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Abstract – A machine learning (ML) framework is pro-
posed to achieve the automatic and rapid optimization
of antenna topologies. A convolutional neural network
(CNN) is utilized as a surrogate model (SM) and is
combined with reinforcement learning (RL) algorithms.
Specifically, the RL agent interacts with simulation soft-
ware to learn. Data accumulated from electromagnetic
(EM) simulations are used to train the SM. The CNN-
based SM predicts antenna performance based on the
topology of the antenna. Subsequently, the SM replaces
EM simulations within the RL training environment.
The RL agent interacts with the CNN-based SM to
search for the optimal topology. This approach signifi-
cantly reduces dependence on time-consuming EM sim-
ulations. To validate the effectiveness of the optimization
method, a center-fed microstrip patch antenna is opti-
mized. Simulation results demonstrate that, compared
to other optimization methods, impedance bandwidth is
improved, while the number of simulation samples and
optimization time are significantly reduced.

Index Terms – Convolutional neural network (CNN),
machine learning (ML), microstrip antenna, reinforce-
ment learning (RL), surrogate model (SM), topology
optimization.

I. INTRODUCTION
Modern electromagnetic (EM) design typically

relies on extensive EM simulation software. Conse-
quently, it poses significant challenges to engineers due
to the time-consuming and intricacies of the process.

To address these challenges and alleviate the burden on
human engineers, machine learning (ML) has been intro-
duced into antenna design. Various ML models, such
as gaussian process regression (GPR) [1], support vec-
tor machines (SVM) [2], and convolutional neural net-
works (CNN) [3, 4], have been employed as surrogate
models (SMs). These models enable the rapid predic-
tion of antenna performance responses, thereby signifi-
cantly reducing the calculation costs associated with EM
simulations. Additionally, CNN [5] and artificial neu-
ral networks (ANN) [6] have been utilized to design
inverse models for predicting antenna structural param-
eters. Genetic algorithms (GA) [7] and particle swarm
optimization (PSO) [8] have also been applied to opti-
mize antenna topologies. However, these ML-assisted
methods exhibit considerable limitations. For instance,
SMs require human intervention to provide prior condi-
tions for training samples and metaheuristic algorithms
demand extensive population iterations.

To further reduce dependence on prior domain
knowledge and achieve automated topology design,
reinforcement learning (RL) is utilized to establish opti-
mal models for antenna topology optimization. RL inter-
acts with the environment and dynamically adjusts the
agent’s actions. This makes RL suitable for solving com-
plex decision-making tasks in antenna design. In pre-
vious studies, RL has been applied to edge structure
design of antennas [9] and the optimization of complex
antenna arrays [10]. However, traditional RL methods
necessitate a substantial dataset for achieving satisfac-
tory performance.
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A RL-based method is proposed to optimize antenna
topologies and accelerate the optimization process. The
method integrates CNN into the RL framework. Initially,
the RL framework learns from interactions with full-
wave simulation software. Actions are taken by the RL
agent to maximize reward signals. This process leads to
the identification of optimal antenna topologies. Subse-
quently, the acquired data are used to train the CNN. The
trained CNN serves as a SM, replacing the simulation
software. Antenna performance is predicted by the SM
based on the topology. This allows RL to interact with
the CNN instead of relying on expensive EM compu-
tations. Efficient automated design optimization is thus
achieved.

A microstrip antenna is optimized using this
method. Simulation results indicate that, compared to
other ML algorithms, the antenna achieves a wider
impedance bandwidth with reduced optimization time
and without prior knowledge intervention.

II. INTRODUCED METHODOLOGY
A. Optimization process of the introduced method

The workflow of the introduced method is illus-
trated in Fig. 1. The entire design process is divided into
three stages. In the data collection stage, state, action,
and reward are defined. The RL-based agent generates
a topology structure as an action derived from the ini-
tial state, and transmits it to the simulation software. The
software performs simulations on the provided topology
structure, generating the corresponding antenna perfor-
mance as the new state. The agent interacts with full-
wave simulation software to learn. A training dataset that
correlates antenna topologies with their performance is
generated. The collected data are primarily used to train
the RL algorithm. Additionally, the data are repeatedly
used in the second stage to train the CNN. In this pro-
cess, antenna topologies serve as inputs to the CNN,
while performance parameters are used as outputs. In the
RL stage, when the CNN is trained, the RL algorithm
stops interacting with the simulation software and inter-
acts directly with the CNN. In this scenario, a significant
quantity of training data can be gathered swiftly, which
aids in the rapid convergence of the RL-based model.
The deep deterministic policy gradient (DDPG) algo-
rithm is employed as the RL algorithm due to its suit-
ability for handling spatial problems of high dimension
and continuity. During the deployment stage, the trained
RL model is used to optimize antenna topologies. The
RL model continuously adjusts the antenna topologies. If
the output samples do not meet the design requirements,
they are reintroduced into the CNN’s training dataset.
Retraining is performed until the desired design objec-
tives are achieved.
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Fig. 1. Flowchart of the algorithm optimization. 
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B. Convolutional neural networks
CNN is a mathematical structure, typically com-

posed of three types of layers: convolutional layers, pool-
ing layers, and fully connected layers. In this paper, CNN
is employed as SM to replace simulation software. The
input to the CNN is an image of the antenna topology,
and the output is a performance curve.

The CNN architecture employed is shown in Fig. 2.
The initial two layers focus on extracting features, and
the third layer maps these features to produce the final
output, such as antenna performance parameters corre-
sponding to the respective topologies. Convolutional lay-
ers are fundamental components of CNN. They generally
comprise linear as well as nonlinear operations, includ-
ing convolution and activation.
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The convolution operation involves applying a set of
filters (kernels) to the input tensor. Each filter convolves
over the width and height of the input tensor, generating
a two-dimensional activation map. Mathematically, for
input X and filter W, the convolution operation can be
formulated as:

Zi, j = (X ∗W )i, j = ∑
m

∑
n

Xi+m, j+nWm,n, (1)

where Z represents the output feature map, and i and j
denote the spatial dimensions of the output.

To enhance nonlinearity, the output of the convo-
lution operation is passed through an activation func-
tion. A rectified linear unit (ReLU) activation function
is employed, which is defined as follows:

ReLU(z) = max(0, z). (2)
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After the convolutional layer, pooling layers are
employed to reduce the spatial dimensions of the fea-
ture maps. In max pooling, the maximum value within a
specified window is selected to down sample the feature
maps. This can be expressed as:

Z′
i, j = maxm,nZsi+m,s j+n, (3)

where s is the stride of the pooling operation. The output
of the final pooling layer is flattened and passed through
one or more fully connected layers. In the fully con-
nected layers, each neuron is connected to every neuron
in the preceding layer. The final output layer for predict-
ing antenna performance can be described as follows:

y =W ·X + b, (4)
where W is the weight matrix, X is the input vector from
the final pooling layer, and b is the bias vector.

To balance computational cost and modeling capa-
bility, the employed CNN consists of two stacked con-
volutional and pooling layers, followed by a fully con-
nected layer. Through this architecture, the model effec-
tively extracts features and maps them to the final output
for antenna performance prediction.

C. DDPG algorithm
The DDPG [11] algorithm is illustrated in Fig. 3.

It is implemented using two neural networks. The actor
network generates a probability matrix (apre) of antenna
topologies based on the current state (s). The apre repre-
sents the probability of metal presence in each grid cell,
with each element ranging from 0 to 1. This probability
matrix is converted into an action (a) through the image
mapping topology (IMT) module and is then sent to the
environment, as shown in Fig. 4. The critic network takes
the current state (s) and the action (a) generated by the
IMT as inputs, then produces the discounted cumulative
reward of the current policy.
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To enhance the stability of the algorithm and ensure
its convergence, target networks and replay buffer are
employed in DDPG. The target network provides slowly
updated parameters as targets, ensuring a smoother con-
vergence path for DDPG. Experiences, including states,
actions, rewards, and next states (s, a, r, s′), are stored
in the replay buffer for subsequent training. The replay
buffer aids in disrupting the relationship between succes-
sive experiences, thereby improving learning efficiency.
Throughout the DDPG training process, temporal differ-
ence errors (TD-loss) are used as learning signals, and
the network parameters (θ ) are updated through gradient
descent.

The implementation of the DDPG algorithm
requires states, actions, and rewards to be predefined.
The specifics are detailed below.

(1) state: At time step t, the state st consists of the
reflection coefficients S11t :

st = (S11t). (5)

(2) action: At time step t, the action at is represented by
the matrix of the antenna topology:

at = f (apre(t)) =

{
1,ai ≥ 0.5
0,ai < 0.5 = (at1,at2, · · · ,atn).

(6)

(3) reward: Bt represents the number of frequencies
within the 1.9-3 GHz range that are below −10 dB.
The magnitude of the reward is proportional to the
bandwidth Bt variation. The value of the threshold
Bthre should be flexibly adjusted according to spe-
cific problems and requirements:

r(st ,at) =

 (Bt −Bt−1)
/

Bthre, Bt ≥ Bthre
−0.1, Bt < BthreBt ≥ Bt−1
−1, otherwise.

(7)

The reward function defines the immediate reward
obtained by the agent when executing a specific
action in a particular state. The primary objective of
the agent is to optimize its action strategy by max-
imizing the discounted cumulative reward. The Q-
function is provided in [12]:

Q(st ,at) = E

[
∞

∑
k=0

γ
krt+k+1 |st ,at

]
. (8)
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The Q-function is defined as the expected cumula-
tive reward for a given state-action pair, which takes tem-
poral discount into consideration. The discount factor γ
is set between 0 and 1, and is used to adjust the relative
importance of immediate rewards and future rewards.

III. APPLICATION EXAMPLES
To facilitate comparison with other ML methods,

a microstrip patch antenna is employed as an example
to validate the optimization efficiency of the introduced
method. The structure of the microstrip patch antenna is
shown in Fig. 5. The substrate is made of FR4 material
with a thickness of 15 mm and a dielectric constant of
4.4. The width and length of the substrate (W1 and L1)
are 110 mm and 150 mm, respectively. The patch has a
width (W2) of 48 mm and a length (L2) of 72 mm.
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Fig. 5. Center-fed microstrip patch antenna structure. 

The patch is symmetrically divided into 46 binary (0/1) 

grids, where 1 indicates the presence of metal and 0 

indicates its absence. To ensure the electrical 

connectivity of the metal patch, the edge lengths of the 

sub-patches are increased by 0.2 mm. 
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Fig. 5. Center-fed microstrip patch antenna structure.
The patch is symmetrically divided into 46 binary (0/1)
grids, where 1 indicates the presence of metal and 0 indi-
cates its absence. To ensure the electrical connectivity of
the metal patch, the edge lengths of the sub-patches are
increased by 0.2 mm.

To enable RL to interact with the environment while
exploring antenna topologies, an IMT module is incor-
porated. This module performs gridding of the antenna
topology and converts it into corresponding matrix for
input into the RL agent. Additionally, it transforms the
probability matrix of topology into an image to be input
into the environment, as shown in Fig. 4. To maintain a
consistent connection between the probe and the patch,
the four units connected to the probe are kept unchanged.
Furthermore, structural symmetry is enforced along the
symmetric plane to avoid high cross-polarization.

As illustrated in Fig. 5, the quantity of topology
structure pixels to be determined is 46. The optimiza-
tion objective is to broaden the bandwidth of the reflec-
tion coefficient Bt . The frequency step is set to 0.01, and
the Bthre is established at 50. The RL agent continuously
interacts with the environment to ascertain the presence

of metal in these 46 pixels. Initially, the RL agent inter-
acts with the simulation software, with each topology
simulation requiring approximately one minute. Upon
collecting 100 samples, the interaction-generated data
are then used to train the CNN model, with a training
time of 1.2 minutes. As the dataset for the CNN model
gradually increases, the prediction accuracy of model
continually improves. Once the CNN model training is
complete, the CNN model replaces the simulation soft-
ware within the environment, enabling rapid predictions
of the EM responses of corresponding topology. Sub-
sequently, the RL agent interacts with the CNN model,
continuously maximizing reward signals to identify the
optimal topology structure. The optimization time for
each topology is reduced to merely three seconds, with
the quantity of learning iterations set to 500 genera-
tions. Importantly, although the predictive capability of
CNN model enhances with an increasing number of iter-
ations, the algorithm generally operates without the CNN
containing sufficient data for predictions. Typically, a
SM established with high prediction accuracy requires
a significant number of simulations. Additionally, mul-
tiple deep network architectures are needed to achieve
the desired level of precision. However, the CNN model
developed within the RL framework is constructed with
a shallow network structure and trained on a limited
dataset. This approach helps guide the optimization pro-
cess towards specified design. The optimized antenna
topology and photograph of the manufactured antenna is
presented in Fig. 6 and comparative optimization results
are shown in Fig. 7 (a).
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Fig. 6. Optimized topology structure of the microstrip
antenna and photograph of the manufactured antenna.

IV. MEASUREMENT AND COMPARISON
The simulation and measurement results are pre-

sented in Fig. 7 (b). The impedance bandwidth is
2.1-2.73 GHz, but there are some disparities. These
discrepancies may be attributed to manufacturing and
installation errors, such as deviations in material
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(a) (b)

Fig. 7. (a) Initial and optimized results and (b) measured
and simulated results of S11 for the antenna.

thickness, welding position, and tin soldering, which can
somewhat impact antenna performance.

The proposed method is compared with several ML-
based approaches, as shown in Table 1. Compared to
metaheuristic algorithm-based methods [12–14], the pro-
posed method exhibits superior local search capabili-
ties and higher optimization efficiency. Metaheuristic
algorithms require the evaluation of each individual in
the population and the use of EM simulation software
for verification. This process is highly time-consuming.
Moreover, the efficiency of metaheuristic algorithms is
constrained by the initial population; better initial pop-
ulations lead to higher optimization efficiency. In con-
trast, RL obtains feedback through continuous interac-
tion with the environment. This endows RL with strong
decision-making capabilities, allowing it to dynamically
optimize strategies and progressively guide the optimiza-
tion toward better solutions. Additionally, RL effectively
utilizes existing data through experience replay and pol-
icy improvement, thereby reducing the need for expen-
sive simulation samples.

From the perspectives of automation and data col-
lection, the proposed method (DDPG+CNN) achieves

Table 1: Comparison information with other algorithms

Refs. Optim.
Method Samples Time Design

Space
Auto
Level

[3] CNN 1970 Not
Given 8×6 Semi-Auto

[4] CNN 625 Not
Given 4 params Semi-Auto

[5] DCNN 1200 39.62 h 28
params Semi-Auto

[13] EGO 2600 43 h (8×6)−2 Full-Auto
[14] BBSO 2500 Not

Given (8×6)−2 Full-Auto

[15] BPSO 1000 17.94 h (8×6)−2 Full-Auto
CNN-BPSO 254 9.62 h (8×6)−2 Semi-Auto

This
work

Trial and
Error 6400 179 h (8×6)−2 Manual

GA 3500 53 h (8×6)−2 Full-Auto
GA+CNN 1200 28.4 h (8×6)−2 Semi-Auto

DDPG+CNN 236 8.92 h (8×6)−2 Full-Auto

satisfactory optimization results with fewer samples.
This advantage arises from the distinct training strate-
gies of both methods. To be specific, the methods CNN
[3, 4], DCNN [5], (CNN+BPSO) [14] and (GA+CNN)
require pre-collected data to train the CNN. Random
data collection may result in a training dataset with
numerous invalid samples. To ensure training efficiency,
human intervention is necessary to maintain the quality
of the dataset. In contrast, the proposed method alter-
nates between data collection and training of the two
neural networks (DDPG and CNN). Specifically, the RL
model initially interacts with the environment to gather
part of EM simulation data. This data is then used to
simultaneously train both the DDPG and CNN mod-
els, aiming to enhance the decision-making capability of
DDPG and the prediction accuracy of CNN. Under this
mechanism, the quality of the collected data (in terms
of relevance to the objective) is higher, enabling good
performance with less data. Consequently, the automatic
design of antenna topologies is achieved efficiently.

V. CONCLUSION
An ML framework is proposed in this paper. CNN is

utilized as SM and combined with DDPG algorithms to
optimize antenna topologies. The method aims to auto-
mate the antenna design process without human inter-
vention. Additionally, it significantly reduces reliance
on expensive EM simulations. Compared to other ML-
based optimization techniques, the proposed method
demonstrates notable advantages in reducing the quan-
tity of simulation samples and shortening optimization
time.
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