial simulator. In the
following, section II explains the process of develop-
ing an ML model for predicting antenna performance,
while section III details the application of the trained ML
model to structural optimization of the zigzag antenna.

II. MACHINE-LEARNING-BASED
ANTENNA PERFORMANCE PREDICTION

The ML technique has recently been utilized in
various types of applications, including electromagnetic
applications. The applicability of ML techniques has
been extended to antenna design, where they are used
to substitute the numerical analysis based on Maxwell’s
equations [9]. The ML algorithms that are typically
applied in supervised learning include logistic regression
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(LR), support vector machine (SVM), decision tree
(DT), random forest (RF), neural network (NN), and oth-
ers [10]. Among them, NN is composed of three types
of layers: an input layer for receiving multiple input
data, an output layer that is responsible for the output
of the data, and hidden layers having multiple nodes
between the input and output layers. Moreover, NNs,
which are designed to mimic the principles and struc-
ture of the human brain, can generally be categorized
into artificial neural networks (ANN) and deep neural
networks (DNN) depending on the number of hidden
layers [11]. We have found many previous works show-
ing that DNN models trained with multiple hidden layers
achieve favorable prediction performance [12]. Inspired
by these works, we herein designed an antenna with good
impedance-matching characteristics by using ML based
on the DNN structure. In the following, we explain how
the ML process is composed of the generation and pre-
processing of training data, derivation, and validation of
ML model derivation.

A. Antenna structure
In this study, we used ML to design a zigzag antenna

with high-quality impedance-matching characteristics in
the frequency ranges from 950 to 1050 MHz and from
900 to 1100 MHz. Figure 1 illustrates the representative
structure of this zigzag antenna. The zigzag antenna con-
sists of five subsections (wire radius: 0.5 mm and mate-
rial: copper) determined by the bending point Pn (xn, zn)
in the x− z plane (n = 1, · · · ,5). To define the allowable
electrical antenna size, as shown in Fig. 1, we set the
zigzag antenna to exist in a hemisphere space as deter-
mined by kr of 2 on an infinite grounded plane, where k
is the wave number at 1000 MHz and r is the radius of
the sphere that encloses the entire antenna structure.

Fig. 1. Structure of zigzag antenna with five bending
points.

B. Generation and preprocessing of machine learning
data

To create an ML model that estimates the perfor-
mance of the proposed zigzag antenna, it is necessary

to have sufficient training data corresponding to various
antenna structures. In this study, we used training data
that included information on the location of the bending
points determining the antenna structure and the evalu-
ation values (Cost) indicating antenna performance. To
elaborate, we expressed the geometrical information of
the n-th point (n = 1, · · · ,5) on the proposed antenna
as the location (xn, yn, zn) in rectangular coordinates.
To evaluate the performance of a sample antenna in the
training process, we defined Cost as the average reflec-
tion loss in the frequency band of interest, as indicated
by equation (1). In (1), the antenna impedance Zant at the
frequency fm was derived using a Numerical Electromag-
netic Code (NEC) simulation [13]:

cost =
1
M

M

∑
m=1

∣∣∣∣Zant( fm)−Zo

Zant( fm)+Zo

∣∣∣∣ . (1)

Here, M, Zant (fm), and Zo are defined as the total
number of frequencies considered in the frequency bands
of interest (950 to 1050 MHz for type 1 or 900 to
1100 MHz for type 2), the antenna impedance at the con-
sidered frequency fm, and the characteristic impedance,
respectively. In this paper, Zo was set to 50 Ω , and M
was set to 101 and 201, resulting from the frequency
increment of 1 MHz in 950 MHz (= f 1) to 1050 MHz
(= f 101) and 900 MHz (= f 1) to 1100 MHz (= f 201),
respectively.

C. Machine learning execution and machine learning
model derivation

We used the training data that included geometri-
cal and performance information derived from sample
antennas 100,000 and 200,000 for the frequency bands
of interest from 950 to 1050 MHz and from 900 to
1100 MHz, respectively. We also used 70%, 15%, and
15% of the collected training data as training data, vali-
dation data, and test data, respectively. We then applied
the collected data to train the DNN model, as shown in
Fig. 2. In Fig. 2, the employed DNN model consists of
an input layer, hidden layers, and an output layer; the
input layer receives information about the antenna struc-
ture whereas the hidden layers compute weighted sums

Fig. 2. Structure of zigzag antenna with five bending
points.
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from various input nodes and apply an activation func-
tion to pass this value to the next hidden layer or the
output layer [14]. Finally, the output layer serves as the
ultimate result, where the evaluation value (Cost) repre-
senting the performance of the antenna is the output.

The DNN model used in this study is characterized
in Table 1, which details the number of nodes and type
of activation functions assigned to the input layer, hidden
layers, and output layer. In Table 1, types 1 and 2 indicate
the frequency bands of interest from 950 to 1050 MHz
and from 900 to 1100 MHz, respectively. As presented
in Table 1, we trained the DNN model using the adap-
tive moment (Adam) optimization technique with a batch
size of 1024 and a learning rate of 0.0001. Further,
to assess the maturity of the trained DNN model, we
used the mean squared error (MSE) and R-squared (R2),
which are respectively defined in equations (2) and (3),
as evaluation metrics. Based on equations (2) and (3), as
the DNN model becomes increasingly mature, the MSE
and R2 values approach 0 and 1, respectively, which
indicates that the trained ML model can predict values
closely resembling the actual ones [15].

MSE =
1
n

n

∑
k=1

(Yk − Ŷk)
2, (2)

R2 = 1− ∑
n
k=1(Yk − Ŷk)

2

∑
n
k=1(Yk − Ȳ)2 . (3)

Table 1: Specifications of the applied DNN model
Layer
Type

Number of Nodes Activation
FunctionType 1 Type 2

Input layer 10 -

Hidden
layers

1 500 250

ReLU

2 250 150
3 250 150
4 125 150
5 50 150
6 25 110
7 - 50
8 - 36

Output layer 1 Linear

Table 2: Validation of predictable capability of the trained DNN model

Antenna (Ant.) No. Location of x (mm) Location of z (mm) Predicted Cost Error (%)
x1 x2 x3 x4 x5 z1 z2 z3 z4 z5 ML NEC

Ant. 1 (type 1, kr = 1.94 ) −9 15 −21 6 −52 7 20 26 51 76 0.301 0.3 0.09
Ant. 2 (type 2, kr = 1.98 ) −52 77 −58 46 −3 7 45 57 82 89 0.299 0.3 1.04
Ant. 3 (type 1, kr = 1.94 ) −3 52 −77 46 −21 13 32 51 67 89 0.401 0.4 0.23
Ant. 4 (type 2, kr = 1.93 ) −58 70 −64 40 −21 13 32 57 82 89 0.405 0.4 1.19
Ant. 5 (type 1, kr = 1.90 ) −21 34 −3 70 −28 20 26 32 57 82 0.503 0.5 0.65
Ant. 6 (type 2, kr = 1.92 ) −40 9 −34 83 −52 7 20 32 38 70 0.498 0.5 0.40
Ant. 7 (type 1, kr = 1.96 ) −83 64 −9 46 −28 26 32 70 76 89 0.601 0.6 0.03
Ant. 8 (type 2, kr = 1.80 ) −83 64 −40 9 −15 20 51 57 70 82 0.597 0.6 0.55

Yk is the kth observed value, Ŷk is the corresponding
predicted value for Yk, Ȳ is the mean of the observed
values, and n is the number of observations.

D. Validation of the trained machine learning model
To verify if the trained ML model can accurately

predict the target performance of a zigzag antenna, sam-
ple antennas with simulated Cost values of 0.3, 0.4, 0.5,
and 0.6 were selected using commercial NEC simulation.
The predicted Cost values of these selected antennas
were then compared with their actual Cost values [10].
As can be seen in Table 2, the Cost predicted by the ML
model exhibits a small error rate of approximately 1.2%
when compared to the Cost derived from the NEC simu-
lation. This result indicates that the trained ML model
can be used effectively in predicting the impedance-
matching characteristic of zigzag antennas.

III. DERIVATION AND VALIDATION OF
OPTIMIZED ANTENNAS

To design zigzag antennas with excellent
impedance-matching characteristics, the validated
ML model was used in conjunction with a random
search technique to derive antenna structures that
achieve minimized Cost values [13]. Table 3 presents
the geometrical information and Cost values of the
optimal antennas obtained from a random search. When
comparing the Cost predicted by the ML model to that
obtained from commercial NEC simulations, it was
found that the ML model provides relatively accurate
predictions with an error rate under 1%. To practically
validate the impedance matching characteristics of the
optimal antenna as listed in Table 3, the zigzag antennas
with the optimal design (Opt. Ants. 1 and 2) were
fabricated on a finite ground plane of 250 mm×250 mm
using a copper wire with a thickness of 1 mm.

Figures 3 and 4 show images along with the mea-
sured and simulated reflection coefficients of the fabri-
cated optimum zigzag antennas of the types 1 and 2,
respectively. The measured 3 dB fractional bandwidths
of the fabricated zigzag antennas for types 1 and 2
were, respectively, determined to be 37.5% from 911 to
1286 MHz and 29.4% from 887 to 1181 MHz at the
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Table 3: Geometrical parameters and Cost of the optimal zigzag antennas

Antenna (Ant.) No. Location of x (mm) Location of z (mm) Predicted Cost Error (%)
x1 x2 x3 x4 x5 z1 z2 z3 z4 z5 ML NEC

Opt. Ant. 1 (type 1,kr = 1.97 ) −52 83 −70 21 −3 7 45 57 76 89 0.180 0.181 0.86
Opt. Ant. 2 (type 2, kr = 1.96 ) −55 74 −70 24 −18 10 46 53 80 92 0.255 0.255 0.07

(a) (b)

Fig. 3. Image of the fabricated optimum zigzag antennas:
(a) type 1 antenna and (b) type 2 antenna.

(a)

(b)

Fig. 4. Impedance matching characteristics of the fabri-
cated optimum zigzag antennas: (a) type 1 antenna and
(b) type 2 antenna.

operating frequency of 1 GHz. These measured results
show favorable agreement with those from a commercial
NEC simulation based on a method of moments, which
were 27.7% from 916 to 1193 MHz and 29.4% from
887 to 1181 MHz, respectively. To interpret the operat-
ing principle of the fabricated antenna, we investigated
the amplitude and phase of the induced current. From the
investigated results, we found that the fabricated antenna
works in a resonating mode at a lower resonance fre-
quency and a traveling mode at a higher resonance fre-
quency. Namely, it was found that the fabricated antenna
works as multiple antennas of a monopole and dipoles
in the resonating mode and operates as a traveling wave
antenna having a broad matching bandwidth in the trav-
eling mode [16].

(a) (b)

Fig. 5. Total gain of the fabricated optimum antenna of
type 1 on (a) x − z plane (φ = 0◦) and (b) y− z plane
(φ = 90◦).

(a) (b)

Fig. 6. Total gain of the fabricated optimum antenna of
type 2 on (a) x − z plane (φ = 0◦) and (b) y− z plane
(φ = 90◦).

In addition, we measured the radiation patterns of
the fabricated antennas and compared with the simu-
lated results, as shown in Figs. 5 and 6. In Figs. 5
and 6, the fabricated zigzag antennas of types 1 and 2
have maximum total gains of 5.93 dBi and 5.25 dBi
in the direction of θ = 0◦ at 1 GHz, respectively.
When compared to the radiation patterns derived from
NEC simulation under the assumption that the ground
plane is extended infinitely, the overall radiation pat-
terns were similar to the simulated radiation patterns
except that the measured gains are overall lower than
the simulated gains by 1∼2 dB. We believe that the
difference between the measured and simulated 3 dB
matching bandwidths is caused by cable loss, the
effect of finite ground, and fabrication and measurement
errors.

IV. CONCLUSION
In this paper, we designed a zigzag antenna

with good impedance matching characteristics in the
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frequency ranges from 950 to 1050 MHz and from
900 to 1100 MHz using the ML technique. The ML
model with DNN was trained using training data con-
sisting of geometry and performance (Cost) information,
where the performance information was derived from
the evaluation of the average matching characteristic in
the frequency band of interest. The maturity of the ML
model was evaluated using MSE and R2 metrics, and
the trained ML model was then validated by comparing
the impedance-matching performance predicted by the
trained ML model with those derived from commercial
simulations.

Next, the validated ML model was used to derive
an optimal structure of a zigzag antenna with the low-
est Cost value (excellent impedance matching charac-
teristics) through random search. Subsequently, the pre-
dicted Cost for the optimal antenna structure was com-
pared with that calculated using a commercial simula-
tor. Further, after fabricating the optimal zigzag antenna,
we measured the reflection coefficients to revalidate the
effectiveness of the proposed design method based on
the ML technique. When comparing the measured reflec-
tion coefficients with those derived by the commer-
cial simulator, we confirmed that both reflection coef-
ficients show good agreement with each other. Conse-
quently, we conclude that the antenna design method
based on the ML technique can be effectively employed
for optimal antenna design. The maturity of the ML
model was evaluated using MSE and R2 metrics, and
the trained ML model was then validated by comparing
the impedance matching performance predicted by the
trained ML model with those derived from commercial
simulations.

Next, the validated ML model was used to derive
an optimal structure of a zigzag antenna with the low-
est Cost value (excellent impedance matching charac-
teristics) through random search. Subsequently, the pre-
dicted Cost for the optimal antenna structure was com-
pared with that calculated using a commercial simula-
tor. Further, after fabricating the optimal zigzag antenna,
we measured the reflection coefficients to revalidate the
effectiveness of the proposed design method based on
the ML technique. When comparing the measured reflec-
tion coefficients with those derived by the commercial
simulator, we confirmed that both reflection coefficients
show good agreement with each other. Consequently, we
conclude that the antenna design method based on the
ML technique can be effectively employed for optimal
antenna design.
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