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Semantic Segmentation on FDFD-generated Wideband Radar Images of
Potential Shooters

Mahshid Asri, Ann Morgenthaler, and Carey M. Rappaport

Department of Electrical Engineering
Northeastern University, Boston, MA 02115, USA

asri.m@northeastern.edu, a.morgenthaler@northeastern.edu, rappaport@coe.neu.edu

Abstract – This paper presents a deep learning model for
fast and accurate radar detection and pixel-level local-
ization of large concealed metallic weapons on pedes-
trians walking along a sidewalk. The considered radar
is stationary, with a multi-beam antenna operating at 30
GHz with 6 GHz bandwidth. A large modeled data set
has been generated by running 2155 2D-FDFD simula-
tions of torso cross sections of persons walking toward
the radar in various scenarios.

Index Terms – Concealed object, deep learning,
millimeter-wave radar, object detection, semantic seg-
mentation, U-Net.

I. INTRODUCTION

Developing a solution to address threats to soft tar-
gets and crowded spaces such as schools, stadiums, hos-
pitals, train stations and places of worship is a complex
challenge. Soft targets are civilian sites where a lot of
unarmed people gather and can be vulnerable to active
shooters. SENTRY (Soft-target Engineering to Neutral-
ize the Threat Reality) is a DHS Center of Excellence
that addresses the challenges of protecting soft targets
and crowded places (STCPs). The ideal solution is a
semi-autonomous procedure that keeps the human in the
loop and takes advantage of an integration of sensor data
to create a cost effective pipeline to support and help
decision makers and first responders to detect, deter, and
mitigate threats. Such system can be helpful in prevent-
ing a scenario like Boston marathon bombing from hap-
pening.

This paper discusses the role of radar in SENTRY
Advanced Sensor Concept projects, and provides a deep
learning-based real-time solution for detecting potential
threats and shooters among large crowds in one specific
scenario. A radar system has been designed to moni-
tor the pedestrians walking along the sidewalk for large
metallic weapons such as guns and knives. A large data
set of radar images has been generated using Finite Dif-
ference Frequency Domain (FDFD) simulations and a
2D U-Net model has been trained to perform the image

segmentation task and predict pixel-level masks of con-
cealed weapons from the FDFD-generated radar image.

Image segmentation is an important computer vision
task that has many key applications in scene understand-
ing [1, 2], robotic perception [3], video surveillance [4],
medical image analysis [5, 6], augmented reality [7],
image compression [8], human-computer interface [9,
10], satellite imagery analysis [11], self-driving vehi-
cles [12, 13], and pedestrian detection [14, 15]. The goal
of image segmentation task is to provide a pixel-level
label of the image and predict the category of each pixel.
Instance segmentation is an extension of semantic seg-
mentation which tries to detect and delineate each object
in the image [16, 17]. The categories in this paper are
human body, anomaly or metallic weapon, and the back-
ground image.

In recent years, deep learning has been widely used
in various applications due to its capability in handling
large amounts of data accurately. Fully convolutional
models (FCMs) [18], CNN with graphical models [19–
21], encoder-decoder based models [22–25], multiscale
and pyramid network based models [26], R-CNN based
models [27, 28], Dilated convolutional models [29–32],
RNN models [33–37], attention-based models [38–40],
generative models and adversarial training [41–43], and
CNN models with active contour [44–46] are among
famous deep learning models used for the image segmen-
tation task.

Encoder-decoders are a family of deep learning
models that can learn to map data points from one
domain to another using a two-stage network. The first
stage is used to capture the context of the image and the
second stage provides object localization. These models
are useful in several image to image translations such
as image debluring or super resolution, and image seg-
mentation [16]. The U-Net model developed by Ron-
neberger et al. [47] is a famous encoder-decoder model
that is mainly used for analyzing medical images. Simi-
lar to medical images of biological samples, CT and MRI
scans, radar images are very different from the typical
RGB images that most deep learning models are trained
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on. Because of this similarity, U-Net models are good
candidates for analyzing radar images.

Multiple studies have used deep-learning to detect
pedestrians [48]. In most of these studies, data sets
contain RGB images captured by cameras. In [49], a
random forest method has been used to detect pedes-
trians, using surveillance camera information. In [50],
two-stream deep convolutional neural networks have
been trained to learn multispectral human-related fea-
tures under different illumination conditions. There also
have been various studies where radar data has been used
to detect pedestrians[51, 52]. In [53], Fast-RCNN has
been applied to NuScenes dataset [54] to detect humans
on input images. In [55], radar cross sections along
with RGB camera images have been used for pedes-
trian detection. There also have been some studies where
authors have used deep learning models to detect peo-
ple as well as weapons. For example in [56] researchers
have developed single-shot and multi-shot prediction
networks to detect anomalies like laptops, phones, and
knives based on the captured data from a commercial
radar working at 77 GHz.

Many of these studies have focused on detection of
human subjects and only a few have looked at detecting
body-worn anomalies. Only some are using radar signals
as the input and all of them are providing a bounding box
of the detected human body and anomaly. This paper
takes advantage of image segmentation to find body-
worn anomalies which is by definition a deeper task than
classification (detection). The trained model is capable of
detecting anomalies on pedestrians as well as providing
a pixel-level mask that shows the location and general
shape and size of the anomaly.

This paper presents the results of training a 2D U-
Net model on FDFD-generated radar scattering of cross
sections of human torsos parallel to the ground to detect
potential threats among pedestrians walking along side-
walks and localize the concealed weapon. It is worth
mentioning that the simulated radar images in this paper
have been generated by a minimum radar imaging sys-
tem that uses only three receivers and one transmitter.
Because of the location of radar with respect to passen-
gers, only parts of the human torsos are visible on recon-
structed radar images, which makes it harder to perform
the image segmentation task.

This research proposes a novel approach in detect-
ing body-worn anomalies using radar, a technique not
widely explored in existing research and introduces a
deep learning model that performs pixel-level segmen-
tation on radar images. These images are generated
using a minimal radar system, consisting of just three
receivers and one transmitter, which captures only par-
tial views of human torsos. This partial view signifi-
cantly complicates the image segmentation task, making

the challenge of localizing concealed weapons more dif-
ficult. By overcoming this limitation, this paper offers
a groundbreaking solution for real-time, high-accuracy
threat detection in crowded, soft-target environments.
This approach enables more precise identification and
localization of potential threats, enhancing decision-
making and threat mitigation capabilities in public safety
scenarios.

The remainder of the paper is structured as follows.
Section II discusses the details of FDFD simulations
used to generate the radar image data set, and section III
goes over the process of creating the radar data set from
FDFD simulations. Section IV talks about the training
process, evaluation metrics, and illustrates the segmenta-
tion results. Finally section V provides a brief summary
of the paper.

II. FDFD SIMULATIONS

The data set used for training the U-Net model has
been generated by running 2155 FDFD simulations of
human torso in various scenarios. The considered imag-
ing system is a 30 ± 3 GHz TX/RX radar designed to
monitor pedestrians walking along a sidewalk for large,
concealed metal objects. The TX is modeled by a uni-
form aperture of length 37.5 cm and there are also three
collinear RX apertures, each of length 50 cm so this sys-
tem can illuminate and image only the 40 cm width of
a torso at 30 m range. The TX/RX antenna system gath-
ers scattering signals for a given pedestrian as he moves
toward the stationary radar and the resulting TX/RX sig-
nals processed using the inverse synthetic aperture radar
(ISAR) technique to generate torso images with bright
spots in the images corresponding to areas with strong
reflectivity. Figure 1 illustrates the imaging setup.

Fig. 1. Imaging setup, showing various instances of a
torso cross section moving towards a fixed radar antenna.

The radar is installed on a light pole and takes six-
teen snapshots of the pedestrian walking towards it at
sixteen frequency steps between 27 and 33 GHz. Three
receive focal points are considered in each simulation:
x = 0 m which is approximately the middle of the torso,
x = ± 0.25 m which correspond to approximate location
of left and right arms.
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Each of the 768 simulations (16 positions × 16 fre-
quencies × 3 receive focal points) used to create these
images is performed by analytically generating the TX
aperture (source) fields in a computational region sur-
rounding the torso, computing the scattered electromag-
netic fields in that region using the 2D FDFD algorithm
assuming no z variation (d/dz = 0), and then finding the
RX fields far outside the computational region using the
Stratton-Chu near-to-far field transform [57, 58]. This
near-to-far field transform requires computing both elec-
tric and magnetic transverse scattered fields and the 2D
scalar Green’s function on a rectangular bounding box
enclosing the torso. The bounding box is centered in the
FDFD computational region and is about 70% of its size;
the four computational boundaries are each terminated
by a PML [59].

Accurate FDFD simulations of scattering from
human torsos at frequencies above 30 GHz requires sig-
nificant computational storage, even for 2D calculations.
The grid size for FDFD is defined by equation 1:

h = λskin/ppw, (1)
where the number of points per wavelength (ppw) is typ-
ically greater than about 16. The grid size is determined
by the shortest wavelength in the computational grid,
which in these simulations is the wavelength of skin (the
total electric and magnetic fields within metal regions are
always zero and so are not directly computed). For skin
with complex dielectric of 20 + j 16 at 16 ppw and 30
GHz [60], the grid size will be h = 0.13 mm, which is
computationally expensive to simulate.

In this radar system, the goal is to distinguish
torsos with metal objects (e.g. guns) attached from
non-threatening (non-metal containing) torsos. Model-
ing skin as metal is therefore counterproductive. But
because skin is quite lossy, radar fields attenuate quickly
as they penetrate the torso (within about a wavelength).
Using the coarser grid spacing of 16 ppw in air (rather
than 16 ppw in skin) does introduce a small amount
of error in the FDFD simulations because within the
skin region, the coarse grid spacing is now about 3.3
ppw. However, skin and metal responses are distin-
guishable and the coarse field plots closely resem-
ble the fine (expensive) field plots for a range of test
cases.

III. DATA SET

FDFD simulations were performed by MATLAB
and were run on CPUs. On average each simulation took
about 15 hours. In total, 53 torso shapes of various sizes
(including both male and female) were simulated. The
data set includes 198 cases of rotated torsos at various
angles as well as some cases with two bodies in one
image. Figure 2 shows a simulated torso shape as well
as the metallic anomaly attached to it.

Fig. 2. Cross section of simulated torso with arms and
metallic anomaly (yellow).

The data set includes torsos with and without metal-
lic anomalies. The anomalies are randomly located at
different parts of torso contours. The data set also
includes various cases with multiple objects attached to
the torso(s). Although the attached anomalies in most
simulations were circular, other shapes such as rectan-
gle, square, and barrel guns (a rectangle with a half circle
attached to it) were considered in generating the data set.
Table 1 illustrates the dimensions of each anomaly.

Since three receive focal points have been con-
sidered for the radar system, three reconstructed radar
images can be produced by applying the appropriate
relative phase for the three antenna apertures for rudi-
mentary SAR processing of simulated files. Considering
the ground truth file of Fig. 2, when radar is focusing
on x = −0.25 m, radar image of Fig. 3 (a) is gener-
ated where the left arm shows high intensity. And when
radar illuminates x = 0 m, and x = 0.25 m, reconstructed
images with brighter response for torso (Fig. 3 (b)), and
right arm (Fig. 3 (c)) are achieved.

By combining these three images in a complex form,
Fig. 3 (d) will be generated. Since these images are in
grey scale format and only have amplitude, each of them
can be assumed as a channel in an RGB image. Here,
the complex combined reconstructed image, the recon-
structed image illuminating torso and right arm have
been considered the red, green and blue channels in a
colored image. Figure 4 (a) shows the resulting RGB
image. Since the radar is located at subject’s right side,
the left arm is sometimes blocked by the presence of

Table 1: Canonical shape anomalies representing large
weapon cross sections

Anomaly’s Shape Dimensions

Circle Radius = 12 mm
Small circle Radius = 10 mm
Rectangle 5×13 mm

Square 15×15 mm
Barrel gun Rectangle (13×30 mm)

Half circle (radius = 17 mm)
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Fig. 3. Reconstructions of torso and arm cross section for three focusing cases and their combination: (a) focus on left
arm, (b) focus on middle of torso, (c) focus on right arm and (d) complex combination of three images.

Fig. 4. The processed radar image of Fig. 2 along with its corresponding masks fed into the deep learning model for
training: (a) RGB image, (b) body mask, (c) anomaly mask.

torso, making the reconstructed image of the left arm
weaker and less reliable. By considering the complex
combined image instead of the left arm image, the signif-
icance of torso and right arm are intensified while reduc-
ing the emphasis of the left arm in inputs.

The typical torso and anomaly image of Fig. 2 is
used to produce the body and anomaly ground truth
masks. For training the deep learning model, the RGB
image is considered the input and both body and anomaly
masks are considered labels (outputs). Figure 4 illus-
trates an example data point used in training the U-Net
model.

The 2155 FDFD simulations which correspond to
8620 grey-scale radar images, are divided into training,
validation and test sets. The training set includes 1775
FDFD simulations (7100 grey-scale images), and the val-
idation and testing sets each include 190 FDFD simula-
tions (760 grey-scale images).

IV. TRAINING AND EVALUATION

The evaluation metrics used to examine the pre-
dictability of the trained model are the F1-score, and the
Intersection over Union (IoU). The F1-score can be cal-
culated using equation (2).

F1 = 2× precision× recall
(precision+ recall)

, (2)

where precision = TP/(TP + FP), recall = TP/(TP +
FN), and TP, FP and FN are true positive, false posi-
tive, and false negative cases respectively. Additionally
the IoU metric can be obtained using equation (3).

IoU =
area of overlap
area of union

=
T P

T P+FP+FN
, (3)

U-Net is one of the popular techniques used in
semantic segmentation and various extensions of it have
been used in medical image analysis. In this paper, effi-
cientnetb3 [61] has been used as the backbone of U-Net

Table 2: Model’s performance
Metric Training Validation Testing

F1 score 96% 86% 86%
IoU 93% 81% 81%

with about 17 million trainable parameters. Categorical
focal loss has been used as the model’s loss function.

The reconstructed radar images and the RGB image
are 128×256 in size. The U-Net model is trained for
70 epochs with learning rate of 0.001. Each epoch took
about 20 minutes to run on V100 GPU. Table 2 shows the
final F1 and IoU score on training, validation and testing
sets.

Figure 5 illustrates some of the test cases and the
predicted torso and anomaly masks. The first column
shows the input RGB images. The second and fourth
columns correspond to the ground truth masks consid-
ered for each FDFD simulation and finally the third and
fifth columns show the predicted masks for the human
torso and the attached metallic anomaly. As Fig. 5 shows,
the predicted and ground truth masks are very similar
and the model can accurately estimate the location and
shape of the torso and the body-worn anomaly based
on the available RGB image. In case the subject is
not carrying a metallic weapon, the predicted anomaly
mask will be an empty image (Fig. 5 (e)). Since most
anomalies in the data set are circular metals, the pre-
dicted anomalies tend to have curved edges. The images
show that the trained model is capable of predicting the
correct body and anomaly masks for both male (Fig.
5 (a)) and female (Fig. 5 (b)) torso shapes, various
torso sizes (Fig. 5 (c)). Moreover, the model can pre-
dict multiple anomalies and multiple torsos in the image
(Fig. 5 (d)).
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Segmentation results on five typical test cases showing the complex combined reconstructed image in the first
column, and in the successive columns, the true body geometry, AI predicted body geometry, the true and the AI
predicted anomaly: (a) large male torso and a barrel anomaly, (b) female torso and a large circular anomaly, (c) small
female torso and multiple anomalies, (d) two small male torsos and multiple anomalies, (e) small male torso with no
anomaly.

(a)

(b)

Fig. 6. Examples of undetected anomalies from the test set: (a) left object is partially inside the body mask, (b) object
located between the torso and right arm.

Figure 6 shows two examples where the model could
not detect the anomalies correctly. In general there were
two common features among undetected cases. If any of

the anomalies are partially inside the body (similar to the
left anomaly on Fig. 6 (a)), the model is less likely to
detect it. Also, if the anomaly is located between one of
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the arms and the torso (similar to the case shown in Fig.
6 (b)), the model is more prone to miss it. Out of 190
test cases, 51 cases had two or three anomalies present.
The trained model was able to detect 39 cases with two
or three anomalies correctly but could not detect all the
anomalies on the remaining 12 cases. However, in all
these 12 cases, the model was able to detect at least one
anomaly on the image and did not miss the potential
shooter. The remaining 139 cases included zero or one
anomaly. Out of these 139 cases, the model predicted the
masks correctly for 126 cases corresponding to 90%.

V. SUMMARY AND CONCLUSION

This paper presented the results of training a U-Net
model with the backbone of efficientnetb3 for detection
and localization of large concealed metallic objects on
pedestrians. A large data set was generated by running
FDFD simulations of a person walking toward a 6 GHz
bandwidth radar operating at 30 GHz. The body and
anomaly mask prediction results are very promising and
the model can be used to detect and localize anomalies
accurately in real time.
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Abstract – In this paper, we proposed a data-driven
deep learning (DL) method to recognize various elec-
tromagnetic (EM) scattering mechanisms. With appro-
priate training data containing different EM scattering
mechanisms, the proposed network can accurately rec-
ognize the EM scattering mechanisms of complex mod-
els. Numerical experiments show that the DL network
architecture is effective for both vertical polarization and
horizontal polarization scattered field, and the average
relative recognition error of the proposed method is less
than 5%. This paper shows that deep neural networks
have a good learning capacity for EM scattering mech-
anism recognition. This provides a research strategy for
solving EM scattering mechanism identification in more
complex EM environments.

Index Terms – Convolutional neural network, deep
learning, electromagnetic scattering mechanisms, recog-
nition.

I. INTRODUCTION

When a target is illuminated by an electromagnetic
(EM) wave, the scatterer produces different scattering
mechanisms, which compose the whole scattered field of
the target. For example, smooth surface produces specu-
lar scattering, discontinuous structures such as edges or
tips produce diffraction mechanism, and concave struc-
tures like cavities or dihedral corners induce coupling
effects or multiple scattering. In addition, the whole scat-
tered field also includes other scattering mechanisms like
surface traveling waves and creep waves [1, 2].

Decomposing and recognizing different scattering
mechanisms is of great significance for deep understand-
ing and further controlling of the scattering character-
istics and has a wide range of applications in radar
detection such as to improve the accuracy in target
recognition based on radar image. Some examples in
the following section of this paper show the applica-
bility for recognizing scattering centers, which blur the
radar images, caused by edge scattering and multiple
scattering.

Some high-frequency asymptotic methods, such as
physical optics (PO), can produce the scattered field
including only specular mechanism [3, 4]. However, the
scattered field obtained by measurement or full-wave
numerical methods is commonly a total radar signal,
in which various scattering mechanisms are superim-
posed, and the specific scattering mechanism cannot be
directly distinguished. Li and Liu proposed the EM scat-
tering mechanism decomposition method based on time
difference [1], which can decompose different scatter-
ing mechanisms from the whole EM scattered field.
The ability to identify different scattering mechanisms
is lacking with this method, which must rely on radar
imaging and the experience of researchers to recognize
the various components of decomposition. This experi-
ential recognition method may not necessarily be com-
pletely accurate. Although attribute scattering center is
capable of recognizing different EM scattered fields of
canonical geometries, the accuracy and reliability of
this method are contingent upon the models employed
for the attribute scattering centers [5]. Furthermore, this
approach is unable to identify the finer scattering mech-
anisms present in the EM scattered field.

Moreover, time frequency analysis techniques have
been employed to extract scattering mechanisms. For
instance, an adaptive Gaussian method was utilized to
overcome the divergence of cavity scattering in radar
images [6]. However, these methods either have limi-
tations or can work only on specific scattering mech-
anisms. Consequently, there is currently no effective
method for identifying different scattering mechanisms.

The advent of deep learning (DL) has brought us a
new perspective. The method based on neural networks
has performed well in many fields, such as speech recog-
nition and image classification. Furthermore, it has found
extensive and effective use in inverse scattering prob-
lems. For example, the U-Net network is utilized to learn
the radar imaging mapping relationships from training
data [7]. Deep neural networks are also widely used in
synthetic aperture radar image classification and recog-
nition [8, 9]. In this paper, we study the feasibility of
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applying DL techniques to recognize different EM scat-
tering mechanisms. We train a deep convolutional neu-
ral network (ConvNet) to recognize different scattering
mechanisms with the training data including specular
scattering, multiple scattering, and edge scattering. The
training dataset consists of EM scattering mechanisms
calculated by various computational asymptotic electro-
magnetic (CAEM) methods.

This paper is organized as follows. The problem
statement and methodology are presented in section II,
including the CAEM methods used in this paper, the
dataset used for network training, the proposed Con-
vNet framework, and the training results of the network.
Numerical results are exhibited in section III to validate
the performance of the proposed DL network. The con-
clusion is given in section IV.

II. METHODOLOGY

In this section, the CAEM methods used in this
paper are introduced; then, the generation of our dataset
used for network training, the framework, and the train-
ing results of the proposed ConvNet are demonstrated in
detail.

A. CAEM methods

Various scattering mechanisms can be decomposed
from the scattered field and identified through the expe-
rience of researchers [1]. This way may be used to
generate a training dataset, but it requires a significant
workload and may not meet the demand for training data
volume.

CAEM methods can calculate the scattered field
formed by different scattering mechanisms [10]. More
specifically, the PO method is an algorithm that utilizes
approximate integration of the induced electric field to
solve the EM scattering problem [3, 4, 11]. Compared
with high-precision algorithms such as the method of
moments, PO does not calculate the interaction between
the induced currents of different parts of the target sur-
face, so as to solve the approximate surface-induced cur-
rent independently. The scattered field calculated by PO
is represented as EPO.

The shooting and bouncing ray (SBR) method is a
high-frequency asymptotic method that combines geo-
metrical optics (GO) and PO for solving EM scattering
problems. It can obtain more accurate results by account-
ing for scattering caused by multiple interactions [12]. In
this paper, the SBR method is employed to generate the
EM scattered field containing multiple scattering. The
scattered field calculated by SBR is represented as ESBR.

The geometrical theory of diffraction (GTD) is a
generalization of GO. It is based on the exact solution
of the spiked diffraction field and solves the diffraction
field problem by linear correlation between the diffrac-

tion coefficients and incident field. The scattered field
calculated by GTD is represented as EGTD.

B. Dataset generation

Training of ConvNet relies on a dataset with a large
number of highly representative samples, so first, we
need to generate the dataset of different scattering mech-
anisms. As mentioned, specular scattering, multiple scat-
tering, and edge scattering in the training dataset can be
calculated by PO, SBR, and GTD, respectively. In this
paper, when calculating the target’s scattered field using
the PO, SBR, and GTD algorithms, the calculation sce-
nario assumes the far field of perfect electric conductor
(PEC) targets in vacuums.

(1) Specular scattering dataset

Since PO only considers specular scattering, the
scattered field computed by PO can be used as part of
the training dataset, as shown in equation (1). Note that
specular scattering is only extracted from the scattered
field of single canonical geometry, as the specular scat-
tered field of multiple geometries can be considered as
the superposition of single models. Table 1 gives the sin-
gle canonical geometry model and their structural param-
eters:

Datasetspecular scattering = EPO. (1)

(2) Multiple scattering dataset

Multiple scattering occurs among targets or in cou-
pling structures, and there are too many possible ways
to achieve this. Therefore, we only consider the multi-
ple scattering generated by the coupling between canon-
ical geometries. Table 1 shows two sets of dual mod-
els, including double cones and double cylinders, whose
scattered field is calculated by PO and SBR, respectively.
We can then obtain multiple scattering by equation (2). It
is important to note that the scattered field calculated by
SBR in this paper does not take into account edge scat-
tering:

Datasetmultiple scattering = ESBR −EPO. (2)

(3) Edge scattering dataset

Diffraction occurs at both the edge and the tip but,
due to very rapid attenuation of EM scattering at the tip,
it is usually ignored. Therefore, in this paper only edge
scattering is considered. GTD and PO are used to calcu-
late the scattered field of canonical geometries with edge
in Table 1. Then we obtain the contribution of the edge
to the scattered field by equation (3):

Datasetedg scattering = EGTD −EPO. (3)
To demonstrate the accuracy and reliability of the

data generation method, we use it to process the scattered
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Table 1: Dataset components

field of models with coupled structures. The double PEC
sphere model is illustrated in Fig. 1, wherein the spheres
exhibit a strong coupling effect when in close proximity.

The scattered field of the double PEC spheres is cal-
culated by PO and SBR, respectively. The direction of
incidence wave is fromθ =−20◦ϕ = 0◦ to θ = 20◦ϕ =
0◦ with 1◦ interval. The frequency is taken to be from
6 GHz to 12 GHz, with 0.15 GHz interval. Their cor-
responding radar images are shown in Figs. 2 and 3,
respectively. The y-range resolution and x-range reso-
lution of the radar imaging are 0.025m and 0.0239m,
respectively. In this paper, θ represents the angle between
the incident wave and the z-axis, while ϕdenotes the
angle between the projection of the incident wave onto
the xoy-plane and the x-axis. The radar imaging algo-
rithm used in this paper is the backward propagation

Fig. 1. Double PEC spheres. The diameter of both
spheres is 300mm, and the interval between them is
100mm.

Fig. 2. Radar image of the double PEC spheres by PO.

algorithm [13]. As illustrated in Fig. 2, only two scatter-
ing centers are evident. It can be observed that these cor-
respond to the specular scattering from the two spheres.
However, Fig. 3 demonstrates a pronounced presence

Fig. 3. Radar image of the double PEC spheres by SBR.
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of an extra scattering center at point (0, 0), indicating
a strong coupling between the two spheres. It is evi-
dent that this discrepancy is caused by the strong mul-
tiple scattering mechanism. In the absence of knowl-
edge regarding the number of metal spheres, it is pos-
sible to ascertain that the model comprises three metal
spheres based on the scattering center observed in Fig. 3.
However, this conclusion is not aligned with the actual
structural composition of the target. Furthermore, this
example highlights the significance of recognizing dif-
ferent scattering mechanisms. Subsequently, equation (2)
is employed to process the scattered field of the double
PEC spheres. Thereby we can get the multiple scattering,
as illustrated in the radar image of Fig. 4. A comparison
of Figs. 4 and 3 reveals that multiple scattering has been
accurately extracted from the scattered field computed
by SBR. The coupling mechanism between the targets is
strongly influenced by the distance between them. As a
result, when the distance between the targets is large, the
coupling effect weakens, and they do not form a promi-
nent scattering center in the radar image. To observe sig-
nificant coupling fields in the radar image, it is crucial
to carefully determine the optimal distance between the
targets.

Fig. 4. Radar image of multiple scattering of the double
PEC spheres.

As shown in Table 1, the selected CAEM meth-
ods calculate the scattered field of different geometries,
and both vertical polarization (VP) and horizontal polar-
ization (HP) are considered. The direction of incidence
wave is from θ = 0◦,ϕ = 0◦ to θ = 90◦,ϕ = 0◦ with
θ = 0.5◦ interval, and the frequency is from 6 GHz
to 18 GHz. The number of samples is 128. The train-
ing dataset consists of scattering mechanisms at differ-
ent incident angles, represented as complex numbers
with varying dimensions depending on the calculation
frequency. Both VP and HP datasets contain approxi-

mately 15,000 scattering mechanisms, with 12,000 used
for training and 3,000 for testing.

C. ConvNet

In theory, neural networks can approximate any con-
tinuous function. In this work, we employ ConvNet as
the DL method. ConvNet architecture is shown in Fig. 5.
It consists of six convolutional layers, which are respon-
sible for feature extraction. These layers apply a range
of filters to the input, detecting low-level features in
the early layers and higher-level features as the network
deepens. To reduce the number of parameters and retain
useful features, three max-pooling layers are inserted
between the convolutional layers. This also helps prevent
overfitting by making the model more invariant to small
translations in the input data. After the convolutional
and pooling layers, a flattening layer is used to con-
vert the multi-dimensional output into a one-dimensional
vector. This step is essential for linking the convolu-
tional part of the network to the fully connected layers,
enabling the network to perform classification based on
the extracted features. The network includes two fully
connected layers that follow the flattening layer. These
layers are responsible for the final classification task,
mapping the flattened features to output class probabili-
ties using learned weights. The first fully connected layer
processes the feature vector, while the second produces
the final class predictions.

The rectified linear unit (ReLU) activation func-
tion is applied in the convolutional layers to introduce
non-linearity, allowing the network to learn more com-
plex patterns. ReLU also mitigates the vanishing gradi-
ent problem, which can occur with other activation func-
tions. In the fully connected layers, the SoftMax activa-
tion function is used to convert the network’s output into
probability distributions, ensuring that the final output is
interpretable as class probabilities.

The input to ConvNet consists of two 1×128 vec-
tors, representing the real and imaginary parts of the scat-
tering mechanisms. These vectors serve as features for
the network to learn patterns for classification. The real
and imaginary components are essential for capturing the
complex nature of the scattering data, allowing the net-
work to learn both magnitude and phase information. As
shown in Fig. 5, ConvNet architecture is effective for
both HP and VP, although the kernel sizes differ. The
optimization algorithm used in ConvNet is the adaptive
moment estimation (ADAM) algorithm [14], an efficient
method for stochastic gradient-based optimization.

Moreover, the cross-entropy loss function widely
used in multi-classification problems is adopted in Con-
vNet, as shown in equation (4):

Loss =−
N

∑
i=1

yi • log ŷi, (4)
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Fig. 5. ConvNet architecture.

where yiand ŷi represent the true labels and predicted
labels, respectively, and Nis the number of categories.

Variations in accuracy during training and testing
epochs are shown in Fig. 6. It is evident that the accuracy
of training is better than that of testing when the model
is convergent. The training and testing accuracy curves
in Fig. 6 (a) converge to 0.98 and 0.95 after 100 and 50
iterations, respectively. Similarly, the training and testing
accuracy curves in Fig. 6 (b) converge to 0.96 and 0.95,
respectively, after 100 iterations. The hardware config-
uration includes an Intel 13th i9 CPU running at 3 GHz
with 128 GB memory. The entire dataset requires a train-
ing time of 10 minutes and utilizes 20 GB of memory for
the training process.

The confusion matrix in Fig. 7 illustrates three dis-
tinct scattering mechanisms, labeled as 1 (specular scat-
tering), 2 (edge scattering), and 3 (multiple scattering).
It can be seen from Fig. 7 that the overall classifica-
tion accuracy is above 95% and the individual classifi-
cation accuracy is above 93% for all different scatter-
ing mechanisms. As can be observed in Table 1, the
sources of specular scattering are particularly diverse.
In contrast, the sources of multiple scattering and edge
scattering are relatively limited, which makes specular
scattering more challenging to recognize. Consequently,
the network’s recognition of specular scattering is some-

(a) (b)

Fig. 6. Training and testing performance of ConvNet: (a)
and (b) are the accuracy curves of the VP dataset and HP
dataset, respectively.

what lower compared to the other two. Nonetheless, the
above results indicate that the proposed ConvNet has the
ability to accurately identify different scattering mecha-
nisms. To verify the robustness and generalization abil-
ity of ConvNet, in section III we use ConvNet to rec-
ognize the scattering mechanism of two scatters not in
Table 1.

(a) (b)

Fig. 7. Confusion matrix based on ConvNet: (a) and (b)
are the recognition results of VP and HP test sets, respec-
tively. 1 = specular scattering, 2=edge scattering, and
3 = multiple scattering.

III. NUMERICAL RESULTS

In this section, the proposed ConvNet is employed
to recognize different scattering mechanisms under more
complex conditions. The initial step is to identify the
scattering mechanism of a combinatorial model that is
not included in Table 1. Subsequently, the scattering
mechanism of a complex model formed by canonical
geometries in Table 1 is identified. The effectiveness of
the proposed method can be demonstrated through these
arithmetic examples.

A. Coupled scatter

Coupled scatter comprise two cylinders of differ-
ent sizes as illustrated in Fig. 8: one with a diameter
and height of 600mm and the other with a diameter and
height of 500mm, separated by a distance of 100mm.
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Fig. 8. Coupled scatter.

The scattered field of the coupled scatter is calcu-
lated by SBR, with the incident wave frequency rang-
ing from 6 GHz to 18 GHz and the VP and HP inci-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Radar images of coupled scatters: (a) and (b) are radar images calculated by SBR for VP and HP, respectively,
(c) is the radar image calculated by PO, (d-f) are radar images of the decomposition of VP scattered field, and (g-i) are
radar images of the decomposition of the HP scattered field.

dent wave angles ranging from θ = 90◦,ϕ = −15◦ to
θ = 90◦,ϕ = 15◦. There are 128 sampling points for
both frequency and angle. The y-range resolution and x-
range resolution of the radar imaging are 0.0125m and
0.0239m, respectively.

The radar images for VP and HP are illustrated in
Figs. 9 (a) and (b), respectively, which show multiple
scattering centers between the two cylinders. In order
to assist in the depiction of the scattering centers in
Figs. 9 (a) and (b), we have labelled the different scat-
tering centers. Figure 9 (c) shows the radar image of
the coupled scatter calculated by PO, and its comparison
with Figs. 9 (a) and (b) indicates that multiple scattering
between cylinders have formed strong scattering centers
333, which could interfere with radar recognition.

We use the decomposition algorithm [1] to decom-
pose different scattering components from the row scat-
tered field of the coupled scatters. Alternatively, methods
such as CLEAN can be employed to extract scattering
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centers from radar images [15], and the correspond-
ing scattering data can be inverted using these extracted
centers.

(a) (b)

Fig. 10. Confusion matrix of coupled scatter: (a) and (b)
are the recognition results of the scattering mechanisms
decomposed from VP and HP scattered field of the cou-
pled scatter, respectively.

The decomposition results of VP and HP scattered
field of the coupled scatters are shown in Figs. 9 (d-
i). ConvNet recognition results of the decomposed scat-
tering components are shown in Fig. 10. It is evident
from the confusion matrix in Fig. 10 that the decom-
posed scattering mechanisms corresponding to 313 and
323 have been identified as specular scattering and the
decomposed scattering mechanism corresponding to 333
has been identified as multiple scattering mechanism,
which is consistent with our analysis. It should be noted
that there is no edge scattering in the scattered field
of the coupled scatter, so the second row in confusion
matrix is 0.

B. Complex scatter

Complex scatter is composed of canonical geome-
tries, including two sets of wings, a hemisphere, an ellip-
soid, and a cylinder as shown in Fig. 11. The dimensions
of the complex scatter are shown in Table 2. The angle
between the axis of the complex scatter and the xoz-
plane is 40◦. The scattered field of the complex scatter
is calculated by GTD and PO, respectively, with the inci-
dent wave frequency ranging from 6 GHz to 18 GHz and
the VP and HP incident wave angles ranging from θ =
90◦,ϕ =−15◦ to θ = 90◦,ϕ = 15◦. There are 128 sam-
pling points for both frequency and angle. The y-range
resolution and x-range resolution of the radar imaging
are 0.0125m and 0.0239m, respectively.

Radar images of the scattered field calculated by
GTD are shown in Figs. 12 (a) and (b). In order to assist
in the depiction of the scattering centers in Fig. 12, we
have labelled the different scattering centers. Figs. 12 (a)
and (b) both exhibit a point scattering center 1©. How-
ever, there are three pairs of sheet scattering centers in
Fig. 12 (a) for VP, but four such pairs in Fig. 12 (b) for
HP. By comparing the radar image of the PO-calculated

Fig. 11. Complex scatter.

Table 2: Dimensions of complex scatter
L: Length, W: Width, T: Thickness, D: Diameter (mm)

Long

Wings

Short

Wings

Hemisphere Ellipsoid Cylinder

L: 521,
W: 178,

T: 51

L: 308,
W: 166,

T: 50

D: 508 D: 508,
L: 371

D: 508,
L: 840

scattered field as shown in Figs. 12 (c) and Figs. 12 (a)
and (b), it can be seen that the additional slab scattering
centers in Figs. 12 (a) and (b) are obviously caused by
edge scattering.

The scattered field of the complex scatter is decom-
posed to obtain the scattering contributions correspond-
ing to different scattering centers, and we then use the
trained ConvNet to recognize which scattering mech-
anism they belong to. The classification recognition
results of different scattering contributions are shown in
Fig. 13.

In Fig. 13 (a), 1©, 4©, and 5© are identified as spec-
ular scattering, with a recognition rate of over 90%. 6©
and 7© are identified as edge scattering with a recogni-
tion rate of about 90%. These recognition errors may
be caused by the occlusion between structures. Because
the edge scattering and specular scattering of the com-
plex scatter’s long wings for VP jointly form 2© and
3©, ConvNet cannot accurately recognize 2© and 3©. In

Fig. 13 (b), the scattering mechanisms corresponding to
each scattering center have been effectively identified,
with a recognition probability of no less than 86%. 1©,
2©, 3©, 4©, and 5© are identified as specular scattering

mechanisms by the trained ConvNet, and 6© and 7© are
identified as edge scattering with a recognition rate of
about 90%.



17 ACES JOURNAL, Vol. 40, No. 01, January 2025

(a)

(b)

(c)

Fig. 12. Radar images of the complex scatter: (a) and
(b) are radar images calculated by GTD for VP and HP,
respectively, and (c) is the radar image calculated by PO.

There are two additional scattering centers 8© and
9© in Fig. 13 (b), which are identified as edge scattering.
This is due to the fact that the polarization characteristics

(a)

(b)

Fig. 13. Confusion matrix of the complex scatter: (a) and
(b) are the identification results of the scattering mech-
anisms decomposed from VP and HP scattered field,
respectively.

of the incident wave exert a considerable influence on the
edge scattering. In the HP case, a pair of slice scattering
centers is created in the radar image, which significantly
increases the probability of 2© and 3© being identified as
specular scattering compared to Fig. 13 (a).

It is worth noting that, for complex scatter, the com-
bination of canonical geometries results in a change in
their scattered field compared to that generated solely by
themselves. Therefore, although the recognition rate of
ConvNet for the scattering mechanism of complex scat-
ter is lower than that of the training dataset, the recog-
nition results in this paper have fully demonstrated the
effectiveness and generalization ability of the proposed
ConvNet.

Moreover, this paper validates the capacity of Con-
vNet to recognize different scattering mechanisms. Nev-
ertheless, due to the restricted quantity of data in the
dataset and the limited number of model types consid-
ered, we have not yet validated the network’s capacity to
identify scattering mechanisms for more complex mod-
els. However, we are gradually augmenting the dataset
with additional corresponding samples, which will allow
us to assess the network’s performance. This is a promis-
ing avenue for further investigation.

IV. CONCLUSION

This paper proposes a DL-based method for recog-
nizing scattering mechanisms, which demonstrates high
accuracy and robust generalization through numerical
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experiments. Results show that the method significantly
improves the identification of scattering mechanisms,
offering a reliable alternative to traditional experience-
based techniques. In particular, the method accurately
classifies different scattering centers in radar images,
even under challenging conditions. Moreover, the pro-
posed method exhibits strong potential for broader appli-
cations in radar imaging. For example, expanding its
use to scenarios such as traveling wave recognition
could further enhance both the precision and range of
scattering mechanism identification by incorporating a
wider variety of targets. The method’s ability to gen-
eralize across different scenarios highlights its versa-
tility, and future work will focus on exploring addi-
tional use cases to further optimize its performance and
applicability.
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Abstract – In this paper, we propose the design of
a zigzag antenna using machine learning (ML) tech-
niques. We trained the deep neural network that was
to be employed for the ML model using training data,
after which we evaluated the maturity of the trained
model using mean squared error and R-squared met-
rics. Next, we utilized random search in conjunction
with the trained model to derive a design of the opti-
mal zigzag antenna having good impedance matching
characteristics. We then validated the applicability of the
ML techniques in antenna design based on the agreement
between measured and simulated reflection coefficients.

Index Terms – Deep neural network, machine learning
technique, random search, zigzag antenna.

I. INTRODUCTION

Recently, the continued development of wireless
communication systems has led to antennas being con-
sidered as some of the most important components in a
wireless communication system [1]. In a wireless com-
munication system, the antennas located at the end-
point in the system architecture play an important role
in transmitting or receiving electromagnetic waves that
include various types of information. When designing
antennas for wireless communication, various character-
istics are generally considered, including antenna size,
impedance matching, radiation efficiency, radiating gain
and pattern, and polarization in the frequency band of
interest. Among the aforementioned characteristics of
antennas, antenna size is often evaluated to be important
because the size of the designed antenna determines the
applicability to the wireless communication. Therefore,
small antennas with antenna performance that satisfies
the demands for the target application are generally pre-
ferred.

In attempts to reduce antenna size, studies have
historically focused on the structure and material of
antennas. The zigzag-shaped antenna (zigzag antenna)
structure is representative to miniaturize antennas. The
zigzag-shaped wire is effective for achieving a compact
antenna design for use in constrained spaces due to the
bent wire at specific angles across multiple positions [2].

The zigzag-shaped wire is also effective for achieving the
desired antenna impedance by finely adjusting the pitch
angle and the electrical length of each wire-subsection.
This characteristic can facilitate good impedance match-
ing in the desired frequency band. Moreover, the zigzag
antenna offers the capability of having directional radi-
ation characteristics in a target direction by modifying
the arrangement of the wire-subsections [3]. It is there-
fore necessary to optimize antenna structure because the
aforementioned characteristics of the zigzag antenna are
dependent upon the shape of the zigzag wire [4–8].

To optimize the antenna structure, a genetic algo-
rithm (GA) and a particle swarm optimization (PSO)
technique have been employed in [4–6] and [7, 8],
respectively. Even though both GA optimization and
PSO provide globally optimum results, they have some
limitations; for example, when using either method, it
is necessary to verify the performance of sample anten-
nas through numerical analysis. The computation time
required for numerical analysis is an even more signif-
icant limitation in applying the optimization algorithm
to antenna design. In response to these limitations of
global optimization, we alternatively propose an antenna
performance prediction technique that utilizes machine
learning (ML) for time-efficient prediction of antenna
performance. We also validate this proposed method
for estimating antenna performance by comparing the
antenna performance predicted by ML with the corre-
sponding predictions of a commercial simulator. In the
following, section II explains the process of develop-
ing an ML model for predicting antenna performance,
while section III details the application of the trained ML
model to structural optimization of the zigzag antenna.

II. MACHINE-LEARNING-BASED
ANTENNA PERFORMANCE PREDICTION

The ML technique has recently been utilized in
various types of applications, including electromagnetic
applications. The applicability of ML techniques has
been extended to antenna design, where they are used
to substitute the numerical analysis based on Maxwell’s
equations [9]. The ML algorithms that are typically
applied in supervised learning include logistic regression
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(LR), support vector machine (SVM), decision tree
(DT), random forest (RF), neural network (NN), and oth-
ers [10]. Among them, NN is composed of three types
of layers: an input layer for receiving multiple input
data, an output layer that is responsible for the output
of the data, and hidden layers having multiple nodes
between the input and output layers. Moreover, NNs,
which are designed to mimic the principles and struc-
ture of the human brain, can generally be categorized
into artificial neural networks (ANN) and deep neural
networks (DNN) depending on the number of hidden
layers [11]. We have found many previous works show-
ing that DNN models trained with multiple hidden layers
achieve favorable prediction performance [12]. Inspired
by these works, we herein designed an antenna with good
impedance-matching characteristics by using ML based
on the DNN structure. In the following, we explain how
the ML process is composed of the generation and pre-
processing of training data, derivation, and validation of
ML model derivation.

A. Antenna structure

In this study, we used ML to design a zigzag antenna
with high-quality impedance-matching characteristics in
the frequency ranges from 950 to 1050 MHz and from
900 to 1100 MHz. Figure 1 illustrates the representative
structure of this zigzag antenna. The zigzag antenna con-
sists of five subsections (wire radius: 0.5 mm and mate-
rial: copper) determined by the bending point Pn (xn, zn)
in the x− z plane (n = 1, · · · ,5). To define the allowable
electrical antenna size, as shown in Fig. 1, we set the
zigzag antenna to exist in a hemisphere space as deter-
mined by kr of 2 on an infinite grounded plane, where k
is the wave number at 1000 MHz and r is the radius of
the sphere that encloses the entire antenna structure.

Fig. 1. Structure of zigzag antenna with five bending
points.

B. Generation and preprocessing of machine learning
data

To create an ML model that estimates the perfor-
mance of the proposed zigzag antenna, it is necessary

to have sufficient training data corresponding to various
antenna structures. In this study, we used training data
that included information on the location of the bending
points determining the antenna structure and the evalu-
ation values (Cost) indicating antenna performance. To
elaborate, we expressed the geometrical information of
the n-th point (n = 1, · · · ,5) on the proposed antenna
as the location (xn, yn, zn) in rectangular coordinates.
To evaluate the performance of a sample antenna in the
training process, we defined Cost as the average reflec-
tion loss in the frequency band of interest, as indicated
by equation (1). In (1), the antenna impedance Zant at the
frequency fm was derived using a Numerical Electromag-
netic Code (NEC) simulation [13]:

cost =
1
M

M

∑
m=1

∣∣∣∣Zant( fm)−Zo

Zant( fm)+Zo

∣∣∣∣ . (1)

Here, M, Zant (fm), and Zo are defined as the total
number of frequencies considered in the frequency bands
of interest (950 to 1050 MHz for type 1 or 900 to
1100 MHz for type 2), the antenna impedance at the con-
sidered frequency fm, and the characteristic impedance,
respectively. In this paper, Zo was set to 50 Ω , and M
was set to 101 and 201, resulting from the frequency
increment of 1 MHz in 950 MHz (= f 1) to 1050 MHz
(= f 101) and 900 MHz (= f 1) to 1100 MHz (= f 201),
respectively.

C. Machine learning execution and machine learning
model derivation

We used the training data that included geometri-
cal and performance information derived from sample
antennas 100,000 and 200,000 for the frequency bands
of interest from 950 to 1050 MHz and from 900 to
1100 MHz, respectively. We also used 70%, 15%, and
15% of the collected training data as training data, vali-
dation data, and test data, respectively. We then applied
the collected data to train the DNN model, as shown in
Fig. 2. In Fig. 2, the employed DNN model consists of
an input layer, hidden layers, and an output layer; the
input layer receives information about the antenna struc-
ture whereas the hidden layers compute weighted sums

Fig. 2. Structure of zigzag antenna with five bending
points.
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from various input nodes and apply an activation func-
tion to pass this value to the next hidden layer or the
output layer [14]. Finally, the output layer serves as the
ultimate result, where the evaluation value (Cost) repre-
senting the performance of the antenna is the output.

The DNN model used in this study is characterized
in Table 1, which details the number of nodes and type
of activation functions assigned to the input layer, hidden
layers, and output layer. In Table 1, types 1 and 2 indicate
the frequency bands of interest from 950 to 1050 MHz
and from 900 to 1100 MHz, respectively. As presented
in Table 1, we trained the DNN model using the adap-
tive moment (Adam) optimization technique with a batch
size of 1024 and a learning rate of 0.0001. Further,
to assess the maturity of the trained DNN model, we
used the mean squared error (MSE) and R-squared (R2),
which are respectively defined in equations (2) and (3),
as evaluation metrics. Based on equations (2) and (3), as
the DNN model becomes increasingly mature, the MSE
and R2 values approach 0 and 1, respectively, which
indicates that the trained ML model can predict values
closely resembling the actual ones [15].

MSE =
1
n

n

∑
k=1

(Yk − Ŷk)
2, (2)

R2 = 1− ∑n
k=1(Yk − Ŷk)

2

∑n
k=1(Yk − Ȳ)2 . (3)

Table 1: Specifications of the applied DNN model
Layer

Type

Number of Nodes Activation

FunctionType 1 Type 2

Input layer 10 -

Hidden
layers

1 500 250

ReLU

2 250 150
3 250 150
4 125 150
5 50 150
6 25 110
7 - 50
8 - 36

Output layer 1 Linear

Table 2: Validation of predictable capability of the trained DNN model

Antenna (Ant.) No.
Location of x (mm) Location of z (mm) Predicted Cost

Error (%)
x1 x2 x3 x4 x5 z1 z2 z3 z4 z5 ML NEC

Ant. 1 (type 1, kr = 1.94 ) −9 15 −21 6 −52 7 20 26 51 76 0.301 0.3 0.09
Ant. 2 (type 2, kr = 1.98 ) −52 77 −58 46 −3 7 45 57 82 89 0.299 0.3 1.04
Ant. 3 (type 1, kr = 1.94 ) −3 52 −77 46 −21 13 32 51 67 89 0.401 0.4 0.23
Ant. 4 (type 2, kr = 1.93 ) −58 70 −64 40 −21 13 32 57 82 89 0.405 0.4 1.19
Ant. 5 (type 1, kr = 1.90 ) −21 34 −3 70 −28 20 26 32 57 82 0.503 0.5 0.65
Ant. 6 (type 2, kr = 1.92 ) −40 9 −34 83 −52 7 20 32 38 70 0.498 0.5 0.40
Ant. 7 (type 1, kr = 1.96 ) −83 64 −9 46 −28 26 32 70 76 89 0.601 0.6 0.03
Ant. 8 (type 2, kr = 1.80 ) −83 64 −40 9 −15 20 51 57 70 82 0.597 0.6 0.55

Yk is the kth observed value, Ŷk is the corresponding
predicted value for Yk, Ȳ is the mean of the observed
values, and n is the number of observations.

D. Validation of the trained machine learning model

To verify if the trained ML model can accurately
predict the target performance of a zigzag antenna, sam-
ple antennas with simulated Cost values of 0.3, 0.4, 0.5,
and 0.6 were selected using commercial NEC simulation.
The predicted Cost values of these selected antennas
were then compared with their actual Cost values [10].
As can be seen in Table 2, the Cost predicted by the ML
model exhibits a small error rate of approximately 1.2%
when compared to the Cost derived from the NEC simu-
lation. This result indicates that the trained ML model
can be used effectively in predicting the impedance-
matching characteristic of zigzag antennas.

III. DERIVATION AND VALIDATION OF
OPTIMIZED ANTENNAS

To design zigzag antennas with excellent
impedance-matching characteristics, the validated
ML model was used in conjunction with a random
search technique to derive antenna structures that
achieve minimized Cost values [13]. Table 3 presents
the geometrical information and Cost values of the
optimal antennas obtained from a random search. When
comparing the Cost predicted by the ML model to that
obtained from commercial NEC simulations, it was
found that the ML model provides relatively accurate
predictions with an error rate under 1%. To practically
validate the impedance matching characteristics of the
optimal antenna as listed in Table 3, the zigzag antennas
with the optimal design (Opt. Ants. 1 and 2) were
fabricated on a finite ground plane of 250 mm×250 mm
using a copper wire with a thickness of 1 mm.

Figures 3 and 4 show images along with the mea-
sured and simulated reflection coefficients of the fabri-
cated optimum zigzag antennas of the types 1 and 2,
respectively. The measured 3 dB fractional bandwidths
of the fabricated zigzag antennas for types 1 and 2
were, respectively, determined to be 37.5% from 911 to
1286 MHz and 29.4% from 887 to 1181 MHz at the
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Table 3: Geometrical parameters and Cost of the optimal zigzag antennas

Antenna (Ant.) No.
Location of x (mm) Location of z (mm) Predicted Cost

Error (%)
x1 x2 x3 x4 x5 z1 z2 z3 z4 z5 ML NEC

Opt. Ant. 1 (type 1,kr = 1.97 ) −52 83 −70 21 −3 7 45 57 76 89 0.180 0.181 0.86
Opt. Ant. 2 (type 2, kr = 1.96 ) −55 74 −70 24 −18 10 46 53 80 92 0.255 0.255 0.07

(a) (b)

Fig. 3. Image of the fabricated optimum zigzag antennas:
(a) type 1 antenna and (b) type 2 antenna.

(a)

(b)

Fig. 4. Impedance matching characteristics of the fabri-
cated optimum zigzag antennas: (a) type 1 antenna and
(b) type 2 antenna.

operating frequency of 1 GHz. These measured results
show favorable agreement with those from a commercial
NEC simulation based on a method of moments, which
were 27.7% from 916 to 1193 MHz and 29.4% from
887 to 1181 MHz, respectively. To interpret the operat-
ing principle of the fabricated antenna, we investigated
the amplitude and phase of the induced current. From the
investigated results, we found that the fabricated antenna
works in a resonating mode at a lower resonance fre-
quency and a traveling mode at a higher resonance fre-
quency. Namely, it was found that the fabricated antenna
works as multiple antennas of a monopole and dipoles
in the resonating mode and operates as a traveling wave
antenna having a broad matching bandwidth in the trav-
eling mode [16].

(a) (b)

Fig. 5. Total gain of the fabricated optimum antenna of
type 1 on (a) x − z plane (φ = 0◦) and (b) y− z plane
(φ = 90◦).

(a) (b)

Fig. 6. Total gain of the fabricated optimum antenna of
type 2 on (a) x − z plane (φ = 0◦) and (b) y− z plane
(φ = 90◦).

In addition, we measured the radiation patterns of
the fabricated antennas and compared with the simu-
lated results, as shown in Figs. 5 and 6. In Figs. 5
and 6, the fabricated zigzag antennas of types 1 and 2
have maximum total gains of 5.93 dBi and 5.25 dBi
in the direction of θ = 0◦ at 1 GHz, respectively.
When compared to the radiation patterns derived from
NEC simulation under the assumption that the ground
plane is extended infinitely, the overall radiation pat-
terns were similar to the simulated radiation patterns
except that the measured gains are overall lower than
the simulated gains by 1∼2 dB. We believe that the
difference between the measured and simulated 3 dB
matching bandwidths is caused by cable loss, the
effect of finite ground, and fabrication and measurement
errors.

IV. CONCLUSION

In this paper, we designed a zigzag antenna
with good impedance matching characteristics in the
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frequency ranges from 950 to 1050 MHz and from
900 to 1100 MHz using the ML technique. The ML
model with DNN was trained using training data con-
sisting of geometry and performance (Cost) information,
where the performance information was derived from
the evaluation of the average matching characteristic in
the frequency band of interest. The maturity of the ML
model was evaluated using MSE and R2 metrics, and
the trained ML model was then validated by comparing
the impedance-matching performance predicted by the
trained ML model with those derived from commercial
simulations.

Next, the validated ML model was used to derive
an optimal structure of a zigzag antenna with the low-
est Cost value (excellent impedance matching charac-
teristics) through random search. Subsequently, the pre-
dicted Cost for the optimal antenna structure was com-
pared with that calculated using a commercial simula-
tor. Further, after fabricating the optimal zigzag antenna,
we measured the reflection coefficients to revalidate the
effectiveness of the proposed design method based on
the ML technique. When comparing the measured reflec-
tion coefficients with those derived by the commer-
cial simulator, we confirmed that both reflection coef-
ficients show good agreement with each other. Conse-
quently, we conclude that the antenna design method
based on the ML technique can be effectively employed
for optimal antenna design. The maturity of the ML
model was evaluated using MSE and R2 metrics, and
the trained ML model was then validated by comparing
the impedance matching performance predicted by the
trained ML model with those derived from commercial
simulations.

Next, the validated ML model was used to derive
an optimal structure of a zigzag antenna with the low-
est Cost value (excellent impedance matching charac-
teristics) through random search. Subsequently, the pre-
dicted Cost for the optimal antenna structure was com-
pared with that calculated using a commercial simula-
tor. Further, after fabricating the optimal zigzag antenna,
we measured the reflection coefficients to revalidate the
effectiveness of the proposed design method based on
the ML technique. When comparing the measured reflec-
tion coefficients with those derived by the commercial
simulator, we confirmed that both reflection coefficients
show good agreement with each other. Consequently, we
conclude that the antenna design method based on the
ML technique can be effectively employed for optimal
antenna design.
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Abstract – This paper presents the design and tests
of a miniaturized flat Archimedean spiral antenna. The
antenna has two gold Archimedean spiral arms on the
surface of a thick alumina cylinder. This cylindrical sub-
strate has an outer diameter of 1.1 mm and a thickness of
0.52 mm. These reduced dimensions make the presented
antenna at least an order of magnitude smaller than any
previous planar Archimedean spiral antenna reported in
the literature. This small antenna can be used for commu-
nication in small devices, wireless power transmission
for implantable sensors, microrobots and other micro
applications. Despite its reduced size, the antenna has a
relatively low resonant frequency, which was measured
at 4.9 GHz. The characteristic length of the antenna can
be reported as only 0.018λ . The design and simulations
of the fundamental parameters of the antenna are pre-
sented, showing a uniform radiation pattern. Also, the
manufacturing process is described. Seven prototypes of
the antenna have been manufactured and their reflection
coefficient was measured. The tests showed good agree-
ment with simulations. The repeatability of the measure-
ments and the reliability of the fabrication process are
demonstrated.

Index Terms – Antenna prototype, Archimedean spiral,
finite element simulation (FEM), miniaturization.

I. INTRODUCTION

Spiral antennas are commonly used in low-
frequency applications. These antennas achieve low res-
onant frequencies by extending their electric path over
the entire surface of their substrates. They can have mul-
tiple morphologies that can be used depending on the
requirements of the particular application.

Some of these antennas have circular [1, 2] or square
spirals (meanders) [3, 4]. Concerning circular spirals,
Archimedean spiral antennas are generally used because

they have a wide bandwidth [5, 6]. Spiral architecture
may be suitable for small array applications [7], which
allows us to create omnidirectional antennas by connect-
ing several of these spirals in arrays [8].

There are several articles related to improvements
in Archimedean spiral antennas [9], for example in
the optimization of the antenna substrate [10, 11]. The
authors of [12] present a four-armed Archimedean spi-
ral antenna that uses transmission lines to perform
the necessary impedance transformation between the
impedance of the spiral and the 50 Ω port. In [13], a
modified Archimedean spiral antenna without balun is
presented. A frequency reconfigurable Archimedean spi-
ral antenna is shown in [14]. The frequency reconfigu-
ration is done by a pair of meandered slotlines. There is
even work on Archimedean spiral antennas on conduct-
ing textile filaments [15] that operate in curved shapes.
Some papers present research on low profile [16], com-
pact [6, 8, 17, 18], or miniaturized [19, 20] Archimedean
spiral antennas. However, these antennas are larger than
several centimeters.

In this paper, the development of a millimeter-
sized Archimedean spiral antenna is presented, achiev-
ing miniaturization while maintaining a low resonant
frequency. The dimensions of the proposed antenna are
at least one order of magnitude smaller than those found
in the literature. Furthermore, the characteristic length
of the antenna, which compares the resonant frequency
with the larger dimension of each antenna, is at least
one order of magnitude smaller, proving the significant
miniaturization achieved.

Miniaturized antennas can replace larger antennas
to perform the same function in a smaller volume, for
example in communication devices, or to enable wire-
less communication in new areas such as microrobotics
[21], micromagnetic coils [22, 23], or implantable medi-
cal devices [24, 25].
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The resonant frequency of antennas usually
decreases in inverse proportion to the antenna size
[26, 27]. That is, the lower the frequency, the larger
the antenna. This effect is one of the main difficulties
in developing miniaturized antennas that can operate
at low frequencies. However, having a low resonance
frequency can be beneficial in some situations, such as
in the development of antennas for intracorporeal appli-
cations. In these applications, the lower the resonance
frequency, the lower the losses due to the absorption of
electromagnetic energy in the human body.

Following this track, numerous studies have been
published on miniaturized antennas of different mor-
phologies, many of them with medical purposes, mainly
patch-on-chip antennas [28–30] and helical antennas
[31–33]. However, no Archimedean spiral antennas have
been found with sizes in the same order as the one pro-
posed in this paper.

This paper presents a patch antenna with
Archimedean spirals of only 1.1 mm diameter and
0.52 mm height. Despite its small size, the antenna
has a resonant frequency of 4.9 GHz. The design and
simulations of the antenna are presented, as well as
measurements of the reflection coefficient on fabricated
prototypes. These measurements demonstrate high
repeatability and accuracy of the prototypes.

II. ANTENNA DESIGN AND GEOMETRY
DESCRIPTION

The antenna was designed specifically with
small dimensions and low resonant frequency. The
Archimedean spiral generated the following expression,
with ds being the diameter of the spiral, ds0 the internal
diameter, a the growth rate, and θ the angular position.
By equating the arm width to the separation between
arms, a self-complementary structure is achieved and,
therefore, with real and constant impedance throughout
the frequency:

ds = ds0 +2aθ . (1)
Following the radiation theory developed by Kaiser

about the Archimedean spirals of two arms [34], it can
be deduced that the diameter the spiral will have when
the currents of both arms are in phase will be:

ds =
λ
π
. (2)

Knowing the expression that relates frequency to
wavelength based on the speed of light, it can be con-
cluded that the diameter of the spiral is inversely propor-
tional to the frequency, and can be calculated with the
following expression:

ds =
c

π f
. (3)

Finally, it is worth mentioning that an improvement
can be achieved in terms of gain value and beam width by

adding a margin to the external radius due to the reduc-
tion of edge effect [27, 35]. However, this also entails an
increase in the diameter of the spiral, so a compromise
must be maintained between the size of the antenna and
its minimum gain. The design equations for spiral anten-
nas, therefore, are:

SOD = 1.5 · c
π fmin

. (4)

SID =
1
3
· c

π fmax
. (5)

In addition, the dielectric constant of the substrate
used must be considered, which modifies the diameter of
the previous

SD =
c

π f
√

εr
. (6)

The theoretical conclusions for frequencies between
1 and 5 GHz are shown in Fig. 1.

Fig. 1. Theoretical resonant frequency of Archimedean
spiral antennas as a function of their external diameter.

The geometric and resonant frequency requirements
could not be reached by using standard Archimedean spi-
ral antennas. Thus, the design process continued through
FEM simulation, following an iterative process. Differ-
ent constructions were analyzed, by varying the geomet-
ric parameters of the antenna, changing the arms shape,
using substrates of different materials and changing the
value of the port impedance. Finally, it was possible to
simulate an antenna that met the geometric and resonant
frequency requirements.

The final antenna design has a thin cylinder substrate
of alumina with a relative permittivity (εr) of 9.4 and
dielectric loss tangent (tanδ ) of 0.008. It has an outer
diameter (SOD) of 1.1 mm, an inner diameter (SID) of
0.18 mm, and a thickness (ST ) of 0.52 mm. The internal
bore was created during fabrication to separate the arms
of the antenna. To the authors’ knowledge, there are no
studies in the literature on Archimedean spiral antennas
of this size.

On the surface of the substrate there are two gold
Archimedean spirals that form the two arms of the
antenna. The arms are 0.02 mm wide (AW ) and 0.02 mm
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thick (AT ). Each arm has five turns separated by 0.02
mm (AS).

In the center of the cylinder, on the same surface as
the spirals, there is the antenna port. The port was defined
at a position with a spacing (PL) of 0.24 mm, rather than
at the end of the arms, because the RF probe tip avail-
able in the laboratory required this minimum distance.
The port width (PW ) is 0.05 mm. Figure 2 shows the geo-
metric design of the antenna, and Table 1 gives the main
dimensions of the antenna.

Fig. 2. Antenna design with the main dimensions in mil-
limeters.

Table 1: Main dimensions of the antenna
Parameter Nomenclature Value (mm)

Port length PL 0.24
Port width PW 0.05

Substrate outer diameter SOD 1.1
Substrate inner diameter SID 0.18

Substrate thickness ST 0.5
Arm width AW 0.02

Arm separation AS 0.02
Arm thickness AT 0.02

III. ANTENNA FINITE ELEMENT MODEL
SIMULATIONS

All antenna simulations were performed using the
Ansys Electronics Desktop 2020 electromagnetic tool
HFSS [36]. A model of the antenna was created accord-
ing to the specifications described in the previous
section. Simulations of the antenna as a single compo-
nent were performed from 0 to 6.5 GHz, with a step of
0.1 GHz. The preliminary values of the impedance and

resonant frequency of the antenna were used to narrow
the frequency range of the simulation and improve accu-
racy. A time domain analysis with a discrete frequency
sweep was performed from 3.5 to 5 GHz, with a step of
0.01 GHz, and a port with the same determined antenna
impedance of 0.19 Ω. The number of the solved elements
is 127,841 and the mesh is based on hexahedrons.

The resonant frequency of the antenna was found
to be 4.49 GHz, with a reflection coefficient (S11) of -
14.41 dB [37]. The characteristic length of the antenna
can be expressed as 0.016λ (with the simulated reso-
nant frequency). The reflection coefficient as a function
of frequency is shown in Fig. 11. As defined by Harold
Wheeler, this is an electrically small antenna because it
occupies a volume of less than a radian sphere (0.16λ )
[35]. It has an inherently narrow bandwidth, and it is
expected to have a low gain. The expected theoretical
gain of the antenna can be calculated from the radiation
power factor formula for electrically small antennas:

PF =
antenna volume
radian sphere

=

(
2πr
λ

)3

. (7)

With a radius of 0.008λ , a radiation power factor of
0.000127 and a gain -38.962 dBi are obtained.

A simulation was performed at the resonant fre-
quency of 4.49 GHz to determine the gain and radia-
tion pattern of the antenna. The 3D radiation pattern of
the antenna is shown in Fig. 3, with a maximum simu-
lated gain of -42.2 dBi, close to the calculated theoreti-
cal value. As expected, the antenna exhibits a symmetri-
cal radiation pattern around the YZ plane. The maximum
gain is achieved in the Z axis.

Fig. 3. Simulated 3D radiation pattern of the antenna.

The radiation pattern of the two main orthogonal
planes of the antenna is shown in Fig. 4. Figure 4 (a)
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shows the plane XY where the spiral is located. It is not
symmetrical in either the Y-axis or the X-axis. The sym-
metry axes are rotated by 4◦ with respect to the orthog-
onal vectors. According to this view, the radiation pat-
tern has a maximum at phi= 94◦ and a null at phi= 4◦.
Figure 4 (b) is the plane XZ, the plane perpendicular to
the surface of the spiral, which does not contain the ends
of the arms. In this view, the radiation pattern presents
a maximum at theta= 90◦ and a null at theta= 0◦. The
antenna has omnidirectional radiation at the plane YZ,
the plane perpendicular to the surface of the spiral that
contains the ends of the spiral arms.

(a) (b)

Fig. 4. Simulated radiation pattern of the antenna: (a)
plane XY and (b) plane XZ.

The polarization of the antenna, according to Fig. 5,
is linear. The surface current distribution of electrically
small antennas results in this type of polarization [9].

Fig. 5. Simulated axial ratio of the antenna.

The simulated gain and efficiency of the antenna at
different frequencies near the resonant frequency have
also been simulated. They are shown in Figs. 6 and 7,
respectively.

The curves of the simulated gain and the efficiency
of the antenna are both linear, and they increase with fre-
quency. The gain is low as explained before, and so is the
radiation efficiency as a consequence of the low gain.

Subsequently, the equivalent circuit of the antenna
was determined. It is important to calculate the necessary
matching circuits for the final applications. The equiva-

Fig. 6. Simulated gain of the antenna.

Fig. 7. Simulated radiation efficiency of the antenna.

lent circuit of the antenna was calculated using the clas-
sical approximation of a resonant circuit. The behavior
shown in the Smith chart leads to a series resonant cir-
cuit, as shown in Fig. 8.

Fig. 8. Simulated reflection coefficient of the antenna.

The resistance value is determined directly at the
resonant frequency. For values of L and C, the 3 dB band-
width was determined for impedance around the resonant
frequency. The imaginary part of the antenna impedance,
determined at f1 or f2, allows the L and C values to be
calculated. This is shown in Table 2. As can be seen, the
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antenna impedance is very low, another reason to justify
the lower value of the gain.

Table 2: Resonant frequency, bandwidth, and impedance
values of the antenna

F0

(GHz)

3 dB Bandwidth Limits f2-f1

(GHz)

Z at f0

(ohm)

4.49 4.505-4.475 0.19

Using the relations of input impedance, the follow-
ing values listed in Table 3 are obtained.

Table 3: Impedance values of the equivalent circuit of the
antenna

R (ω) L (nH) C (pF)

0.19 1.1683 42.45

As the antenna impedance is not a standard value,
it will need a matching circuit specifically designed for
each application. Furthermore, this mismatch must be
considered when comparing simulations with measure-
ments. The electrical parameters of the measurement
system will be introduced in the simulation to compare
both in a more realistic way.

IV. ANTENNA MANUFACTURING

The Archimedean spiral antenna was then fabricated
and tested. Seven prototypes of the Archimedean spiral
antenna were fabricated in a clean room by microlaser
machining according to the geometric design of section
II. A diagram of the manufacturing process is shown in
Fig. 9.

Fig. 9. Archimedean spiral antenna manufacturing pro-
cess: 0. initial substrate, 1. substrate with gold plating,
2. laser micromachining, 3. substrate with the microma-
chined spiral, 4. spiral center microdrilling, 5. manufac-
tured Archimedean spiral antenna.

First, a 20 μm thick layer of gold was chemically
deposited on the surfaces of a 0.5 mm thick alumina
sheet, from which a circle of 1.1 mm diameter was cut by
micromilling (step 1). The spiral shape was laser micro-
machined onto the gold layer using an LPKF ProtoLaser
U4 machine (steps 2 and 3). Finally, a microdrill was
made in the center of the piece (step 4), finishing the
manufacturing process (step 5). Figure 10 shows images
of the fabricated prototypes.

Fig. 10. Prototypes under the microscope.

V. ANTENNA MEASUREMENT RESULTS

Reflection coefficients of the prototypes were mea-
sured using a Keysight ENA E5063A Vector Network
Analyzer, a MPI TITAN RF TS200A probe, digital
microscopes and travel translation stages for positioning
the RF probe. The test setup is shown in Fig. 11 (a), the
microprobe laying in the two ends of the spiral arms in
Fig. 11 (b), and the tips of the differential microprobe in
Fig. 11 (c).

Fig. 11. Reflection coefficient measurements setup.

The measured reflection coefficients of the seven
prototypes compared to the simulations are shown in
Fig. 12.
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Table 4: Comparison of Archimedean spiral antennas
Reference Dimensions Resonant Frequency (GHz) Characteristic Length

[6] 36×36×20 mm3 2-6 0.24λ×0.24λ×0.13λ
[8] D = 72 mm 1.2-3.6 0.29λ
[16] D = 9 mm 8-16 0.24λ
[17] 37.5×37.5×20 mm3 1.99 0.25λ×0.25λ×0.13λ
[18] D = 23.2 mm 4.6-9 0.356λ
[19] 19.77×20.72 mm2 0.3-16 0.02λ×0.021λ
[20] 30×30×3.048 mm3 2-6 0.2λ×0.2λ×0.02λ

This work (simulated) 1.1×1.1×0.537 mm3 4.49 0.016λ
This work (measured) 1.1×1.1×0.537 mm3 4.9 0.018λ

Fig. 12. Open air simulated reflection coefficient, simu-
lated reflection coefficient with capacitor, and measured
reflection coefficients of each prototype.

As can be seen in Fig. 11, all measurements are
accurate and repeatable, showing a resonant frequency
at 4.9 GHz with a reflection coefficient of -12 dBi. The
characteristic length of the antenna can be expressed as
0.018λ (with the measured resonant frequency).

There is a difference between the simulated and the
measured resonant frequency, which is a consequence of
the capacitive effect caused by the RF probe. The RF
probe was calibrated with the MPI calibration substrate
AC-3 prior to testing. This difference is not a calibration
error, but an effect caused by the probe due to its larger
size compared to the antennas.

A parametric simulation was performed including a
capacitor to model the effect of the RF probe. With a
capacitor of 8.9 pF the resonant frequency was shifted
to 5.7 GHz, shown in Fig. 11. The remaining difference
between the two resonant frequencies can be attributed
to be differences in the properties of the simulated mate-
rial and the actual substrate, and differences in the final
dimensions of the prototypes due to the tolerances of the
manufacturing process.

Regarding the studies of Archimedean spiral anten-
nas reported in the literature, they all have dimensions
at least one order of magnitude larger than the one
presented in this paper. Furthermore, the characteristic
length of the antenna, which compares the resonant fre-
quency with the larger dimension of each antenna, is at
least one order of magnitude smaller, proving the great
miniaturization achieved. The only Archimedean spiral
antenna with a similar characteristic length is the one
presented in [19], but it has a surface area more than 300
times larger. Table 4 compares the resonant frequency
and dimensions of the developed Archimedean spiral
antenna with those of the publications analyzed.

VI. CONCLUSION

In this paper, an ultra-miniaturized planar
Archimedean spiral antenna is proposed. The antenna
has a diameter of 1.1 mm and a thickness of 0.52 mm,
which is at least an order of magnitude less than the
Archimedean antennas found in the literature. The
proposed antenna could be used in telecommunication
devices to perform the same function at a smaller
volume, or in cutting-edge applications such as commu-
nication microsystems, microrobotics, or implantable
medical microdevices. The results of the finite element
simulations are shown, as well as the measurements
demonstrating the operation of the antenna at a resonant
frequency of 4.9 GHz with a reflection coefficient of -12
dB. The measurements are in good agreement with the
simulation results.
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Abstract – A machine learning (ML) framework is pro-
posed to achieve the automatic and rapid optimization
of antenna topologies. A convolutional neural network
(CNN) is utilized as a surrogate model (SM) and is
combined with reinforcement learning (RL) algorithms.
Specifically, the RL agent interacts with simulation soft-
ware to learn. Data accumulated from electromagnetic
(EM) simulations are used to train the SM. The CNN-
based SM predicts antenna performance based on the
topology of the antenna. Subsequently, the SM replaces
EM simulations within the RL training environment.
The RL agent interacts with the CNN-based SM to
search for the optimal topology. This approach signifi-
cantly reduces dependence on time-consuming EM sim-
ulations. To validate the effectiveness of the optimization
method, a center-fed microstrip patch antenna is opti-
mized. Simulation results demonstrate that, compared
to other optimization methods, impedance bandwidth is
improved, while the number of simulation samples and
optimization time are significantly reduced.

Index Terms – Convolutional neural network (CNN),
machine learning (ML), microstrip antenna, reinforce-
ment learning (RL), surrogate model (SM), topology
optimization.

I. INTRODUCTION

Modern electromagnetic (EM) design typically
relies on extensive EM simulation software. Conse-
quently, it poses significant challenges to engineers due
to the time-consuming and intricacies of the process.

To address these challenges and alleviate the burden on
human engineers, machine learning (ML) has been intro-
duced into antenna design. Various ML models, such
as gaussian process regression (GPR) [1], support vec-
tor machines (SVM) [2], and convolutional neural net-
works (CNN) [3, 4], have been employed as surrogate
models (SMs). These models enable the rapid predic-
tion of antenna performance responses, thereby signifi-
cantly reducing the calculation costs associated with EM
simulations. Additionally, CNN [5] and artificial neu-
ral networks (ANN) [6] have been utilized to design
inverse models for predicting antenna structural param-
eters. Genetic algorithms (GA) [7] and particle swarm
optimization (PSO) [8] have also been applied to opti-
mize antenna topologies. However, these ML-assisted
methods exhibit considerable limitations. For instance,
SMs require human intervention to provide prior condi-
tions for training samples and metaheuristic algorithms
demand extensive population iterations.

To further reduce dependence on prior domain
knowledge and achieve automated topology design,
reinforcement learning (RL) is utilized to establish opti-
mal models for antenna topology optimization. RL inter-
acts with the environment and dynamically adjusts the
agent’s actions. This makes RL suitable for solving com-
plex decision-making tasks in antenna design. In pre-
vious studies, RL has been applied to edge structure
design of antennas [9] and the optimization of complex
antenna arrays [10]. However, traditional RL methods
necessitate a substantial dataset for achieving satisfac-
tory performance.
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A RL-based method is proposed to optimize antenna
topologies and accelerate the optimization process. The
method integrates CNN into the RL framework. Initially,
the RL framework learns from interactions with full-
wave simulation software. Actions are taken by the RL
agent to maximize reward signals. This process leads to
the identification of optimal antenna topologies. Subse-
quently, the acquired data are used to train the CNN. The
trained CNN serves as a SM, replacing the simulation
software. Antenna performance is predicted by the SM
based on the topology. This allows RL to interact with
the CNN instead of relying on expensive EM compu-
tations. Efficient automated design optimization is thus
achieved.

A microstrip antenna is optimized using this
method. Simulation results indicate that, compared to
other ML algorithms, the antenna achieves a wider
impedance bandwidth with reduced optimization time
and without prior knowledge intervention.

II. INTRODUCED METHODOLOGY
A. Optimization process of the introduced method

The workflow of the introduced method is illus-
trated in Fig. 1. The entire design process is divided into
three stages. In the data collection stage, state, action,
and reward are defined. The RL-based agent generates
a topology structure as an action derived from the ini-
tial state, and transmits it to the simulation software. The
software performs simulations on the provided topology
structure, generating the corresponding antenna perfor-
mance as the new state. The agent interacts with full-
wave simulation software to learn. A training dataset that
correlates antenna topologies with their performance is
generated. The collected data are primarily used to train
the RL algorithm. Additionally, the data are repeatedly
used in the second stage to train the CNN. In this pro-
cess, antenna topologies serve as inputs to the CNN,
while performance parameters are used as outputs. In the
RL stage, when the CNN is trained, the RL algorithm
stops interacting with the simulation software and inter-
acts directly with the CNN. In this scenario, a significant
quantity of training data can be gathered swiftly, which
aids in the rapid convergence of the RL-based model.
The deep deterministic policy gradient (DDPG) algo-
rithm is employed as the RL algorithm due to its suit-
ability for handling spatial problems of high dimension
and continuity. During the deployment stage, the trained
RL model is used to optimize antenna topologies. The
RL model continuously adjusts the antenna topologies. If
the output samples do not meet the design requirements,
they are reintroduced into the CNN’s training dataset.
Retraining is performed until the desired design objec-
tives are achieved.

Start

Environment
(CNN)

Meet the design 
requirements

End

DDPG model
training

Run trained DDPG 
model

Simulation software
validation

 Data-collection

yes

no

RL Deploy

CNN model
trainingDDPG model

training

Environment
(HFSS)

Forming a dataset that correlates 
antenna topology structures with 

their performance

Define state, 
action, and reward 

action state

actionstate

Fig. 1. Flowchart of the algorithm optimization.

B. Convolutional neural networks

CNN is a mathematical structure, typically com-
posed of three types of layers: convolutional layers, pool-
ing layers, and fully connected layers. In this paper, CNN
is employed as SM to replace simulation software. The
input to the CNN is an image of the antenna topology,
and the output is a performance curve.

The CNN architecture employed is shown in Fig. 2.
The initial two layers focus on extracting features, and
the third layer maps these features to produce the final
output, such as antenna performance parameters corre-
sponding to the respective topologies. Convolutional lay-
ers are fundamental components of CNN. They generally
comprise linear as well as nonlinear operations, includ-
ing convolution and activation.

Convolution + ReLU Convolution + ReLU

Pooling Pooling

Fully connected

Antenna

Performance

Fig. 2. CNN framework diagram.

The convolution operation involves applying a set of
filters (kernels) to the input tensor. Each filter convolves
over the width and height of the input tensor, generating
a two-dimensional activation map. Mathematically, for
input X and filter W, the convolution operation can be
formulated as:

Zi, j = (X ∗W )i, j = ∑
m

∑
n

Xi+m, j+nWm,n, (1)

where Z represents the output feature map, and i and j
denote the spatial dimensions of the output.

To enhance nonlinearity, the output of the convo-
lution operation is passed through an activation func-
tion. A rectified linear unit (ReLU) activation function
is employed, which is defined as follows:

ReLU(z) = max(0, z). (2)
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After the convolutional layer, pooling layers are
employed to reduce the spatial dimensions of the fea-
ture maps. In max pooling, the maximum value within a
specified window is selected to down sample the feature
maps. This can be expressed as:

Z′
i, j = maxm,nZsi+m,s j+n, (3)

where s is the stride of the pooling operation. The output
of the final pooling layer is flattened and passed through
one or more fully connected layers. In the fully con-
nected layers, each neuron is connected to every neuron
in the preceding layer. The final output layer for predict-
ing antenna performance can be described as follows:

y =W ·X + b, (4)
where W is the weight matrix, X is the input vector from
the final pooling layer, and b is the bias vector.

To balance computational cost and modeling capa-
bility, the employed CNN consists of two stacked con-
volutional and pooling layers, followed by a fully con-
nected layer. Through this architecture, the model effec-
tively extracts features and maps them to the final output
for antenna performance prediction.

C. DDPG algorithm

The DDPG [11] algorithm is illustrated in Fig. 3.
It is implemented using two neural networks. The actor
network generates a probability matrix (apre) of antenna
topologies based on the current state (s). The apre repre-
sents the probability of metal presence in each grid cell,
with each element ranging from 0 to 1. This probability
matrix is converted into an action (a) through the image
mapping topology (IMT) module and is then sent to the
environment, as shown in Fig. 4. The critic network takes
the current state (s) and the action (a) generated by the
IMT as inputs, then produces the discounted cumulative
reward of the current policy.

`
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 θ  θ
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Replay buffer 

Actor Critic
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Fig. 3. DDPG algorithm framework diagram.
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Fig. 4. Image mapping topology.

To enhance the stability of the algorithm and ensure
its convergence, target networks and replay buffer are
employed in DDPG. The target network provides slowly
updated parameters as targets, ensuring a smoother con-
vergence path for DDPG. Experiences, including states,
actions, rewards, and next states (s, a, r, s′), are stored
in the replay buffer for subsequent training. The replay
buffer aids in disrupting the relationship between succes-
sive experiences, thereby improving learning efficiency.
Throughout the DDPG training process, temporal differ-
ence errors (TD-loss) are used as learning signals, and
the network parameters (θ ) are updated through gradient
descent.

The implementation of the DDPG algorithm
requires states, actions, and rewards to be predefined.
The specifics are detailed below.

(1) state: At time step t, the state st consists of the
reflection coefficients S11t :

st = (S11t). (5)

(2) action: At time step t, the action at is represented by
the matrix of the antenna topology:

at = f (apre(t)) =

{
1,ai ≥ 0.5
0,ai < 0.5 = (at1,at2, · · · ,atn).

(6)

(3) reward: Bt represents the number of frequencies
within the 1.9-3 GHz range that are below −10 dB.
The magnitude of the reward is proportional to the
bandwidth Bt variation. The value of the threshold
Bthre should be flexibly adjusted according to spe-
cific problems and requirements:

r(st ,at) =

⎧⎨
⎩

(Bt −Bt−1)
/

Bthre, Bt ≥ Bthre
−0.1, Bt < BthreBt ≥ Bt−1
−1, otherwise.

(7)

The reward function defines the immediate reward
obtained by the agent when executing a specific
action in a particular state. The primary objective of
the agent is to optimize its action strategy by max-
imizing the discounted cumulative reward. The Q-
function is provided in [12]:

Q(st ,at) = E

[
∞

∑
k=0

γkrt+k+1 |st ,at

]
. (8)
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The Q-function is defined as the expected cumula-
tive reward for a given state-action pair, which takes tem-
poral discount into consideration. The discount factor γ
is set between 0 and 1, and is used to adjust the relative
importance of immediate rewards and future rewards.

III. APPLICATION EXAMPLES

To facilitate comparison with other ML methods,
a microstrip patch antenna is employed as an example
to validate the optimization efficiency of the introduced
method. The structure of the microstrip patch antenna is
shown in Fig. 5. The substrate is made of FR4 material
with a thickness of 15 mm and a dielectric constant of
4.4. The width and length of the substrate (W1 and L1)
are 110 mm and 150 mm, respectively. The patch has a
width (W2) of 48 mm and a length (L2) of 72 mm.

L1

W1

L2

W2

W1

L1

L2

2

W2

Symmetry Plane

Feeding Probe

1

1

0

0

d

Fig. 5. Center-fed microstrip patch antenna structure.
The patch is symmetrically divided into 46 binary (0/1)
grids, where 1 indicates the presence of metal and 0 indi-
cates its absence. To ensure the electrical connectivity of
the metal patch, the edge lengths of the sub-patches are
increased by 0.2 mm.

To enable RL to interact with the environment while
exploring antenna topologies, an IMT module is incor-
porated. This module performs gridding of the antenna
topology and converts it into corresponding matrix for
input into the RL agent. Additionally, it transforms the
probability matrix of topology into an image to be input
into the environment, as shown in Fig. 4. To maintain a
consistent connection between the probe and the patch,
the four units connected to the probe are kept unchanged.
Furthermore, structural symmetry is enforced along the
symmetric plane to avoid high cross-polarization.

As illustrated in Fig. 5, the quantity of topology
structure pixels to be determined is 46. The optimiza-
tion objective is to broaden the bandwidth of the reflec-
tion coefficient Bt . The frequency step is set to 0.01, and
the Bthre is established at 50. The RL agent continuously
interacts with the environment to ascertain the presence

of metal in these 46 pixels. Initially, the RL agent inter-
acts with the simulation software, with each topology
simulation requiring approximately one minute. Upon
collecting 100 samples, the interaction-generated data
are then used to train the CNN model, with a training
time of 1.2 minutes. As the dataset for the CNN model
gradually increases, the prediction accuracy of model
continually improves. Once the CNN model training is
complete, the CNN model replaces the simulation soft-
ware within the environment, enabling rapid predictions
of the EM responses of corresponding topology. Sub-
sequently, the RL agent interacts with the CNN model,
continuously maximizing reward signals to identify the
optimal topology structure. The optimization time for
each topology is reduced to merely three seconds, with
the quantity of learning iterations set to 500 genera-
tions. Importantly, although the predictive capability of
CNN model enhances with an increasing number of iter-
ations, the algorithm generally operates without the CNN
containing sufficient data for predictions. Typically, a
SM established with high prediction accuracy requires
a significant number of simulations. Additionally, mul-
tiple deep network architectures are needed to achieve
the desired level of precision. However, the CNN model
developed within the RL framework is constructed with
a shallow network structure and trained on a limited
dataset. This approach helps guide the optimization pro-
cess towards specified design. The optimized antenna
topology and photograph of the manufactured antenna is
presented in Fig. 6 and comparative optimization results
are shown in Fig. 7 (a).

 
Fig. 6. Optimized topology structure of the microstrip
antenna and photograph of the manufactured antenna.

IV. MEASUREMENT AND COMPARISON

The simulation and measurement results are pre-
sented in Fig. 7 (b). The impedance bandwidth is
2.1-2.73 GHz, but there are some disparities. These
discrepancies may be attributed to manufacturing and
installation errors, such as deviations in material
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(a) (b)

Fig. 7. (a) Initial and optimized results and (b) measured
and simulated results of S11 for the antenna.

thickness, welding position, and tin soldering, which can
somewhat impact antenna performance.

The proposed method is compared with several ML-
based approaches, as shown in Table 1. Compared to
metaheuristic algorithm-based methods [12–14], the pro-
posed method exhibits superior local search capabili-
ties and higher optimization efficiency. Metaheuristic
algorithms require the evaluation of each individual in
the population and the use of EM simulation software
for verification. This process is highly time-consuming.
Moreover, the efficiency of metaheuristic algorithms is
constrained by the initial population; better initial pop-
ulations lead to higher optimization efficiency. In con-
trast, RL obtains feedback through continuous interac-
tion with the environment. This endows RL with strong
decision-making capabilities, allowing it to dynamically
optimize strategies and progressively guide the optimiza-
tion toward better solutions. Additionally, RL effectively
utilizes existing data through experience replay and pol-
icy improvement, thereby reducing the need for expen-
sive simulation samples.

From the perspectives of automation and data col-
lection, the proposed method (DDPG+CNN) achieves

Table 1: Comparison information with other algorithms

Refs.
Optim.

Method
Samples Time

Design

Space

Auto

Level

[3] CNN 1970 Not
Given 8×6 Semi-Auto

[4] CNN 625 Not
Given 4 params Semi-Auto

[5] DCNN 1200 39.62 h 28
params Semi-Auto

[13] EGO 2600 43 h (8×6)−2 Full-Auto
[14] BBSO 2500 Not

Given (8×6)−2 Full-Auto

[15] BPSO 1000 17.94 h (8×6)−2 Full-Auto
CNN-BPSO 254 9.62 h (8×6)−2 Semi-Auto

This
work

Trial and
Error 6400 179 h (8×6)−2 Manual

GA 3500 53 h (8×6)−2 Full-Auto
GA+CNN 1200 28.4 h (8×6)−2 Semi-Auto

DDPG+CNN 236 8.92 h (8×6)−2 Full-Auto

satisfactory optimization results with fewer samples.
This advantage arises from the distinct training strate-
gies of both methods. To be specific, the methods CNN
[3, 4], DCNN [5], (CNN+BPSO) [14] and (GA+CNN)
require pre-collected data to train the CNN. Random
data collection may result in a training dataset with
numerous invalid samples. To ensure training efficiency,
human intervention is necessary to maintain the quality
of the dataset. In contrast, the proposed method alter-
nates between data collection and training of the two
neural networks (DDPG and CNN). Specifically, the RL
model initially interacts with the environment to gather
part of EM simulation data. This data is then used to
simultaneously train both the DDPG and CNN mod-
els, aiming to enhance the decision-making capability of
DDPG and the prediction accuracy of CNN. Under this
mechanism, the quality of the collected data (in terms
of relevance to the objective) is higher, enabling good
performance with less data. Consequently, the automatic
design of antenna topologies is achieved efficiently.

V. CONCLUSION

An ML framework is proposed in this paper. CNN is
utilized as SM and combined with DDPG algorithms to
optimize antenna topologies. The method aims to auto-
mate the antenna design process without human inter-
vention. Additionally, it significantly reduces reliance
on expensive EM simulations. Compared to other ML-
based optimization techniques, the proposed method
demonstrates notable advantages in reducing the quan-
tity of simulation samples and shortening optimization
time.
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Abstract – This study explores the feasibility of using
millimeter-wave radar to observe ship wake wave heights
on the water surface and proposes an accurate mea-
surement method based on Frequency-Modulated Con-
tinuous Wave (FMCW) radar to detect water surface
elevation changes caused by ship motion. By acquir-
ing electromagnetic echo signals from the water surface
using millimeter-wave radar and applying interference
principles, high-precision measurements of water sur-
face elevation changes are achieved. We conducted
numerical simulations of the ship wake using compu-
tational fluid dynamics (CFD) based on an actual ship
model and performed wake wave height measurements
using high-resolution radar parameters. By comparing
the radar measurement data with those from a capacitive
wave height meter, the effectiveness of the AWR2243
FMCW millimeter-wave radar in measuring wake wave
heights induced by ship motion was validated. Time-
frequency analysis of the wake wave height using
wavelet transform indicated that the primary frequency
of the wake diffusion wave generated by the experimen-
tal ship model’s movement was around 2 Hz. The experi-
mental results demonstrate that FMCW millimeter-wave
radar can achieve high-precision water surface wave
height measurements. The radar’s application in oceanic
target wake observation has great potential, providing
new technical means for ship monitoring, marine scien-
tific research, and ocean environmental monitoring.

Index Terms – FMCW Millimeter-wave radar, high
range resolution and high precision, ship wakes, wave
height.

I. INTRODUCTION

Ocean remote sensing primarily focuses on two
major observational areas: ecological, encompassing sea
surface spectral characteristics, radiative properties, pig-
ments, and pollutants; and dynamic parameters, which
include sea surface height, temperature, and salinity

[1, 2]. Ship wakes represent a small-scale ocean dynamic
phenomenon impacting the sea surface state. In specific
locations, ship wakes can significantly affect coastlines
and waterways [3]. Given the increased ship size and
speed, along with heightened ship traffic intensity, mon-
itoring and analyzing ship wakes becomes essential for
effective ocean monitoring [3, 4]. Accurately measuring
changes in sea surface wave height due to ship wakes
provides a reliable detection method, crucial for various
coastal and oceanographic operations [5].

Now, the primary methods for measuring wave
height on the water surface and its wakes include con-
tact and non-contact methods. The most common con-
tact measurement devices are wave pressure sensors
and sea surface buoys. Contact sensors can only per-
form single-point measurements of water surface eleva-
tion, and their calibration relies on laboratory simula-
tions. In contrast, buoy technology is more mature and
can measure sea surface elevation by analyzing the dis-
placement of the buoy over a period of time, but its
accuracy is relatively low [6, 7]. Non-contact measure-
ment methods mainly include photographic optical mea-
surements, laser measurements [8], and ground-based or
spaceborne microwave radar. Photographic optical mea-
surements can provide extensive sea surface informa-
tion, but the computational process is complex and con-
strained by lighting conditions and camera resolution [9].
Laser measurements can accurately determine the verti-
cal height from the instrument to the sea surface but are
highly sensitive to water quality. Millimeter-wave radar
is particularly recognized for its high-resolution capabil-
ity. Its small antenna size, narrow beam width, and high
precision allow for all-weather communication capabili-
ties. Frequency-Modulated Continuous Wave (FMCW)
radar features low transmission power, high reception
sensitivity, high range resolution, simple structure, and
ease of integration, making it widely used in high-
precision measurement fields.
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Currently, various types of radar are widely used for
sensing and processing weak signals, including synthetic
aperture radar, radar altimeters, microwave scatterome-
ters, and microwave radiometers. Most of these devices
can estimate wave height based on the intensity of the
received electromagnetic waves [10, 11]. Some studies
analyze sea surface waves, retrieving wave heights using
ocean radar image sequences [11], while other studies
can obtain effective wave heights based on the variation
of the Doppler speed measured by X-band radars [12–
14]. Additionally, K-band continuous wave radars are
utilized to estimate short-range wave heights [15].

In this study, we employed a 77 GHz millimeter-
wave radar to observe the water surface and utilized
FMCW interferometry to measure water surface eleva-
tion. The second section of this paper introduces the
basic theory of millimeter-wave radar interferometry.
The third section details the verification of the measure-
ment accuracy of the 77 GHz FMCW millimeter-wave
radar system. The fourth section presents the simula-
tion of the ship model wake using computational fluid
dynamics (CFD). The fifth section details the surface
wake wave height measurement experiment and dis-
cusses and analyzes the results. The sixth section con-
cludes the paper.

II. MEASUREMENT PRINCIPLE OF THE
77GHz MM-WAVE RADAR

The TI AWR2243 is a linear FMCW radar operat-
ing within the 77-81 GHz frequency range [16, 17]. In
this radar system, the transmit (TX) signal comprises a
series of signals whose frequency changes linearly over
time [18, 19]. These linearly frequency-modulated sig-
nals are represented in the AWR2243 as ”frame” data.
Figure 1 illustrates a frame of data from the AWR2243,
along with models of a single chirp signal for both trans-
mission and reception.

The signal transmission model for wave height
measurement of the water surface using the AWR2243
FMCW millimeter-wave radar is shown in Fig. 2. At
different time instants, the radar transmits frequency-
modulated continuous signals to the water surface, and
the variation in water surface elevation at different
moments can be obtained from the received echo signals.
Assuming the radar transmits a single sawtooth linear
frequency modulation (LFM) signal, the mathematical
model for the transmission signal of the FMCW MMW
radar at a given time is described as follows:

ST X (t) = AT X exp
(

j
(

2π fct +π
B
Tc

t2 +ϕ
))

, (1)

where AT X represents the amplitude of the transmitted
signal, ϕ denotes the random initial phase, fc indicates
the starting frequency of the signal, and B/Tc signifies
the frequency modulation slope. The received signal,

Fig. 1. One frame of transmission signals and a set
of transmitting and receiving signal models in the
AWR2243 radar.

Fig. 2. The signal transmission model of the FMCW
millimeter-wave radar.

after the radar transmits its signal and it reflects off the
water surface, can be expressed as:

SRX (t) = ARX ST X (t − td) . (2)
td = 2R/c. (3)

In equation(2) , ARX represents the amplitude of the
received signal, and td is the echo delay related to the dis-
tance between the radar and the water surface along the
radial direction.In the signal transmission path shown in
Fig. 2, R represents the instantaneous distance between
the varying water surface and the radar antenna. By mix-
ing and demodulating the received signal with the trans-
mitted signal, the intermediate frequency (IF) signal can
be obtained as:

SIF(t) = Aexp
[

2 jπ
(

2 fcR
c

+
2BR
cTc

t
)
−ϕ0

]
. (4)

When the distance changes slightly by ΔR, from the
interferometry principle, the relationship between echo
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phase change and distance change is given by [20]:
Δϕ = 4πΔR/λ , (5)

where λ = c/ fc is the radar wavelength.

III. ACCURACY VERIFICATION OF THE
FMCW MM-WAVE RADAR

The measurement method described above has been
extensively studied for targets such as bridges; how-
ever, research on using FMCW millimeter-wave radar for
water surface measurement is limited. Therefore, prior
to deploying Texas Instruments’ AWR2243 millimeter-
wave radar for monitoring water surface wave height
variations, it is crucial to verify its micro-deformation
measurement accuracy. The AWR2243 radar features
three transmitting antennas and four receiving anten-
nas. For the experimental verification, we used only one
transmitting antenna and one receiving antenna. During
the experiment, we also utilized the DCA1000EVM data
acquisition card for data collection and TI’s MMwave
Studio software for experimental parameter configura-
tion. The radar parameters allow for flexible configu-
ration, with the specific parameters used in the indoor
experiments shown in Table 1.

Table 1: Indoor experimental parameters of the
AWR2243 MMW radar

Parameter Value

Start Frequency (GHz) 77 GHz
Frequency Slope (MHz/μs) 30 MHz/μs

Bandwidth 767.54 MHz
Sample Rate 10 MHz

PRF 1600 Hz
Distance Resolution 0.19 m

The indoor accuracy verification of the AWR2243
is depicted in Fig. 3. Figure 3 (a) shows a micro-
deformation calibration apparatus composed of a
micrometer and a corner reflector.These components
are rigidly connected, with the micrometer driving the
corner reflector to move along a non-metallic surface,
achieving a displacement accuracy of 0.01 mm. Figure 3
(b) shows the indoor experimental scene. In the experi-
ment, the corner reflector was positioned approximately
3m in front of the radar, with both the radar and the
corner reflector at the same horizontal level. During the
experiment, the micrometer scale was precisely adjusted
to move the corner reflector 0.5 mm toward the radar
each time, repeating this process nine times. After each
movement of the corner reflector, the radar transmitted a
chirp signal and collected and processed the correspond-
ing echo data. In the end, 10 sets of echo data were
recorded for the corner reflector at different positions.

Figure 4 (a) shows the range compressed images
of the corner reflector’s echo signals at 10 different

(a)

(b)

Fig. 3. (a) The micrometer screw gauge coupled with a
corner reflector and (b) indoor experiment scene.

positions. The horizontal axis represents the number of
frequency-modulated linear signals in the 10 measure-
ments, while the vertical axis corresponds to the actual
distance for each range gate. It can be observed that
the corner reflector is positioned between 3m and 3.5m,
with the manually measured distance between the corner
reflector and the radar being 3.24 meters. Figure 4 (b)
presents the displacement of the corner reflector across
the 10 sets of data. From the figure, it can be seen that
the radar recorded the initial position of the corner reflec-
tor as well as the displacement after each movement,
with each displacement being 0.5mm, resulting in a total
movement of 4.5cm.

To verify the accuracy of the results, the Root-Mean-
Square Error (RMSE) for each set of data in the table is
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Fig. 4. (a) Image of point target echo range compression
and (b) deformation results of 10 sets of corner reflector
echo data.

calculated, which can be expressed as:

RMSEm =

√
∑N

n=1(x−Δx)2

N
, (6)

RMSE =
∑M

m=1 RMSEm

M
= 45μ m, (7)

where N is the number of radar transmitted signals at
each location. The average RMSE from the 10 groups
previously mentioned can be utilized to determine the
measurement accuracy of the radar system. The calcu-
lation indicates that the measurement accuracy of the
AWR2243 can achieve 45μm.

IV. CFD SIMULATION OF THE WAKE
GENERATED BY THE EXPERIMENTAL

SHIP MODEL

Before conducting the ship wake measurement
experiment in the water tank, we used CFD to numeri-
cally simulate the changes in wave height caused by the

ship’s wake on the water surface. The actual ship dimen-
sions and its scaled model are shown in Fig. 5, with the
ship model measuring 43 cm × 13 cm × 10 cm. The CFD
simulation of the ship’s wake was based on Reynolds-
Averaged Navier-Stokes (RANS) equations and imple-
mented using the STAR-CCM+ software platform. In
the simulation, the wake scenario was modeled within
a computational domain of 10 meters in length and 6
meters in width, with a ship’s draft of 3 cm and a speed of
1.5 m/s. The grid distribution and simulation results are
shown in Fig. 6. To minimize simulation errors, the grid
density near the water surface was refined in the CFD
computational domain.

Fig. 5. Experimental ship model size and simulation ship
model.

Based on the CFD simulation results, the wake
generated by the ship model on the water surface is
identified as a Kelvin wake, exhibiting distinct charac-
teristics, including a wake angle of approximately 39°,
composed of both diffusion waves and transverse waves.
After interpolating the wake height data obtained from
the CFD simulation, as shown in Fig. 7, we obtained
a 2D wave height distribution image. The figure indi-
cates that the wake height distribution ranges within
±25 mm, with the maximum wave height occurring
along the centerline. Theoretically, when the ship moves
at a constant speed U , the wavelength of the gener-
ated wake waves can be calculated using the following
formula:

λ =
2π
g

U2 cos2 θ , (8)

where U is the ship’s speed, θ represents the angle
between the wave propagation direction and the ship’s
motion, and g is the gravitational acceleration.
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(a)

(b)

Fig. 6. (a) CFD computational domain mesh scenario and
(b) simulation results of the CFD simulation.
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Fig. 7. Wake height distribution after interpolation recon-
struction.

Figure 8 presents the one-dimensional wave height
curves at the wake centerline and at a distance of 1m
from the centerline. In the one-dimensional wave height
curve at the wake centerline, the waveform consists of
significant undulations formed by Bernoulli hills and
transverse wave components. When calculating the the-
oretical transverse wave wavelength, the θ = 0◦ in equa-
tion (8). The calculation results indicate that when the
ship speed is 1.5 m/s, the theoretical transverse wave
wavelength is 1.4426 m. By statistically averaging the
peak positions of the transverse waves in Fig. 8 (a),
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Fig. 8. (a) Wave height at the wake centerline and (b) at
a distance of 1 meter from the wake centerline.

the CFD simulated wavelength is determined to be
1.4533 m.

V. EXPERIMENT AND ANALYSIS OF SHIP
WAKE WAVE HEIGHT MEASUREMENTS

After verifying the indoor micro-deformation mon-
itoring accuracy and the simulated wake wave height,
we set up a ship wake measurement experiment in a
pool. In the outdoor experiment, both the AWR2243
FMCW millimeter-wave radar and the digital capacitive
wave height meter were used to simultaneously mea-
sure the water surface height variations caused by the
ship’s wake. The digital capacitive wave height meter
is shown in Fig. 9. Its operating principle is based on
the real-time variation in the inter-electrode capacitance
of the capacitive sensor line as the water level fluctu-
ates. The signal acquisition chip then converts the capac-
itance value into a wave height measurement, allow-
ing for accurate water depth measurement. The effective
measurement range of the capacitive wave height meter
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Fig. 9. Capacitive digital wave height meter.

is 50 cm, with a wave height measurement frequency of
1000 Hz.

Figure 10 shows the outdoor experimental setup and
equipment arrangement. In the wake wave height mea-
surement experiment, both the capacitive wave height
meter and the millimeter-wave radar were positioned at
the same location. The radar was installed at a certain
height above the water surface, with its antenna verti-
cally illuminating the water, while the capacitive wave
height meter was vertically submerged in the water. The
measurements from the capacitive wave height meter and
the millimeter-wave radar did not interfere with each
other. The ship model moved back and forth at a constant
speed along a straight line, 1 meter away from the instru-
ments. Both the radar and the digital wave height meter
simultaneously measured the variations in the water sur-
face height. Due to the small wake wave height obtained
from the simulation, we considered improving the sys-
tem parameters of the AWR2243 FMCW millimeter-
wave radar to better observe the wake wave height.
By increasing the bandwidth of the transmitted signal,
we enhanced the radar’s range resolution. The specific
improved radar parameters are detailed in Table 2. With
these improved parameters, the radar’s range resolution
was increased to 0.05 meters.

Figure 11 shows the wave height measurement
results from both the radar and the digital wave height

Fig. 10. Experimental setup for measuring ship wake
wave heights in a water pool.

Table 2: Parameter configuration of mm-wave radar for
measuring ship wake wave height

Parameter Value

Start Frequency (GHz) 77 GHz
Frequency Slope (MHz/μs) 117 MHz/μs

Bandwidth 2.997 GHz
Sample Rate 10 MHz

ADC Samples 256
PRF 1000 Hz

Distance Resolution 0.05 m
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Fig. 11. (a) AWR2243 FMCW MMW radar measure-
ment results and (b) capacitive digital wave height meter
measurement results.

meter. As shown in the figure, during the first 10 sec-
onds, the radar recorded the natural fluctuations of the
water surface wave height. Around the 15s, 23s, and 34s,
when the ship passed the radar, the wake diffusion waves
caused by the ship’s wake were accurately captured by
the radar. The maximum wake wave height measured



JIA, GONG, ZHAI, LIU, ZHANG: ACCURATE MEASUREMENT OF WAKE HEIGHT CAUSED BY TARGET MOTION 48

by the radar was approximately 7-8 mm. By compar-
ing the wave height data collected by the digital wave
height meter in Fig. 11 (a), it is observed that the maxi-
mum amplitude of the wake wave height recorded by the
wave height meter was smaller than the maximum ampli-
tude recorded by the radar. This discrepancy may be due
to the slight mismatch in the measurement positions of
the wave height meter and the radar, causing attenua-
tion of the wake diffusion waves as they propagated,
resulting in smaller wave heights recorded by the wave
height meter. Additionally, we compared the radar mea-
surement results with the maximum wave height from
the simulation results shown in Fig. 8 (b). The compar-
ison indicates that the simulation results align with the
maximum wave height measured by the radar, further
validating the accuracy of the radar measurements.

Using traditional Fourier transform, we analyzed the
frequency spectrum of the ship wake diffusion waves in
the wave height data. Figure 12 presents the frequency
spectrum distribution of two sets of wave height data.
The frequency spectrum distributions measured by both
the millimeter-wave radar and the wave height meter
show a strong similarity, indicating that both measure-
ment methods are consistent in capturing the frequency
characteristics of the wake waves. From the figure, it
is clearly seen that the frequency components of the
ship wake diffusion waves are primarily concentrated
between 0 and 5 Hz. This suggests that the fluctuations
caused by the ship’s wake have a low-frequency char-
acteristic, predominantly concentrated in the lower fre-
quency range, which is consistent with the physical char-
acteristics of the wake waves and the propagation behav-
ior of the diffusion waves.

Beyond traditional FFT, wake wave height data can
also be analyzed using time-frequency analysis tech-

Fig. 12. Measurement results from radar and digital wave
height meter.

Fig. 13. Wavelet time-frequency analysis of radar- mea-
sured wake wave height.

niques. Many time-frequency analysis methods exist,
with the three most commonly used being the short-time
fast Fourier transform, complex wavelet convolution, and
filter-Hilbert [21, 22]. Wavelet time-frequency analysis
decomposes the signal into a series of wavelet basis
functions, calculating changes in both the time and fre-
quency domains to produce a time-frequency diagram.
This analysis technique provides a clearer representation
of the time-frequency characteristics of ship wake waves
and offers excellent time-frequency resolution and local-
ization properties. Continuous wavelet transform (CWT)
is a method to realize wavelet time-frequency analysis
that provides a continuous and scalable view of the sig-
nal. It is defined by the integral:

CWT (t,s) =
∫

x(τ)ψt,s(τ)dτ, (9)

where x(τ) is the the wave height of the wake. ψt,s(τ) is
the wavelet function, scaled by s and shifted by t, t is the
translation parameter (shifts the wavelet in time), while
s is the scale parameter. The Morlet wavelet, also known
as the Gabor wavelet, is a popular wavelet used in CWT
for time-frequency analysis of signals [23].

As depicted in Fig. 13, CWT is utilized to perform
a time-frequency analysis of the ship wake diffusion
wave’s wave height. The radar captured three distinct
changes in water surface wave height due to the ship’s
wake diffusion waves, with the primary frequencies of
these waves centered around 2 Hz. From the experiments
and discussions, it is worth noting that the subtle height
changes in the water surface waves induced by the ship’s
wake can be effectively monitored. To enhance monitor-
ing accuracy, the antenna array should be oriented per-
pendicular to the water surface.
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VI. CONCLUSION

This paper presents a new method for accurately
measuring the water surface wave height changes
induced by ship motion using a 77 GHz Frequency-
Modulated Continuous Wave (FMCW) millimeter-wave
radar. The method employs an interferometric mea-
surement approach for surface observation experiments.
The experimental results demonstrate that the 77 GHz
millimeter-wave radar can effectively monitor the sub-
tle surface fluctuations caused by the diffusion waves
of the ship’s wake. By comparing the radar measure-
ment results with those from a digital wave height
meter and simulation data, the accuracy and relia-
bility of the method are further validated. However,
despite the promising results obtained in the experi-
ments, the current measurements do not fully account
for the influence of parameters such as wind speed on
wake surface measurements. Moreover, under high sea
conditions, there are still certain limitations in mea-
suring wake wave heights. Therefore, future studies
may need to incorporate more complex ocean wave
models to further improve measurement accuracy and
applicability.

In summary, while the existing method has achieved
preliminary success in measuring water surface wave
height changes induced by ship motion, there are
still many aspects that warrant further exploration and
improvement. With continuous technological advance-
ments, the application of millimeter-wave radar in ocean
monitoring holds great potential, offering innovative
solutions for future marine monitoring and ship identi-
fication.
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Abstract – Transcranial magnetic stimulation (TMS) is
a physical technique that modulates the human brain
nervous system and can be used as a non-invasive treat-
ment for neurological diseases. To address the prob-
lem of poor focusing performance of TMS coils, this
study first designs a new coil geometry, Double Square
Semicircle (DSS) coil, based on traditional coil stimula-
tion characteristics. Second, this study uses the Sim4Life
finite element simulation software to compare the stimu-
lation characteristics of DSS coil and six traditional coils
under the head model, proving that the induced elec-
tric field generated by DSS coil has high-focusing per-
formance. Third, this paper explores the effects of four
physical parameters - the distance between the human
brain model and the coil, different stimulation directions,
coil size and coil bending angle - on the spatial distribu-
tion of the induced electric field. After the above sim-
ulation experiments, the optimal design scheme of DSS
coil is found. Experimental results show that, compared
with several traditional coils, the focusing effect can be
improved by up to 77.49%, proving that DSS is a high-
focusing performance TMS coil, which is suitable for
future TMS high-precision treatment needs.

Index Terms – Finite-element method, focality,
Sim4Life, stimulation depth, stimulation intensity.

I. INTRODUCTION

The mechanism of action of transcranial magnetic
stimulation (TMS) technology in treating psychiatric
disorders has been explored [1], and the magnetic stimu-
lation coils, a key component, have received much atten-
tion. Efforts have been made to find a coil with superior
focality performance to treat psychiatric disorders as
effectively as possible [2–6]. Stimulation coils play an
essential role in transcranial magnetic stimulators as the

component that generates the time-varying electromag-
netic field.

The geometry of the stimulation coils [7] affects
the distribution of the electromagnetic field in the skull.
In 1985, Barker [8] and others designed a single round
stimulation coil, which were extremely simple to con-
struct and easy to fabricate and operate. However, its
disadvantage was also evident, as the single round coils
could have performed better in focality. In 1988, Ueno
designed a figure of eight (FOE) coil structure consist-
ing of two identical round coils connected tangentially.
The induced electric fields generated at the coil tangency
points are superimposed in a unified direction to achieve
good focusing function. Later, Cohen and Cuffin con-
firmed the excellent focality of the FOE coils through
extensive simulation experiments [9]. FOE coils are cur-
rently the most mature coils used in magnetic stimulation
therapy [10–12]. Many new coils have evolved, such as
Biconical coils [13], Cloverleaf coils [14], Slinky coils
[15–16], Flex Miniaturized coils [17] and FOE coils with
a shield [18]. To meet the need for deeper stimulation,
H-coils were proposed by Fiocchi et al. in 2016 [19]. In
the following years, various combinations of coils began
to appear, such as new Biconical coils [20], Semiellipse
coil pair [21] and Butterfly coils [22]. Deng et al. [7]
conducted a simulation analysis of 50 stimulation coils,
covering all coils developed to date. By comparing the
relationship between peak intensity, stimulation depth
and focality of 25 coils, Fang et al. [21] found that focal-
ity and depth attenuation is related to the coils winding
geometry, but this is not the case with peak field strength.
The latter depends on other factors affected by the choice
of coil design. Most coil design parameters (angle, num-
ber of windings, distance) have a much greater impact on
peak field strength than focality and depth attenuation.
For all three parameters, the dependence on the overlap
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between the two coil wings of the simulated zigzag coils
is similar only. Therefore, there is great flexibility in
designing coils with similar focality and depth attenu-
ation but different peak field strengths [23]. However,
most are currently in the research stage and need contin-
uous experimental validation before they can be applied
in practice.

This paper presents a novel geometric structure of
TMS coil, the Double Square Semicircle (DSS) coil,
which can generate a localized induced electric field in
the brain and enhance focality. Using the finite element
method, spatial distribution of the induced electric field
in the brain is analyzed in detail, including its inten-
sity, focality and stimulation depth. Simulation results
demonstrate the high-focusing advantage of the DSS
coil. Moreover, this study investigates the effects of geo-
metric structure variations (bending angle, structure size,
distance between the coil and the model) on the induced
electric field and identifies the optimal design parameters
of the coil.

II. MATERIALS AND METHOD

We utilized Sim4Life three-dimensional human
tissue medical electromagnetic simulation software
(Sim4Life) to model the stimulation coil model. The
line thickness is ignored and a line coil model is drawn
based on the size of the coil. The position of the coil
is adjusted to increase current stimulation. Addition-
ally, the coil is designed as a closed loop, allowing cur-
rent to exist throughout the entire coil. For intracranial
magnetic stimulation experiments, Sim4Life’s (EM LF
Quasi-Static) low-frequency simulator is employed to
calculate the distribution of electromagnetic fields at a
frequency of 10 kHz. The function is evaluating human
brain response and adaptation in low-frequency electro-
magnetic fields.

A. Model establishment

Based on the stimulation characteristics of an 8-
figure coil and semiellipse coil, this paper proposes a
new coil structure, the DSS coil, aimed at exploring the
spatial distribution of the induced electric field resulting
from superimposition of the square coil and the semicir-
cle coil. This coil is divided into two layers. The upper
layer comprises a double square structure with a side
length of 45 mm, contributing to the decay of transient
current [21]. The lower layer consists of a double semi-
circle structure with a radius of 25 mm, enhancing the
strength and depth of the central induced electric field
[1]. The thickness of both parts of the new coil is 1
mm, with a coil spacing of 2 mm. When the currents in
the same direction are superimposed, the electric field
strength will increase, so increasing the current stim-
ulation in the same direction will significantly change

electric field strength. Current direction is indicated by
a white arrow in Fig. 1, with a current amplitude of
2000 A. The coil models built by Sim4Life shown in
Figs. 1 (a) and (b) are the upward and main views of the
coils, respectively. The current direction of the square
coils is the same as that of the semi-circular coils. The
current direction of the left half coils is counterclock-
wise and the current direction of the suitable half coils is
clockwise.

(a) (b)

Fig. 1. DSS coil structure diagrams: (a) upward view of
DSS coil and (b) main view of DSS coil.

The human head model used in this paper is sourced
from the Population Head Model (PHM) library avail-
able on the IT’IS website [24–26]. A surface-based
head model is imported into the commercial software
Sim4Life and is discretized in three orthogonal direc-
tions with a maximum spatial step of 1 mm. This model
aims to replicate the natural structure of the human
head as accurately as possible. The human head model
selected in this paper includes seven parts (Fig. 2).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Tissues of the PHM head model: (a) headform and
(b-h) the seven parts of the headform: cerebellum, cere-
brospinal fluid, gray matter, skin, skull, ventricles and
white matter.

Considering that the conductivity and permittivity
of different parts of the brain tissue are different, the
choice of skin conductivity in dosimetry studies depends
on the anatomical accuracy of skin characterization in
each head model [27]. Specifically, when considering a
model that incorporates skin into a thick and uniform
scalp tissue, the average conductivity value assigned to
it should consider all included skin and subcutaneous
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tissues (dermis, SAT, muscle). Thus, skin will strongly
affect the calculated electric field. Therefore, in order
to simulate the head more realistically, accurate con-
ductivity and permittivity of each tissue are needed. In
order to make the control experiment more meaningful,
this paper sets the skin conductivity to 0.0002 S/m and
the permittivity to 1130 [27]. Other tissues will use the
accurate conductivity and permittivity of the head tis-
sues obtained by the IT’IS website at 10 kHz frequency.
As shown in Table 1, the scalp is composed of differ-
ent tissues, including muscle and fat. The actual conduc-
tivity is higher than the conductivity shown in Table 1
(scalp conductivity in Table 1 is the conductivity value
at 10 kHz), which may cause deviation in the calculation
results. However, scalp tissues at different locations are
different and using the volume conductivity values that
reflect this point in the subsequent simulation may be a
more realistic method [28].

Table 1: Conductivity and permittivity of different layers
of brain tissue
Brain Tissue Electrical

Conductivity (S/m)

Dielectric

Constant

Cerebellum 0.1 22500
Cerebrospinal

fluid
2.0 10900

Gray matter 0.1 22200
Skin 0.0002 1130
Skull 0.02 52200

Ventricle 0.5 905
White matter 0.1 12500

Fig. 3. (a) Electric field simulation of the vertical section of the model and (b) electric field is distributed vertically
along the green line.

B. Evaluating indicators

We chose commonly used methods in recent years to
evaluate and compare the stimulation effects of different
magnetic stimulation coils.

(1) Stimulation intensity: defined as the maximum
induced electric field strength (Emax) on the cortex [4].

(2) Stimulation depth: defined as the longest dis-
tance d1/2 from the position of Emax on the cortical sur-
face to the position that the induced electric field strength
is Emax/2 [3], as shown in Fig. 3. The induced electric
field generated in the skull will cause changes in neu-
ral activity in the brain; the larger the d1/2 value, the
deeper the position of the brain area that can be stimu-
lated, which is a more conducive to the treatment of the
deep lesions in the skull.

(3) Focality: focusing situation of the induced elec-
tric field generated by the TMS coil in the human target
area, usually measured by the focusing area. According
to the definition of Deng et al. [29], the head stimula-
tion area that exceeds half of the maximum electric field
strength is defined as the focality. Focality represents the
ability of the coil to produce an induced electric field that
is concentrated in a certain area, and a three-dimensional
solid evaluation formula is used to roughly calculate the
focusing area [29]:

S1/2 =
V1/2
d1/2

, (1)

where d1/2 is used to quantify the half-value depth of
electric field penetration and V1/2 is the cumulative vol-
ume of the half-value region exposed to the electric field
E>Emax/2. The smaller the value, the smaller the focus
area, the higher the focus, and the better the effect.
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III. RESULTS AND DISCUSSION
A. Comparison of DSS coil with multiple traditional
coils

To highlight the advantages of the DSS coil in focus-
ing performance, this paper selects three types of coils
(Circular, FOE, Double Conical) to compare with the
DSS coil in an experimental study. Since the DSS coil
is designed as a double-layer structure, and considering
the influence of the number of components on the spa-
tial distribution of the induced-electric field [4], the Dou-
ble Circular, FOE and double-cone coils are also added
(Fig. 4). The radius of the Circular coil is 45 mm, and
the radius of the FOE coil and the double cone coil is 45
mm. The coil structure is a single body structure.

The focusing characteristics [5] of the coil are sim-
ulated and analyzed, as shown in Fig. 5, comparing
the induced electric field cross sectional distribution of
six traditional coils with the DSS coil. This experiment
chooses to perform horizontal cross section and XZ ver-
tical cross section analysis at the maximum value of the
model. Among them, through the post-processing func-
tion of Sim4Life simulation software, the part greater
than Emax/2 is highlighted (green), which is the effec-
tive stimulation area. On the horizontal plane, compared
with DSS coil, the Conical coil has the smallest green
part, but is also the most dispersed, and the focusing
performance of the Conical coil is weaker than that of
the DSS coil. Similarly, on the XZ vertical plane, we
observe that the Circular coil and the Double Circular
coil are the most affected by the stimulation. Accord-
ing to the data shown in Fig. 6, to ensure the focusing
of the coil, the lower layer of the DSS coil is designed
as a small semi-circle. As shown in Figs. 6 (a) and (b),
the DSS coil is not only outstanding in terms of stimu-
lation depth and stimulation intensity but also has obvi-
ous advantages in focality. Compared with the Double
Circular coil, the Double 8-figure coil and the double
cone coil, focality is reduced by about 91%, 77.19% and

(a) (b) (c)

(d) (e) (f)

Fig. 4. Schematic diagram of six types of coil structures:
(a) Circular coil, (b) 8-figure coil, (c) Conical coil, (d)
Double Circular coil, (e) Double 8-figure coil and (f)
Double Conical coil.

(a)

(b)

Fig. 5. (a) Distribution of electric field on the XY hori-
zontal cross-section and (b) the XZ vertical cross-section
in the model under the action of various coils.

11.91%, respectively. This study asserts that the DSS
coil demonstrates high-focusing performance, aligning

(a)

Fig. 6. Continued.
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(b) (c)

Fig. 6. (a) Stimulation intensity of seven types of coils, (b) stimulation focality of seven types of coils and (c) stimu-
lation depth of seven types of coils.

well with the future development needs of precise TMS
applications.

B. Stimulus effects in different directions

Performance of the DSS coil may vary depending
on the position of the coil in the scalp. To provide a more
comprehensive evaluation of the new coil, it is positioned
on both the side and the back of the head, maintaining a

(a) (b)

(c)

Fig. 7. Placement and stimulation effect of the DSS coil: (a) coil is placed on the back of the head model, (b) coil is
placed on the left side of the head model and (c) cross-sectional diagrams of the electric-field stimulation of the coil
at two positions.

distance of 10 mm from the scalp. The performance char-
acteristics are then simulated at these two positions. The
stimulation-position diagram and the stimulation effect
cross-section diagram of the coil are shown in Fig. 7. The
electric field’s stimulation direction remains perpendicu-
lar to the coil’s plane and points toward the head model.
This variation in positioning accounts for the differing
brain tissue compositions across the scalp.
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Table 2: Stimulus results of DSS coils at different place-
ment positions

Coil Position Emax(V/m) d1/2 (mm) S1/2 (cm2)

Left side of
head

45.2 6.2 6.4

Dorsal side of
head

62.8 4.2 6.2

If we extract the electric field stimulation informa-
tion, and calculate the stimulation depth and focality, we
get the contents of Table 2. From the perspective of elec-
tric field intensity, the electric field value induced by the
back coil is 17.6 V/m higher than that induced by the side
coil. However, the stimulation depth is just the opposite.
The difference in focus between different positions is not
significant, only 0.2 cm2. Compared with the top posi-
tion of the head, the induced electric field value of the
left coil is still the highest, but the focus of the top coil
of the head is the best. The reason is the result of the dif-
ference in tissue type and thickness of the back and sides
of the head model.

C. Influence of the distance between the stimulation
coils and the scalp on intracranial induction focusing
field distribution

In this section, by changing the relative position of
the coil and the top of the scalp by 1 mm, reducing the
distance between them, and keeping the relative position
of the coil and the head unchanged, the relative position
of the coil and the top of the scalp is adjusted to form
seven groups of coil combinations. The change of the
coil distance relative to the head is shown in Fig. 8.

Table 3 shows how changing the distance affects
both the maximum electric field and the stimulation
depth. There is a negative correlation between these
two variables: as they decrease, so does their maxi-
mum value. The coil-head distance affects both vari-
ables: when it increases, so does their minimum value;
when it decreases, so does their maximum value. Stim-
ulation depth reaches its highest point at a distance of
either 7 mm or 8 mm, with values of 4.8 mm, and DDS
coil reaches its lowest point at a distance of only 5 mm,
with values of only 4.0 mm. The focus is calculated
for each pair and plotted against their maximum electric
field values in Fig. 9.

Figure 9 shows how the electric field strength, the
stimulation depth and the focus vary with the distance
between the coil and the head. Electric field strength is
highest when the distance is 4 mm, indicating a stronger
intracranial stimulation field as the coil gets closer to the
head. Focus is lowest when the distance is 6 mm, imply-
ing a more concentrated stimulation field with a smaller
focusing area. Stimulation depth is highest when the dis-
tance is either 7 mm or 8 mm, reaching the deepest parts

Fig. 8. Variation of the distance of the coils relative to the
head.

Table 3: The influence of the distance between coil and
model on electric field intensity and the stimulus depth

Distance (mm) Emax (V/m) d1/2 (mm)

4 75.4 4.2
5 72.9 4.0
6 62.0 4.7
7 57.8 4.8
8 48.9 4.8
9 48.6 4.7

10 46.5 4.7

Fig. 9. Influence of relative distance between the whole
coils and the scalp on maximum electric field and
focality.

of the brain. Focus changes significantly with the dis-
tance: it is 7.6 cm2 at 8 mm, 3.8 cm2 at 6 mm, and 3.2
cm2 less at 6 mm than at 4 mm. Therefore, the optimal
distance for both focality and stimulation depth is 6 mm,
where focus is minimal and stimulation depth is 4.7 mm.
Electric field strength is also relatively high at this dis-
tance, about 63 V/m. In the subsequent experiments, we
set the vertical distance from the coil to the human brain
model to be 6 mm.
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D. Effect of coil structure size on the distribution of
intracranial induced stimulation field

In this section, we divide the magnetic stimulation
coils into three groups based on their coil structures:
semicircular, square and integral. We vary the size of
each coil structure by 1 mm as a unit and examine how
it affects the focusing performance. Figure 10 shows the
size changes of the coil structures.

Since the length of the semicircle and the square
varies in the same steps, we use the same scale for the
X axis in Fig. 11. Figure 11 shows the stimulation depth
results for the three coil combinations, with the gray,
red and blue lines representing the results of the three
experimental groups. The study found that the stimula-
tion depth increases gradually as the coil size increases,
and reaches two peaks when the coil size is 21.5 mm/43
mm (the radius of the semicircle/the side length of the
square) and 24.5 mm/49 mm for all three combinations.
At the first peak, the stimulation depth is maximized by
increasing the size of the semicircular coil (Combination
1), with a depth value of 5.3 mm.

Figure 12 summarizes and plots the effects of
coil size changes on the electric field strength and the
focality, using bar charts and curves. The horizontal
axis shows the coil structure size, the left vertical axis
shows the maximum induced electric field strength, and
the right vertical axis shows the focality. The blue, red
and gray curves represent the focusing area values for
Combination 3, Combination 2, and Combination 1,
respectively. The purple, green and orange bars represent
the maximum induced electric field values for the three
combinations. Figure 12 shows that, in Combination 1,
increasing the radius of the semicircle from 19.5 mm

(a) (b) (c)

Fig. 10. Dimensional variation diagram of coil structure: (a) Combination 1: the size of the square coil unchanged,
while the radius of the semicircle coil incrementally, (b) Combination 2: the size of the semicircle coil unchanged,
while the square coil incrementally and (c) Combination 3: the overall coil structure size adjusted incrementally.

Fig. 11. Depth of stimulation for three combinations of
coil size changes.

Fig. 12. Effect of coil size on electric field strength and
focality.
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to 25.5 mm increases the maximum induced electric field
by 16.33% and the focus by 9.13%. In Combination
2, the induced electric field and the focus increase by
11.13% and 19.13%, respectively. In Combination 3, the
induced electric field and the focus increase by 34.36%
and 29.16%, respectively. Therefore, increasing either
the radius of the semicircular coil or the side length of the
square coil, or both, can increase the maximum induced
electric field value, but at the cost of reducing the focus-
ing performance.

E. Effect of coil bending angle on simulation results

To investigate the effects of coil bending on TMS
applications, we bent the coils to various degrees and
analyzed how the coil bending characteristics influenced
the stimulation area and focus. This is because coil bend-
ing can concentrate the electric field to some extent,
thereby reducing the stimulation area and achieving
higher focus. We divided the magnetic stimulation coils
into three groups: Combination 4; bent circular coils,
Combination 5; bent square coils, Combination 6; bent
whole structure. The three groups had bending ranges
from 0◦ to 70◦, with increments of 10◦. The results of
coil bending are shown in Fig. 13.

The stimulation depth results of the three groups of
coils are shown in Fig. 14 as line graphs, where blue, red
and gray lines represent the results of the three groups.
The effect of coil bending on stimulation depth first
increases and then decreases. The maximum stimulation
depth of the three coils is achieved at 40◦ bending, with
Combination 4 having the largest stimulation depth of
8.7 mm and Combination 6 having the smallest stimu-
lation depth of 8.1 mm. Therefore, by bending the coils
appropriately, they can be closer to the head, increase
the stimulation depth and reach deeper brain tissues, and
enhance the feasibility of disease treatment.

Bar and line graphs summarizing electric field inten-
sity and focality of coil bending angle are shown in
Fig. 15. The horizontal axis is the bending angle (0◦∼
70◦), the left vertical axis represents the maximum value
of electric field intensity, and the right vertical axis rep-

(a) (b) (c)

Fig. 13. Three bending combinations of DSS coils: (a)
Combination 4; keep the square coil unchanged and bend
only the circular coil, (b) Combination 5; keep the circu-
lar coil unchanged and bend only the square coil and (c)
Combination 6; bend the whole coil.

Fig. 14. Stimulation depth of coil bending.

Fig. 15. Influence of coil curvature on electric field
strength and focality.

resents the focus area value, which is the coordinate of
the curve. The purple, green and orange bars in Fig. 15
represent the electric field values of Combinations 6, 5
and 4, respectively, and the green, red and black curves
represent the focus of the three combinations. When the
coil is bent, the distance between the model and the coil
decreases, which inevitably leads to the enhancement of
the induced electric field. As can be seen from Fig. 15,
the maximum electric field value appears at 60◦ bend-
ing of Combination 6, and the minimum value appears at
20◦ bending of Combination 4. In addition, it is found
that the maximum focus value is shown at 20◦ bend-
ing of Combination 5, and the minimum focus value is
shown at 40◦ bending of Combination 4. The trend of
the coil’s focusing performance is that the focus value
first increases, then decreases and subsequently increases
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again. When the coil is bent at 20◦, it reaches the max-
imum value and the coil’s focusing performance is the
worst; when the coil is bent from 20◦ to 40◦, it is a steep
drop stage, reaching a trough, and then the focus rises
with the bending of the coil angle. The above exper-
iments demonstrate that bending the coil can enhance
both the maximum electric field and focusing perfor-
mance, with a maximum increase of 28% and 51.7%,
respectively.

In Combinations 5 and 6, the focality drops sharply
and the stimulation depth rises sharply in the bending
angle range of 20◦∼ 30◦. In Combination 4, the same
cliff-like change occurs between 30◦ and 40◦. In order to
prevent this phenomenon caused by too large test inter-
val, this section conducts more detailed experimental
simulation on the angles with significant changes. This
paper divides the magnetic stimulation coil into three
combinations. Combination 7: bend the semi-circular
coil; the bending range is 30◦∼40◦; Combination 8: bend
the square coil; Combination 9: bend the whole struc-
ture; the bending range is 20◦∼30◦, and the minimum
angle step unit is set to 2.5◦. Performance comparison
between the stimulation depth and the focus is obtained
and shown in Fig. 16.

Fig. 16. Refined simulation of coils.

Figure 16 shows that the coil bending angle of
groups 7, 8 and 9 in the range 37.5◦∼40◦ and 27.5◦∼30◦
causes a drastic change in the stimulation depth and
focus. This phenomenon may be caused by the uneven
distribution of brain tissue inside the human head model
selected by this study.

F. Data analysis

The main idea of coil design is to find coils with
deeper stimulation depth and better focusing perfor-
mance. Based on preliminary modeling, as shown in

Figs. 11 and 12, Combination 1, which sets the size of
the semi-circular and square coils to 22.5 mm and 45
mm, respectively, has the optimal performance in terms
of stimulation intensity, stimulation depth and focal-
ity. On this basis, bending experiments are carried out.
Combination 4, which bends the semi-circular coil by
40◦, has the optimal performance in terms of stimula-
tion intensity, stimulation depth and focality. Compared
with the traditional Double 8-figure and Double-Conical
coils, although it is slightly inferior in stimulation inten-
sity, it increases the stimulation depth by 7.35% and
10.47%, respectively, and reduces the focality by 77.49%
and 42.10%, respectively, greatly improving the focusing
performance of the TMS coil. Therefore, DSS is a TMS
coil with high focality.

IV. CONCLUSION

This study applies the novel electromagnetic simu-
lation software Sim4Life to perform finite element sim-
ulation of the induced field of the head electric stimu-
lation coil. By simulating six classical coils, the focus-
ing information of the head electric stimulation field
is obtained and its stimulation characteristics are ana-
lyzed. A new coil is proposed, and the study applies
the variable control method to simulate the stimulation
field. Compared with the six classical coils, the new
DSS coil greatly outperforms them in terms of focus.
Furthermore, the effects of four physical parameters,
namely, the distance between the human brain model and
the coil, the stimulation direction, the coil size and the
bending angle, on the spatial distribution of the induced
electric field of the DSS coil are explored. After the
above simulation experiments, it was found that the opti-
mal design scheme of the DSS coil is that the distance
between the model and the coil is 6 mm, the size of
the semi-circular and square coils are 22.5 mm and 45
mm, respectively, and the semi-circular coil is bent by
40◦. Compared with the Double 8-figure and Double-
Conical coils, the focus of the DSS coil is reduced by
77.49% and 42.10%, respectively, which proves that the
new coil structure proposed in this paper can achieve
better results in the focusing of the stimulation field. In
addition, the coil has high flexibility and can change the
position and angle of stimulation to better match differ-
ent patients. In the future, researchers can explore differ-
ent coil combinations and configurations to increase the
stimulation depth of the coil and enhance its stimulation
performance, making it better suited for future medical
treatments.
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Abstract – An induction switched reluctance machine
(ISRM) is a novel electrical machine which benefits
from high torque and power density. The innovation is
based on optimization of the flux path in the machine,
using short circuit windings on the rotor. This leads to
a high-grade electromechanical energy conversion pro-
cess, higher torque density compared to other electri-
cal machines, short flux path, and low core loss. ISRM
offers superior performance in terms of higher torque
density and can be applied to a broad range of appli-
cations, including electric, hybrid electric, and plug-in
hybrid vehicles (EV/HEV/PHEV). In this paper, a 12/10
ISRM is presented. The model of the machine was sim-
ulated using the finite element (FE) method, and the
results are compared with an interior permanent magnet
machine (IPM) which has been designed for EV appli-
cation. The results of our investigations indicate that the
proposed geometry offers superior performance in terms
of higher torque and efficiency.

Index Terms – Electric machines, electric vehicles, high
torque, permanent magnet machine, switched reluctance
machine.

I. INTRODUCTION

Rising concerns over air pollution and the deple-
tion of fossil fuels have sparked a significant interest in
electric vehicles (EVs). Designing the traction system
for a hybrid electric vehicle (HEV) or an EV presents
a formidable challenge due to the diverse requirements
it must fulfill. Depending on the vehicle type, the trac-
tion system must meet various demands such as high
peak power, power and torque density, efficiency, wide
speed range operation, reliability, fault tolerance, and
cost-effectiveness [1].

Among these requirements, cost-effectiveness
stands out as a crucial factor in the highly competitive
automotive market [1]. As the demand for EVs continues
to rise, achieving affordability becomes imperative for
widespread adoption.

In EVs, the traction drive necessitates large torques
at low speeds to facilitate fast acceleration and decel-

eration. This demand for high torque per mass of the
machine underscores the importance of designing elec-
tric machines that can meet this requirement effectively.
Electric machines with permanent magnets (PM), such
as permanent magnet synchronous motors (PMSM) [2–
3] and permanent magnet synchronous reluctance motors
(PM-SynRM) [4], have emerged as viable options for
generating the driving force in EVs. These machines
exhibit high torque capabilities, making them suitable for
EV applications. However, they also come with their own
set of challenges, including demagnetization of PM and
increasing manufacturing costs due to the rising prices of
PM materials.

In recent years, drive systems based on switched
reluctance machines (SRMs) have garnered attention for
traction applications. Unlike PM-based machines, SRMs
offer cost advantages as they do not require permanent
magnets. However, their torque density may not be suffi-
ciently high for EV applications. Nevertheless, advance-
ments in SRM technology have the potential to improve
their power and torque density, thereby making them
more attractive for high-performance applications.

Since the 19th century, various types of SRMs with
different topologies have been developed and imple-
mented. Moreover, extensive research has been per-
formed on modeling and controlling SRMs, as they are
nonlinear systems [5–7]. In the past decade, significant
research efforts have been directed towards exploring
different SRM configurations to enhance their perfor-
mance characteristics [8–10]. Researchers have focused
on optimizing rotor and stator structures to improve
motor efficiency and torque density. Alternative designs,
such as a double-stator configuration with a modified
rotor structure, have been proposed to enhance motional
forces and energy conversion efficiency [11].

However, conventional SRMs suffer from unde-
sirable vibrations, which arise from the forces they
produce. Achieving higher torque density in conven-
tional SRMs often requires reducing the size of the air
gap, leading to highly saturated operation and increased
mechanical noise and vibration [12].
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To overcome these challenges, the induction
switched reluctance machine (ISRM) concept has been
introduced. Short-circuited coils are placed around the
rotor teeth to modify the magnetic flux path according to
Lenz’s law. This adjustment creates a desired flux path,
enabling a larger portion of electromagnetic forces to
contribute to motion and generate higher torque.

The development of such electric machines is
expected to drive significant market demand, especially
considering the growing interest in electric and hybrid
electric vehicles. With fuel costs on the rise and increas-
ing concerns about pollution and global warming, the
appeal of electric vehicles continues to grow, making
advancements in electric machine technology crucial for
the future of sustainable transportation.

II. INDUCTION SWITCHED RELUCTANCE
MACHINE

The ISRM represents an evolution of the SRM, cap-
italizing on the induction phenomenon to enhance torque
production. By introducing alternative structural config-
urations or geometries, the ISRM optimizes the distri-
bution of induced magnetic flux and flux path patterns,
enabling a larger proportion of the generated forces to
contribute to useful work or motion [13]. This inno-
vative design approach leads to increased torque out-
put and superior performance compared to traditional
SRMs. Essentially, the ISRM incorporates coils on the
rotor to create a desired short flux path, enhancing torque
production [14]. This design modification harnesses the
inherent benefits of reluctance machines while leverag-
ing the advantages of induction, resulting in a more effi-
cient and effective machine. With its ability to gener-
ate higher torque levels, the ISRM holds promise for a
wide range of applications, including electric vehicles,
industrial machinery, and renewable energy systems. As
research in this field continues to advance, the ISRM rep-
resents a significant step forward in the development of
high- performance reluctance machines [15].

A. Configuration of the machine

Figure 1 shows the cross section of an 12/10 ISRM.
In this topology. the number of stator teeth and rotor
teeth are 12 and 10, respectively. There are two types
of stator teeth in this machine, depending on their width.
Teeth numbers 2, 4, 6, 8, 10, and 12 are “thick teeth”
and numbers 1, 3, 5, 7, 9, and 11 are “thin teeth”. In
this three-phase machine, there are two coils per phase
diametrically opposite each other. Each coil is wound on
one thick stator tooth. Phase “a” windings are spanned
around stator tooth “2” and stator tooth “8”. Phase “b”
windings are spanned around stator tooth “4” and stator
tooth “10” and phase “c” windings are spanned around
stator tooth “6” and stator tooth “12”.

Fig. 1. Cross section of 12/10 ISRM.

On the rotor side, between every pair of adjacent
teeth of rotor, respective windings are disposed. The
windings are concentric-wound, and the coil span is
short-pitch around each rotor tooth. The windings on the
rotor are short-circuited.

The ISRM is engineered to function with multiple
separately excitable phases, with each phase correspond-
ing to a specific subset of windings on the stator. Energiz-
ing a given phase involves pulsing direct current through
the corresponding windings, rather than utilizing sinu-
soidal AC current.

When a phase of the ISRM is excited, magnetic
fluxes are induced within the back iron of the stator,
rather than the back iron of the rotor. This induction
occurs due to the magneto-motive force (mmf) orienta-
tion of the stator and rotor coils, resulting in the creation
of a short flux path. Interestingly, exciting any given
phase of the ISRM also induces electrical current in the
rotor coils while the rotor is in motion. This phenomenon
prevents flux lines from entering the rotor’s back iron,
thereby establishing a short flux path.

The switching pattern employed by the ISRM
closely resembles that of conventional SRMs. During
the motoring mode of operation, electromagnetic torque
is generated as the magnetic circuit seeks to minimize
reluctance. This mechanism allows the ISRM to effi-
ciently convert electrical energy into mechanical motion,
making it a viable option for various applications requir-
ing precise torque control and high performance.

By capitalizing on the unique characteristics of
induction and reluctance principles, the ISRM offers
a novel approach to achieving superior torque produc-
tion and operational efficiency. Its ability to manipulate
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magnetic fluxes and optimize flux paths contributes to
its effectiveness in generating torque while minimizing
energy losses. As research and development in this field
continues to advance, the ISRM holds promise as a ver-
satile and sustainable solution for powering a wide range
of machinery and systems.

B. Torque characteristics and efficiency of ISRM

To analyze and compare the torque behavior and
performance of ISRM and interior permanent magnet
machine (IPM), we developed two-dimensional finite
element (FE) models of the ISRM and IPM using the
parameters listed in Tables 1 and 2. These parameters
were selected based on those of an IPM, specifically
designed for EV applications [16]. Figure 2 depicts the
12 teeth/10 pole IPM, which utilizes a concentrated
winding method to enhance its performance. Using this
approach, we can evaluate the torque characteristics of
the ISRM and assess its suitability for various applica-
tions, particularly in electric vehicle propulsion systems.
This comprehensive analysis provides valuable insights
into the ISRM’s operational efficiency and potential per-
formance enhancements, contributing to advancements
in electric motor technology and sustainable transporta-
tion solutions.

The two motors model were meshed using a struc-
tured grid to balance accuracy and computational effi-
ciency, with simulations completed in a reasonable
timeframe. Simplifications, such as neglecting axial vari-
ations and assuming symmetry, were made to focus on

Table 1: ISRM characteristics
Stator Outer Radius 115 mm

Stack length 150 mm
Motor length including

end windings 200 mm

Number of stator teeth 12
Number of rotor teeth 10

Maximum current 250 A
DC Voltage 600 V

Stator turn numbers concentrated / 30
Rotor turn numbers concentrated / 30

Table 2: IPM characteristics
Stator Outer Radius 115 ·mm

Stack length 150 mm
Motor length including end

windings 200 mm

Number of stator poles 12
Number of rotor poles 10

Maximum current 250 A
DC Voltage 600 ·V

Number of turns per phase 30

Fig. 2. The 12 teeth/10 pole IPM.

key electromagnetic behaviors. While these assumptions
may not fully capture 3D interactions and windings end
effects, the 2D model is considered acceptable for ana-
lyzing these electric machines. The motor models were
meshed using triangular elements to ensure accuracy and
computational efficiency. The mesh was refined in criti-
cal regions such as the airgap and pole tips, with element
sizes smaller than 0.4 mm, while coarser meshes with
element sizes up to 2 mm were used in the shaft and other
less critical areas. The total number of elements in the
models was approximately 60,000, determined based on
a mesh convergence study to balance precision and com-
putational time. This mesh distribution optimized both
the accuracy of the electromagnetic analysis and the sim-
ulation efficiency.

The flux distribution and torque characteristics of
the ISRM and IPM are determined through the solu-
tion of the 2D FE model. The flux distribution of the
IPM is presented in Fig. 3. In Fig. 4, the flux distribu-
tion within the ISRM is shown when phase “a” is ener-
gized, revealing the achievement of a short flux path.
Figure 5 showcases the torque behavior of the ISRM
at various time intervals, maintaining a constant speed
(6000 RPM) under single-phase excitation (100 A). As
the rotor position transitions from an unaligned posi-
tion to an aligned position (within an 18-degree region),
the torque output is depicted. By sequentially energiz-
ing the stator phases, a familiar pattern emerges simi-
lar to a conventional SRM: a counterclockwise excita-
tion among stator phases yields clockwise motion, and
vice versa. This observation underscores the consistency
between ISRM and conventional SRM operation, provid-
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Fig. 3. Flux distribution in the IPM.

Fig. 4. Flux distribution in the ISRM.

Fig. 5. Torque of the ISRM at 6000 RPM.

ing valuable insights into the machine’s torque produc-
tion and motion characteristics for further analysis and
optimization.

The comparative graph in Fig. 6 illustrates the aver-
age torque outputs of two motors at 3000 RPM for
varying phase currents. At lower phase currents, the
IPM motor demonstrates higher average torque com-
pared to the ISRM motor. However, as the phase cur-
rent increases, the ISRM motor begins to exhibit higher
average torque outputs compared to the IPM motor. This
shift in torque superiority from IPM to ISRM becomes
more pronounced at higher phase currents. This observed
phenomenon can be attributed to the more aggressive
action of the induction phenomena at higher currents
in the ISRM motor. As the phase current increases, the
induction effects become more pronounced, enabling the
ISRM motor to generate higher torques compared to
the IPM motor under such conditions. The comparative
graph in Fig. 7 at 6000 RPM follows a similar trend to
the graph at 3000 RPM, showcasing the average torque
outputs of ISRM and IPM motors for varying phase cur-
rents.

Figures 8 and 9 illustrate a comparison of the output
power between ISRM and IPM motors at 3000 RPM and
6000 RPM for varying phase currents respectively. As it

Fig. 6. Average torque of ISRM vs IPM at 3000 RPM.

Fig. 7. Average torque of ISRM vs IPM at 6000 RPM.
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Fig. 8. Output power of ISRM vs IPM at 3000 RPM.

Fig. 9. Output power of ISRM vs IPM at 6000 RPM.

is evident from the figures, the trend of output power fol-
lows a similar pattern to that of output torque across both
3000 and 6000 RPM, showing an increase with higher
phase currents for both ISRM and IPM motors. Based on
the results, it is understood that ISRM has higher torque
density and higher power density compared to IPM at
high currents.

Figure 10 shows a comparison of copper loss
between ISRM and IPM at speeds of 3000 and 6000
RPM, with different phase currents. At both speeds,
ISRM consistently has more copper loss compared to
IPM across various phase currents. This is because ISRM
has windings on the rotor, causing higher ohmic losses
within the rotor winding and resulting in more copper
loss. In contrast, IPM motors don’t have windings on the
rotor, so they don’t have the same kind of losses.

Figure 11 depicts a comparison of core losses
between ISRM and IPM at both 3000 and 6000 RPM
for different phase currents. At both speeds, ISRM con-
sistently demonstrates lower core losses compared to
IPM across various phase currents. This disparity can be
attributed to the distinct design characteristics of each
motor type. ISRM motors typically feature a shorter flux

Fig. 10. Copper loss of ISRM vs IPM.

Fig. 11. Core loss of ISRM vs IPM.

path, which results in a more concentrated magnetic field
and consequently lower core losses compared to IPM
motors .

Figure 12 depicts a comparison of efficiency
between ISRM and IPM at both 3000 and 6000 RPM for
different phase currents. At 3000 RPM, the efficiency of
the IPM motor tends to be higher compared to the ISRM
motor, specially at high currents. However, at lower cur-
rents, the efficiency of ISRM becomes closer to that of
IPM. This is attributed to the fact that at lower speeds,
the influence of core loss is relatively minimal, and the
IPM motor benefits from its lower copper loss. How-
ever, as the speed increases to 6000 RPM, a different
trend emerges. The ISRM motor exhibits higher effi-
ciency levels at this higher speed range. This change
in efficiency can mainly be credited to the much lower
core loss of the ISRM motor compared to the IPM motor
at 6000 RPM. At higher speeds, the core loss becomes
more pronounced, favoring the ISRM motor, which is
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Fig. 12. Efficiency of ISRM vs IPM.

designed with a shorter flux path, resulting in lower core
losses. Therefore, while the IPM motor may have an ini-
tial advantage at lower speeds, the ISRM motor demon-
strates superior efficiency performance at higher speeds,
making it a favorable choice for applications demanding
high-speed operation.

III. CONCLUSION

The ISRM represents a novel advancement in elec-
trical machine technology, offering high torque and
power density. By optimizing the flux path through the
use of short-circuit windings on the rotor, the ISRM
achieves efficient electromechanical energy conversion,
resulting in superior torque density and reduced core loss
compared to other electrical machines. In this paper, a
12/10 ISRM tailored specifically for EV applications was
presented and analyzed using a 2D FE model. The results
indicate that the proposed ISRM geometry outperforms
IPM in terms of torque and efficiency at high speeds and
currents. However, it is noteworthy that ISRM exhibits
lower torque capability and lower efficiency compared
to IPM at lower speeds and currents. This study under-
scores the potential of ISRM to meet the demands of the
automotive industry for high-efficiency electric propul-
sion systems, particularly at high speeds and currents.
The future plan involves prototyping a real ISRM and
testing its performance in real-world conditions to eval-
uate its efficiency and reliability.
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Abstract – This paper proposes an improved analyt-
ical method to calculate the two-dimensional air gap
magnetic field (AGMF) of the permanent magnet array
in trapezoidal Halbach permanent magnet linear syn-
chronous motors. The influence of the trapezoidal mag-
net bottom angle a, equivalent width coefficient aw,
height coefficient ah and air gap height coefficient ag
on the amplitude and harmonic distortion rate of the
air gap central magnetic field is analyzed. Based on the
equivalent surface current method (ESCM), an improved
equivalent algorithm based on trapezoidal side length is
proposed for the trapezoidal Halbach permanent magnet
array (THPMA). The equivalent analytical formula of
two-dimensional air gap flux density is derived and veri-
fied by the finite element method (FEM). Results show
that the improved equivalent surface current method
(IESCM) is convenient and accurate and is suitable for
magnetic field calculation of irregular magnetic poles
with arbitrary section shape. Analysis shows that, com-
pared with a rectangular magnet, when the bottom angle
a of the magnet is greater than 90◦, AGMF can obtain the
maximum peak value of magnetic flux density (Bpeak)
and the minimum total harmonics distortion of magnetic
flux density (THDB).

Index Terms – Air gap magnetic field, harmonic dis-
tortion rate, improved equivalent surface current method
(IESCM), permanent magnet linear synchronous motor
(PMLSM).

I. INTRODUCTION

A permanent magnet linear synchronous motor
(PMLSM) as the core of the power system has the
advantages of simple structure, large thrust-to-volume
ratio, high efficiency, and accurate positioning. It is
highly valued by researchers. With the development of
high-end manufacturing, in precision and ultra-precision

servo drive systems, applications of PMLSM are used
to replace the traditional rotary motor-screw to achieve
precise motion and positioning [1–3]. The air gap mag-
netic field distribution of PMLSM plays an important
and decisive role in its performance such as back EMF,
thrust, and vibration and noise [4–5]. Therefore, how
to accurately analyze the air gap magnetic field of the
PMLSM is particularly important to study the amplitude
of the air gap magnetic field of the PMLSM and reduce
the THDB.

The analysis methods of the air gap magnetic
field (AGMF) include numerical and analytical methods.
Among them, the numerical method represented by the
finite element method (FEM) is mainly used to calcu-
late complex boundary, multiple media, and nonlinear
problems. However, the pre-processing and calculation
process is time-consuming, and it is generally used to
verify electromagnetic performance after the determina-
tion of various dimensional parameters. Common analyt-
ical methods include equivalent magnetization method,
equivalent magnetic circuit method, equivalent magnetic
network method, conformal mapping method, and equiv-
alent surface current method (ESCM). References [6–
8] use the equivalent magnetization method to calculate
the no-load AGMF of PMLSM. By optimizing the shape
and size of the permanent magnet, sinusoidal distribution
of the no-load AGMF of the motor is improved; how-
ever, this method is only applicable to the solution of
the electromagnetic field of regular magnet shape whose
boundary is parallel to the coordinate axis, the medium
is required to be uniform, and the constraint condition
that the magnetization direction is completely parallel to
the direction of the coordinate system must be satisfied.
Therefore, the secondary magnetic field of the motor
often needs to be simplified by the equivalent magneti-
zation method, which can cause large errors in calcula-
tion of AGMF. The equivalent magnetic circuit method
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has the advantages of intuitive physical concept, sim-
ple to use, and fast calculation speed. References [9–
10] use the method to divide the magnetic field to be
solved into several independent elements, calculate the
magnetic conductivity of each element, and then form
a magnetic network model through connecting nodes to
calculate the magnetic circuit, and compare the calcula-
tion results with FEM. However, the method is difficult
with small structures; for example, when modeling the
motor magnetic field, it is necessary to consider the small
changes in the magnetic network structure caused by
the changes of the primary and secondary relative posi-
tions. The equivalent magnetic network method consid-
ers the local saturation effect of magnetic circuit accord-
ing to the principle of equivalent flux tube. In references
[11–12], the motor is divided into several independent
unit magnetic fields with uniform medium and regular
geometry to calculate equivalent magnetic conductivity.
According to the similarity between the magnetic net-
work and the electrical network, the magnetic network is
calculated by the node method, and the air gap magnetic
density distribution is obtained. However, the method
struggles to solve the magnetic conductivity of adjacent
nodes, the amount of data calculation before and after
the nodes move is large, and the calculation model lacks
universality. The conformal mapping method is similar
to the numerical method. References [13–15] use this
method to calculate the normal and tangential magnetic
flux density of the secondary magnetic field. The method
is suitable for homogeneous and isotropic fields, but does
not consider the saturation effect, so the accuracy of the
magnetic field distribution in the solution domain of the
permanent magnet is not high.

ESCM is an effective method to calculate the mag-
netic field of a permanent magnet. The method regards
the interior of the permanent magnet as a vacuum, and
the magnetic field generated by the permanent magnet is
equivalent to the magnetic field generated by its surface
current layer. The method does not consider the complex
calculation inside the magnet but converts the complex
shape magnet to the current layer magnetic field calcu-
lation on its corresponding surface, effectively improv-
ing calculation accuracy. Reference [16] analyzed and
calculated the primary and secondary magnetic fields
of PMLSM of a trapezoidal Halbach permanent magnet
array (THPMA) and analyzed and optimized the influ-
ence of secondary structure parameters on AGMF. In ref-
erence [17], the analytical formula of the space magnetic
field of a single permanent magnet is derived by using
this method. The expression of the secondary magnetic
field of the conventional PMLSM is obtained by coordi-
nate transformation and compared with the finite element
simulation results. References [18–20] analyze the mag-
netic field of PMLSM by using this method, establish

the magnetic field models generated by armature wind-
ing and permanent magnet, respectively, and obtain the
air gap flux density of the motor. It can be seen from
the above analysis that the accuracy of various AGMF
calculation methods is greatly affected by the geometry
of the permanent magnet, resulting in low accuracy of
the calculation results which cannot reflect the internal
characteristics of the real AGMF. Especially when the
geometry of the permanent magnet is irregular and the
magnetization direction is complex to rotate, calculation
difficulty and deviation of AGMF are particularly obvi-
ous. In addition, research on the amplitude (Bpeak) and
THDB of AGMF in PMLSM with rectangular permanent
magnet structure is relatively sufficient. Limited by the
rectangular permanent magnet structure, research results
are limited to the case that the bottom angle is equal to
90◦. However, a trapezoidal permanent magnet (TPM)
changes the rectangular structure of the traditional rect-
angular permanent magnet, resulting in the need to con-
sider the influence of the trapezoidal bottom angle in
AGMF calculation. Existing research on the influence of
permanent magnet structure with bottom angle not equal
to 90◦ on the Bpeak and THDB in AGMF has not been
shown.

In summary, to accurately calculate the AGMF of
a trapezoidal Halbach PMLSM and reveal the influence
law of the TPM bottom angle on AGMF Bpeak and
THDB, this paper takes the two-dimensional AGMF of
the secondary of the U-shaped PMLSM as the research
object and, based on the ESCM, an improved equiva-
lent algorithm with the trapezoidal side length as the unit
is proposed for the THPMA. The equivalent analytical
formula of two-dimensional air gap magnetic density is
derived and verified by FEM. At the same time, the influ-
ence law of trapezoidal magnet bottom angle, equivalent
width coefficient aw, height coefficient ah and air gap
height coefficient ag on amplitude change, and THDB of
the central magnetic field in the air gap are analyzed.

II. MODEL OF THPMA

The three-dimensional topology of the THPMA
studied in this paper is shown in Fig. 1. The secondary
is composed of back iron and TPM. Because the bilat-
eral secondary of the motor is ”U” shape and arranged
neatly, the magnetization direction of the adjacent per-
manent magnets is 90o different. Therefore, we take one
of the symmetrical Halbach array periods for research,
as shown by the red box in Fig. 1.

It can be seen that THPMA is strictly symmetrical
along the center of the vertically magnetized permanent
magnet in one cycle, so the vertically magnetized per-
manent magnet is set as the main magnetic pole. AGMF
changes as the bottom angle a(0≤a≤π/2, π/2≤a≤π) of
the trapezoidal magnet changes. Generally, the length of
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Fig. 1. Three-dimensional structure diagram of THPMA.

the permanent magnet is much larger than the other two
directions. Therefore, the three-dimensional model can
be equivalent to the two-dimensional model, as shown in
Figs. 2 (a) and (b). The center of symmetrical main mag-
netic pole is the y-axis, the center line of the air gap is
the x-axis, magnet height is h, air gap height is g, pole
pitch is τ , and waist width of the main magnetic pole is
the equivalent width w.

(a)

(b)

Fig. 2. Two-dimensional structure diagram of THPMA:
(a) a<90◦ and (b) a>90◦.

When solving the AGMF generated by the above
secondary array, the following assumptions are made for
the magnetic field:

(1) The secondary array of the motor is infinitely
long along the x axis.

(2) The magnetic permeability of the secondary
yoke of the motor is infinite.

(3) The magnetization of the permanent magnet is
uniform, and its relative permeability μr = 1.

III. IMPROVED EQUIVALENT SURFACE
CURRENT METHOD (IESCM) MODELING

AND CALCULATION RESULTS

In order to make the research method universal, the
model parameters are dimensionless and the characteris-
tic length is τ . The following three dimensionless struc-
ture coefficients can be obtained: equivalent width coef-
ficient aw, aw = w/τ; height coefficient ah, ah = h/τ;
air gap height coefficient ag, ag = g/τ .

A. Model of IESCM

According to ampere molecular circulation hypothe-
sis, the magnetic field at any point in the external space is
excited by all the molecular currents neatly arranged in
the permanent magnet. Because the permanent magnet
is uniformly magnetized, the effect of molecular current
in the permanent magnet counteracts each other, so the
permanent magnet has only surface current but no body
current in the macro view. Based on the above hypothe-
sis, the surface current method is an equivalent method
to solve the magnetic field of a permanent magnet by
using the solved surface current magnetic field instead
of the magnetic field of a permanent magnet. The com-
mon equivalent process is to take a single magnet as
the basic element, solve the equivalent magnetic field
and calculate by superposition. The IESCM proposed in
this paper takes any side length of the permanent mag-
net section as the basic element, calculates the equiva-
lent magnetic field of each side length in the period of
magnetic pole array, and then performs the superposi-
tion. Because IESCM takes the arbitrary side length of
the permanent magnet section as the basic element, it
breaks through the calculation constraints of the tradi-
tional regular magnet shape and can be used to calculate
the irregular magnetic poles with arbitrary section shape
in principle. Figure 3 shows the analytical model of
trapezoidal Halbach pole structure established by using
the IESCM. The two-dimensional absolute rectangular
coordinate system xoy is established with the air gap cen-
ter as the x-axis and the symmetric center of the main
magnetic pole as the y-axis.

Fig. 3. Analytical model of THPMA by IESCM.
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The relative coordinate system xtotyt is established
for the side length of each magnetic pole in a cycle. The
center of the side length is ot , and the direction of yt
forms an acute angle av with the magnetization direc-
tion. Taking the main magnetic pole magnetized verti-
cally upward as an example, the two-dimensional local
rectangular coordinate system xtoyt as shown in Fig. 4 is
established for the side length I and II of the surface cur-
rent formed by the two oblique edges of the main mag-
netic pole, when the bottom angle a of the trapezoidal
is 0≤a≤π/2, the right inclined edge of magnetization in
+y direction is equivalent to current inflow, and the left
inclined edge is equivalent to current outflow.

(a) (b)

(c)

Fig. 4. Schematic diagram of -x magnetization coordi-
nate rotation: (a) horizontal left magnetization, (b) rela-
tive coordinate system established by side length, and (c)
angle αv1 between side I and the magnetizing direction.

For any point p(x, y) in AGMF, it can be seen from
Fig. 4 that the magnetic field generated by the surface
current side I to p(x, y) in AGMF is:

B1xt (x,y,x0t ,y0t ,αv1,L1,α1) =
Mμ0 cosαv1

4π •

ln

(−(x− x0t)sinα1 +(y− y0t)cosα1 +L1/2)2+
((x− x0t)cosα1 +(y− y0t)sinα1)

2

(−(x− x0t)sinα1 +(y− y0t)cosα1 −L1/2)2+
((x− x0t)cosα1 +(y− y0t)sinα1)

2

.

(1)

B1yt (x,y,x0t ,y0t ,αv1,L1,α1)

= Mμ0 cosαv1
2π (arctan (y−y0t )cosα1−L1−(x−x0t )sinα1

(x−x0t )cosα1+(y−y0t )sinα1
−

arctan (y−y0t )cosα1+L1−(x−x0t )sinα1
(x−x0t )cosα1+(y−y0t )sinα1

)

. (2)

Similarly, the magnetic field generated by the sur-
face current II is:

B2xt (x,y,x0t ,y0t ,αv2,L2,α2)

=−B1xt (x,y,x0t ,y0t ,αv2,L2,α2). (3)
B2yt (x,y,x0t ,y0t ,αv2,L2,α2)

=−B1yt (x,y,x0t ,y0t ,αv2,L2,α2). (4)

(x0t , y0t ) is the origin coordinate of the migration
coordinate system. L1, L2 are side length of the surface
current. a1, a2 are angles of rotation relative to the coor-
dinate system. av1, av2 are acute angles between the mag-
netization direction and yt . B1xt , B1yt , B2xt , B2yt are coor-
dinate directions in the migration coordinate system. The
magnetic induction intensity component of the surface
current edge of any equivalent current edge I in the prin-
cipal coordinate system at the p(x, y) is:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Bin,x(x,y,xi,yi,αvi,Li,αi) =
B1xi(x,y,xi,yi,αvi,Li,αi)cosαi
−B1yi(x,y,xi,yi,αvi,Li,αi)sinαi
Bin,y(x,y,xi,yi,αvi,Li,αi) =
B1xi(x,y,xi,yi,αvi,Li,αi)sinαi
+B1yi(x,y,xi,yi,αvi,Li,αi)cosαi

. (5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bout,x(x,y,xi,yi,αvi,Li,αi) =
B2xi(x,y,xi,yi,αvi,Li,αi)cosαi
−B2yi(x,y,x0i,y0i,αvi,Li,αi)sinαi
Bout,y(x,y,xi,yi,αvi,Li,αi) =
B2xi(x,y,xi,yi,αvi,Li,αi)sinαi
+B2yi(x,y,xi,yi,αvi,Li,αi)cosαi

. (6)

If the direction of the equivalent side current of the
magnet is inflow, select equation (5). If the direction
of the equivalent side current of the magnet is outflow,
select equation (6). Thus, the magnetic induction inten-
sity generated by any surface current edge in the model
in Fig. 3 to the point p(x, y) in AGMF is equation (5) or
(6).

For fixed point p(x, y) in AGMF, the magnetic induc-
tion intensity produced by the permanent magnet pole in
one cycle is the superposition of the magnetic induction
intensity produced by each surface current edge. It can
be seen from the number of surface currents in and out
in Fig. 3 that a single bilateral Halbach array has a total
of 24 sides, from which the midpoint coordinates p(x, y)
and avi, Li, ai relationship is:

Bx(x,y) =
24
∑

i=1
Bix(x,y,xi,yi,αvi,Li,αi)

By(x,y) =
24
∑

i=1
Biy(x,y,xi,yi,αvi,Li,αi)

. (7)

Similarly, Bix and Biy can select any one of equa-
tion (5) and equation (6) according to inflow or outflow
of current. THPMA is arranged along the x axis, and
its air gap magnetic density is linearly superimposed.
The expression of the air gap magnetic density in the x
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direction and y direction is:

Bx(x,y) =
±∞
∑
j=1

24
∑

i=1
Bix(x,y,xi +2( j−1)τ,yi,αvi,Li,αi)

By(x,y) =
±∞
∑
j=1

24
∑

i=1
Biy(x,y,xi +2( j−1)τ,yi,αvi,Li,αi)

.

(8)
According to Figs. 3 and 4 and equation (8), among

the 24 calculated side lengths, the five parameters xi, yi,
avi, Li, ai can be expressed using the four basic param-
eters a, aw, ah, and ag of the trapezoidal Halbach per-
manent magnet array proposed in the paper, as shown in
equation (9). For example, {±(τ-0.5aw),±τ ,±0.5aw} is
a set of xi, which takes aw as the variable. It can also be
seen from equation (9) that the fundamental difference
between a magnet with trapezoidal profile and a magnet
with rectangular profile is the introduction of trapezoidal
bottom angle, which mainly affects avi, Li, ai:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi (αw) ∈
{±(

τ − 1
2 αw

)
,±τ, ± 1

2 αw
}

;
xi, j = {xi ± 2 jτ} ;
yi (αg,αh) ∈

{± 1
2 αg,± 1

2 (αg +αh) , ±
( 1

2 αg +αh
)}

;

Li (αw,αh,α) ∈
{

τ −αw ± αh
tanα , αh

√
1+(2/ tanα)2

}
;

αi (α) ∈ {±( π
2 +α

)
,±( π

2 −α
)
, ± π

2

}
;
(
0 ≤ α ≤ π

2

)
αvi (α) ∈ {

0,α, π
2 −α

}
;

i = 1,2, ......,24 j = 1,2, ......,∞

.

(9)
In summary, the IESCM based on equation (8) first

performs equivalent calculation for each TPM in the
THPMA and then uses the transformation relationship
between local coordinate system and global coordinate
system, the super-position principle, to stack the mag-
netic fields generated by all surface currents and, finally,
calculates the complete AGMF distribution. At the same
time, according to equation (9), the influence law of the
size parameters of THPMA on AGMF is analyzed.

B. Calculation method of THDB

According to AGMF distribution obtained from the
above solution, under ideal conditions, the air gap flux
density waveform is a standard sine wave. However, due
to the design of the permanent magnet structure, a large
number of nonlinear flux density harmonics are gener-
ated in the air gap flux density waveform, which will
cause the actual flux density waveform to be distorted,
which is usually characterized by THDB. In this paper,
THDB of air gap magnetic density is taken as the charac-
teristic expression of sinusoidal air gap magnetic density:

T HDB =

√
∞

∑
n=1

B2
2n+1/B1

where B2n+1 is the amplitude of the odd harmonic air
gap magnetic density and B1 is the amplitude of the air
gap magnetic density fundamental wave. The amplitude
of air gap magnetic density in equation (10) can be cal-
culated by the periodic discrete Fourier coefficient.

C. Calculation results and finite element verification

According to the IESCM model established above,
we take the ladder type Halbach permanent magnet array
model shown in Fig. 3 (a) as example to verify. The per-
manent magnet adapted the NdFe42, and the calculation
parameters are shown in Table 1.

Table 1: Parameter selection of ladder Halbach perma-
nent magnet array
Structural Parameters of Permanent

Magnet

Value

Equivalent width of permanent magnet
(w)

7.5 mm

Magnet height (h) 9 mm
Pole pitch (τ) 15 mm

Air gap height (g) 9 mm
Remanence (Br) 1.32 Tesla

Magnetization (M) 1050955 A/m
Permeability (μ0) 4π×107 H/m

Bottom angle of trapezoidal (a) 75◦

The THPMA shown in Fig. 3 is taken as the anal-
ysis object, symmetry center is o, and the calculation
results of air gap flux density Bxy when g = 9 mm are
shown in Fig. 5. It can be seen from Fig. 5 that the mag-
netic field in the air gap is distributed periodically. When
the magnetization directions are consistent, the magnetic
field strength of the air gap is large, and the area with
the largest magnetic field strength is located at the bot-
tom angle of the TPM, with the maximum value of 1.2 T.
When the magnetization direction is opposite, the mag-
netic field intensity in the air gap is the lowest, and the
position with the lowest magnetic field intensity is at the
bottom angle of the air gap, with a minimum of 0.2 T.

Fig. 5. Cloud diagram of AGMF for improved equivalent
surface current calculation.

In order to verify the correctness and accuracy of
the analytical calculation, FEM is used to simulate the



LI, ZHANG, ZHAO, MIAO, DONG, LI: MAGNETIC FIELD ANALYSIS OF TRAPEZOIDAL HALBACH PMLSM 74

PMLSM secondary model of trapezoidal Halbach mag-
netization, and the calculation parameters are consistent.
The calculation results of IESCM and FEM are shown in
Fig. 6.

(a)

(b)

Fig. 6. Comparison diagram of single cycle air gap mag-
netic density FEM and IESCM when g = 9 mm: (a) Bx
and (b) By.

It can be seen from Fig. 6 that the analytical method
of Bx and By for air gap magnetic density is completely
consistent with FEM, but there is error in local size.
Based on the simulation results, the maximum relative
error is 0.031%. It can be seen from the results that the
IESCM proposed in this paper is accurate and effective
in calculating the magnetic field of THPMA.

IV. INFLUENCE LAW OF a ON AGMF

The IESCM method is used to calculate AGMF of
THPMA, and the correctness of the method is verified by
FEM. According to analysis results, a has an important
influence on AGMF distribution. This section discusses
the influence law of a on Bpeak and THDB. We reveal

the influence law of the coupling effect of a, aw, ah, and
ag, which leads to the maximum value of Bpeak and the
minimum value of THDB. In order to ensure the univer-
sality of this research method, take τ =1, 60o≤a≤120o,
0.3≤aw≤0.7, 0.3≤ah≤0.7, and 0.3≤ag≤0.7.

A. Influence law of a, aw, ah, and ag on THDaB
Figure 7 (a) shows the three-dimensional topogra-

phy of THDB with a and aw as variables when ah = 0.5
and ag = 0.5. It can be seen from Fig. 7 (a), within the
parameters of simulation calculation, when ah =0.5 and
ag = 0.5, the minimum value of THDB is affected by the
synergistic effect of a and aw. The isoline of THDB about
a and aw shows a V-shaped canyon, the minimum value
area is at the bottom of the V-shaped canyon, the mini-
mum value area is located on a straight line composed of
a and aw with slope of da/aw, and the maximum value
area is at the left and right sides of the V-shaped canyon.
The value of THDB on both sides of the canyon presents
a symmetrical distribution trend with respect to the V-
shaped canyon.

Figure 7 (b) shows analysis of the influence law of
a and aw on THDB. It can be seen from Fig. 7 (b) that

(a)

(b)

Fig. 7. The effect of a and aw on THDB (ah = 0.5,
ag = 0.5): (a) three-dimensional topography of THDB
with a and aw as variables and (b) analysis of influence
law of a and aw on THDB.
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within the parameters of simulation calculation, when
aw = 0.3, the minimum value of THDB increases with
an increase of a. Starting from aw = 0.35, with increase
of a, the minimum value of THDB first decreases and
then increases. When aw = 0.7, the minimum value
of THDB decreases with the increase of a. The max-
imum THDB changes with the change of aw. When
aw<0.5, the maximum THDB is located at the side of
a<90◦, and when aw>0.5, its position is exactly the
opposite. When aw = 0.35 and a = 63.4◦, the min-
imum THDB = 0.0098 and the a of maximum THDB
is 114◦. When aw = 0.5 and a = 99◦, the mini-
mum THDB = 0.0109. The a of maximum THDB is
60◦. When aw = 0.65 and a = 117◦, the minimum
THDB = 0.0098. The a of maximum THDB is 63.4◦.

Figure 8 (a) shows the influence of changing ah
on THDB. It can be seen from Fig. 8 (a) that within
the parameters of the simulation calculation, the influ-
ence of ah on THDB is symmetrically distributed with
the change of a, and the amplitude of minimum THDB
is not affected by ah but it has an important impact
on the amplitude of maximum THDB. The smaller ah,
the greater the amplitude of maximum THDB. When
ah = 0.3, maximum THDB is 0.103 and minimum

(a)

(b)

Fig. 8. Influence law of a, ah, ag on THDB: (a) change
parameters ah (ag = 0.5) and (b) change parameters ag
(ah = 0.5).

THDB is 0.0134. When ah = 0.5, maximum THDB is
0.0899 and minimum THDB is 0.0111. When ah = 0.7,
maximum THDB is 0.0835 and minimum THDB is
0.0092. In addition, as ah increases, a will decrease when
minimum THDB is obtained. When ah are 0.3, 0.5, and
0.7, respectively, a of minimum THDB are 108◦, 99◦, and
67.5◦, respectively.

Figure 8 (b) shows the influence of changing ag on
THDB. It can be seen from Fig. 8 (b) that within the
parameters of simulation calculation, the influence of ag
on THDB is symmetrically distributed with change of a.
The smaller ag, the greater the amplitude of THDB. The
change of ag has little effect on a when obtaining the
minimum THDB. When ag are 0.3, 0.5, and 0.7, respec-
tively, a of minimum THDB is 98◦.

It can be inferred from Figs. 7 and 8 that a has a
great influence on THDB amplitude of AGMF, especially
when a �=90◦, aw, ah, and ag have a common influence on
the amplitude of THDB. According to research results,
in order to obtain the minimum value of THDB for the
traditional rectangular magnet (a = 90◦), aw should be
0.5, which is consistent with the research results in this
paper. The change of a changes the intensity of AGMF,
which brings distortion to AGMF. Therefore, in magnet
design, the influence of the V-shaped canyon composed
of a and aw should be considered and appropriate cou-
pling parameters should be selected.

B. Influence law of a, aw, ah, and ag on Bpeak

Figure 9 (a) shows the contour map of Bpeak impact
with a and aw as variables when ah = 0.5 and ag = 0.5.
It can be seen from Fig. 9 (a) that within the parameters
of simulation calculation, when ah = 0.5 and ag = 0.5,
the maximum value of Bpeak is affected by the synergistic
effect of a and aw. The isoline of a and aw on Bpeak is a
hill, and the maximum value area is at the top of the hill,
and the value range of a and aw in this area are a>90◦
and aw<0.5.

Figure 9 (b) shows the influence law of a and aw
on Bpeak. It can be seen from Fig. 9 (b) that within the
parameters of simulation calculation, when aw≤0.5, the
maximum value area of Bpeak increases with the a, and
the maximum value area of Bpeak first increases and then
decreases. When 0.3<aw<0.45, the maximum value area
of Bpeak gradually increases with the increase of aw, and
when 0.45<aw<0.5, the maximum value area of Bpeak
gradually decreases with increase of aw. When aw are
0.3, 0.35, 0.4, and 0.5, the corresponding a are 94.5◦,
103.5◦, 108◦, and 117◦. Meanwhile, the maximum val-
ues of Bpeak are 0.8797 T, 0.8868 T, 0.8874 T, and 0.8654
T. It should be noted that when aw is equal to 0.4, Bpeak
is at maximum value, and the width of the main mag-
netic pole is less than 0.5 times pole pitch. Starting from
aw≥0.5, with increase of a, the maximum value area of
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(a)

(b)

Fig. 9. The effect of a and aw on Bpeak (ah = 0.5,
ag = 0.5): (a) three-dimensional topography of Bpeak
with a and aw as variables and (b) analysis of influence
law of a and aw on Bpeak.

Bpeak gradually increases. With the increase of aw, the
maximum value area of Bpeak gradually decreases. When
a = 117◦ and aw are 0.5, 0.55, 0.6, 0.65, and 0.7, the
maximum values of Bpeak are 0.8684 T, 0.8654 T, 0.8472
T, 0.8242 T, and 0.7972 T.

Figure 10 (a) shows the effect of changing ah on
Bpeak. It can be seen from Fig. 10 (a) that within the
parameters of simulation calculation, ah has an impor-
tant impact on the influence law of the maximum value
of Bpeak with the change of a. With the increase of a, the
greater the ah the greater the maximum value of Bpeak.
When ah are 0.3, 0.5, and 0.7, respectively, the maximum
values of Bpeak are 0.6881 T, 0.8775 T, and 0.9812 T,
respectively, and the minimum values of Bpeak are 0.5574
T, 0.7071 T, and 0.7569 T. In addition, according to
Fig. 8 (a), when ah are 0.3, 0.5, and 0.7, respectively, the
maximum THDB are 0.103, 0.0899, and 0.0835, and the
minimum THDB are 0.0134, 0.0111, and 0.0092. There-
fore, on the premise of ensuring the maximum value
of Bpeak and the minimum value of THDB in AGMF,
a should be greater than 90o and ah should be greater
than 0.5.

Figure 10 (b) shows the influence of changing ag
on Bpeak. It can be seen from Fig. 10 (b) that within the

(a)

(b)

Fig. 10. Influence of a, ah, ag on Bpeak: (a) changing
parameters ah (ag = 0.5) and (b) changing parameters
ag (ah = 0.5).

parameters of simulation calculation, the smaller ag is,
the larger Bpeak is. When ag are 0.3, 0.5, and 0.7, the
maximum values of Bpeak are 1.303 T, 0.8775 T, and
0.6269 T, and the minimum values of Bpeak are 0.9096 T,
0.7071 T, and 0.5356 T. In addition, according to Fig. 8
(b), when ag are 0.3, 0.5, and 0.7, the minimum THDB
is 98◦. Therefore, on the premise of ensuring the maxi-
mum value of Bpeak and the minimum value of THDB ,
a should be greater than 90◦ and the value range of ag
should be 0.3<ag<0.5.

It can be further inferred from Figs. 9 and 10 that a
has an influence on the amplitude of harmonic distortion
rate of AGMF. In order to obtain the maximum value of
Bpeak for traditional rectangular section (a = 90◦), aw
should be 0.5 in magnet design. However, when a�=90◦,
in order to ensure the maximum value of Bpeak and the
minimum value of THDB , the values of a, ah, and ag
should be a>90 ◦, ah>0.5, and 0.3<ag<0.5.

V. CONCLUSION

An IESCM for calculating the AGMF of trapezoidal
Halbach permanent magnet linear synchronous motor is
presented. The calculated results are in good agreement
with FEM results, which fully shows the accuracy and
practicability of the new analytical method. The method
is applicable to the magnetic field analysis of various
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irregular permanent magnet arrays and has strong refer-
ence value for the theoretical analysis of AGMF of other
irregular PMLSM.

Taking a, aw, ah, and ag as variables, the minimum
value region of THDB is a narrow canyon. Changes of
a, aw, and ah significantly affect the trend of the canyon,
making the canyon swing and shift, but ah has little effect
on the minimum value of THDB. Furthermore, ag mainly
affects the steepness of the canyon and the minimum
value of THDB. The rectangular magnet of a=90o is a
special case in the change of canyon shape.

Bpeak of AGMF has a maximum point and a rel-
atively flat maximum neighborhood. Taking the maxi-
mum value of Bpeak of AGMF and the minimum value
of THDB of AGMF as optimization objectives, the val-
ues of a, aw, ah, and ag are a>90◦, aw<0.5, ah>0.5, and
0.3<ag<0.5.
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Abstract – A three-dimensional (3-D) analytical model
with a high computational efficiency is proposed for a
surface-inset axial flux machine (SIAFM). Accounting
for the air-gap fringing field, the proposed 3-D ana-
lytical model is used to compute the magnetic field in
the SIAFMs with conventional, Hat- and T-shaped Hal-
bach arrangements. Based on the linear superposition
method, the 3-D scalar potential equations for different
regions with boundary condition equations are obtained.
On this basis, the air-gap magnetic field and electro-
magnetic parameters can be derived. To demonstrate
the advantages, the optimization performance of the T-
shaped Halbach machine model is compared with that
of conventional and Hat-shaped Halbach machine mod-
els. The prediction indicates that the optimized T-shaped
Halbach machine model has the greatest electromagnetic
torque. Finally, a 3-D finite element analysis (FEA) vali-
dates the 3-D analytical predictions.

Index Terms – 3-D analytical predictions, electromag-
netic torque, finite element analysis, surface-inset axial
flux machine, T-shaped Halbach arrangements.

I. INTRODUCTION

With the rapid development of various fields such
as industrial automation, electric vehicles, and renewable
energy utilization, the demand for efficient, compact, and
high-performance machine drive systems is becoming
increasingly urgent. Axial flux machines (AFMs) with
their significant structural and performance advantages
are gradually emerging among a wide variety of machine
types. Table 1 shows their specific applications in the
fields of new energy vehicles, aerospace, ship propul-
sion, and robotics [1, 2].

The topological structures of AFMs can be classified
as single-stator single-rotor, double-stator single-rotor,
single-stator double-rotor, and multiple-stator multiple-
rotor [3]. Specifically, using multiple-stator and/or rotor
in double-sided AFMs have been widely used in practice
due to its ability to effectively reduce single-sided unbal-
anced magnetic force [11]. Compared to single-stator
double-rotor AFMs, double-stator single-rotor AFMs

can achieve an increase in torque through the magnetic
fields interaction between the stators and provide signif-
icant advantages for the specific application areas with
high performance requirement [12].

Table 1: Specific application of AFMs
Application

Area

Specific Applications

New energy
vehicles

Mercedes Vision 1-11 electric
vehicle [4], McLaren new cars and

other plug-in hybrid models [5]
Aerospace The ”Spirit of Innovation” and

Evolito [6, 7]
Ship propulsion Propel D1 and Falcon electric

outboard machines [8, 9]
Robots Application of EMRAX188 AFMs

in robots [10]

As one machine type, surface-inset axial flux
machine (SIAFM) has the characteristics of compact
structure, relatively high torque density and power-to-
weight ratio [13]. With the advancement of technology,
SIAFMs have shown broader application prospects in
multiple fields. At present, due to complex production
processes and high precision requirements for compo-
nents, the manufacturing cost of SIAFMs is high, which
limits their large-scale application. It is believed that in
the near future, with the continuous maturity of technol-
ogy and the reduction of costs, its application scope will
continue to expand.

In recent years, researchers have shown great inter-
est in the application of Halbach arrangements. Com-
pared to those without Halbach arrangements, AFMs
equipped with Halbach arrangements exhibit numerous
attractive advantages. An AFM with multi-segment mul-
tipole ironless Halbach arrangements is investigated in
[14]. In order to improve the torque density, a type of
SIAFM with unequal thicknesses of Halbach arrange-
ments is proposed in [15]. The combination of surface-
inset and surface-mounted magnets for AFM is proposed
in [16]. A novel SIAFM structure with radially layered
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magnets is investigated in [17]. It has the parallel excited
radial Halbach arrangements and tangentially magne-
tized magnets, greatly improving the air-gap magnetic
flux density performance. With the equal area of primary
magnetic flux, the performance is enhanced by efficiently
utilizing the internal space.

A three-dimensional (3-D) finite element analysis
(FEA), as a solution of the magnetic fields of AFMs
[18], takes a long time in both calculation and opti-
mization processes. Instead, the analytical techniques
are more suitable for predicting the performance of 3-D
AFM models [19]. The method to convert a 3-D machine
model to a linear machine can solve the two-dimensional
(2-D) scalar magnetic potential equation and greatly
reduce computational complexity [20]. A method with
equivalence of solving the 2-D vector magnetic poten-
tial of a linear machine is proposed in [21, 22]. However,
the existing 3-D analytical methods are still limited to
solving the AFMs equipped with surface-mounted mag-
nets and are incapable of analysis of the magnetic field
in SIAFMs.

In this paper, a 3-D analytical model for SIAFM is
proposed. Different from the 2-D radial flux machines,
the air-gap fringing effect for SIAFMs needs to be con-
sidered. The 3-D analytical predictions are done for
SIAFMs with three different Halbach arrangements. The
stator slotting influence is considered by the Carter
coefficient. The electromagnetic performances of slotted
SIAFMs are analyzed, and the magnet parameters are
optimized. In the case of equal magnet volume, the T-
shaped Halbach optimized model exhibits significantly
superior electromagnetic performance compared to the
other models. Finally, a 3-D FEA model is utilized for
the verification of the analytical prediction results. Thus,
the 3-D model can effectively compute the magnetic
field, with relatively high accuracy and modest time.

II. 3-D PHYSICAL MODEL OF SIAFM

Figure 1 shows three different segmented Halbach
magnet arrangements for the rotor of SIAFMs. The con-
ventional and Hat-shaped three-segment Halbach mag-
nets are shown in Figs. 1 (a) and (b), respectively. The
T-shaped three-segment Halbach magnets are shown in
Fig. 1 (c).

Figure 2 shows the 3-D structure of a single-
rotor dual-stator SIAFM with T-shaped Halbach mag-
nets. The three-phase symmetric non-overlapping wind-
ing arrangement is utilized.

Figure 3 provides the parameters of the T-shaped
Halbach rotor model. h1 is the axial length of the mid-
magnet, h2 is the difference between the side-magnet and
mid-magnet in the axial length, g is the air-gap length,
θ 1 is the magnetization angle of both symmetric side-
magnets, and τ1 and τ2 are the arc angles of the whole

one-pole magnets and mid-magnets, respectively. τ3 is
the pole pitch. It is clearly seen that α1 = τ1/τ3 and
α2 = τ2/τ3 are the polar arc ratios. The analytical mag-
net domain is divided into two regions. One is the layer

(a) (b)

(c)

Fig. 1. Three types of PM structures for SIAFMs: (a)
conventional, (b) Hat-shaped Halbach magnets, and (c)
T-shaped Halbach magnets.

Fig. 2. 3-D SIAFM structure with T-shaped Halbach
magnets.

Fig. 3. Parameters of T-shaped Halbach magnets.
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magnet region near the air-gap and the other is that far
from the air-gap, as shown in Figs. 4 (a) and (b), respec-
tively.

(a)

(b)

(c)

Fig. 4. Linear superposition of T-shaped Halbach mag-
nets: (a) layer magnets near air-gap, (b) layer magnets
far from air-gap and (c) T-shaped Halbach magnets.

III. 3-D GENERAL SOLUTION EQUATIONS

Using the Cartesian coordinate system instead of the
cylindrical one, the 3-D magnetic field distributions in
SIAFMs are analyzed. In order to obtain high accuracy,
the rotor is split into nt (an odd number) hollow cylindri-
cal pieces from inside to outside in the radial directions,
with equal radial difference and unequal inner and outer
radii. The average radius of the j-th cylindrical piece is
denoted by:

R j = R1 +( j−1)
R2 −R1

nt
+

1
2

R2 −R1

nt
, (1)

where R1 and R2 are the inner and outer radii of rotor.
The initial spatial start point used for analytical cal-

culation is chosen at x = 0 and z = 0. For the solution
of 3-D field, general assumptions are necessary: the ideal
linear demagnetization for magnets, the infinite magnetic
permeability for the iron, and the ignored end effects
for the windings. The relationship between the magnetic
field intensity vector H and the scalar potential ϕ is:

H =−gradφ . (2)

The relationships between the flux density vector B
and the magnetization vector M are:{

B = μ0H in the air region
B = μ0μrH+μ0M in the magnet region , (3)

where μ0 is vacuum permeability and μr is magnet rela-
tive permeability.

For the linear 3-D analytical model, the principle
of superposition is adopted. In order to achieve the gen-
eral solutions of the scalar potential for 3-D Poisson or
Laplace equations in each subdomain, the equations with
the periodic symmetry are written as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ j
1 (x,y,z) =−φ j

1 (x+πR j/p,y,z)
φ j

2 (x,y,z) =−φ j
2 (x+α1πR j/p,y,z)

φ j
3 (x,y,z) =−φ j

3 (x+α1πR j/p,y,z)
φ j

1,2,3(x,y,z) = φ j
1,2,3(x,y+2R2 −2R1,z)

φ j
1 (x,y,h1 +g) = φ j

3 (x,y,0) = 0

, (4)

where p is the pole-pair number, ϕ1
j(x,y,z), ϕ2

j(x,y,z)
and ϕ3

j(x,y,z) are the scalar magnetic potentials in the
air-gap, the layer magnets near the air-gap and the layer
magnets far from the air-gap, respectively.

A. 3-D air-gap governing equation

In the air-gap domain, the governing 3-D Laplace
equation is expressed as:

∂ 2φ1

∂ r2 +
1
r

∂φ1

∂ r
+

1
r2

∂ 2φ1

∂θ 2 +
∂ 2φ1

∂ z2 = 0. (5)

Adopting the technique of separating variables,
according to (4), the 3-D analytical expression of (5) is:

φ j
1 =

∞

∑
m=0

∞

∑
n=1,3...

A j
1mn

(ek j
1z − e2k j

1h1+2k j
1g−k j

1z)

× cos(ω j
nx)cos

{
ω j

m

[
(y+

(
j− nt +1

2

) 1Ty

nt

]}
(6)

where: ⎧⎪⎨
⎪⎩

ω j
n = np/R j

ω j
m = mπ/(R2 −R1)

k j
1 =

√
ω j

n 2 +ω j
m2

, (7)

where A1mn
j is the unknown coefficient, 1Tx = α1πR j/p

and 1Ty = R2−R1 are the half cycles of the j-th group
of layer magnets near the air-gap in the x- and y-axis
directions, respectively.

B. 3-D governing equation for layer magnets near the
air-gap

For the layer magnets near the air-gap, during one
electrical period, the expressions of 3-D components of
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the magnetization are:⎧⎪⎨
⎪⎩

1M j
x = (Br/μ0)sin(θ1)

1M j
y = 0

1M j
z = (Br/μ0)cos(θ1)

−α1πR j
2p ≤ x ≤ −α2πR j

2p
h2 < z < h1

, (8)

⎧⎪⎨
⎪⎩

1M j
x = 0

1M j
y = 0

1M j
z = Br/μ0

−α2πR j
2p ≤ x ≤ α2πR j

2p
h2 < z < h1

, (9)

⎧⎪⎨
⎪⎩

1M j
x =−(Br/μ0)sin(θ1)

1M j
y = 0

1M j
z = (Br/μ0)cos(θ1)

α2πR j
2p ≤ x ≤ α1πR j

2p
h2 < z < h1

,

(10)⎧⎪⎨
⎪⎩

1M j
x =−(Br/μ0)sin(θ1)

1M j
y = 0

1M j
z =−(Br/μ0)cos(θ1)

α1πR j
2p ≤ x ≤ 2α1πRj−α2πRj

2p
h2 < z < h1

,

(11)⎧⎪⎨
⎪⎩

1M j
x = 0

1M j
y = 0

1M j
z =−Br/μ0

2α1πRj−α2πRj
2p ≤ x ≤ 2α1πR j+α2πR j

2p
h2 < z < h1

, (12)

⎧⎪⎨
⎪⎩

1M j
x = (Br/μ0)sin(θ1)

1M j
y = 0

1M j
z =−(Br/μ0)cos(θ1)

2α1πRj+α2πRj
2p ≤ x ≤ 3α1πRj

2p
h2 < z < h1

,

(13)⎧⎪⎨
⎪⎩

1M j
x = 0

1M j
y = 0

1M j
z = 0

otherwise , (14)

where Br is the remanence of Halbach magnets, 1Mx
j,

1My
j and 1Mz

j are the x, y and z-axis components of the
j-th group of magnets magnetization in the region of the
layer magnets near the air-gap, respectively.

Adopting double Fourier decomposition, the
magnetizations in region S1 (−1Tx/2≤x≤31Tx/2,
−1Ty≤y≤1Ty) are written as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1M j
x = ∑∞

m=0 ∑∞
i=1,3,5

{
1M j

xmi
sin(ω j

i x)

×cos
{

ω j
m

[
(y+( j− nt+1

2 )
1Ty
nt

]} }
1M j

y = 0

1M j
z = ∑∞

m=0 ∑∞
i=1,3,5

{ 1M j
zmi

cos(ω j
i x)

×cos
{

ω j
m

[
(y+( j− nt+1

2 )
1Ty
nt

]} } ,

(15)
where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1M j
x0i

= 1
1Tx·1Ty

∫∫
S1

1M j
x sin(ω j

i x)dxdy
1M j

z0i
= 1

1Tx·1Ty

∫∫
S1

1M j
z cos(ω j

i x)dxdy
1M j

xmi
= 1

1Tx·1Ty

∫∫
S1

1M j
x sin(ω j

i x)

× cos
{

ω j
m

[
(y+( j− nt+1

2 )
1Ty
nt

]}
dxdy

1M j
zmi

= 1
1Tx·1Ty

∫∫
S1

1M j
z cos(ω j

i x)

× cos
{

ω j
m

[
(y+( j− nt+1

2 )
1Ty
nt

]}
dxdy

. (16)

During prediction of the magnetic field due to the
layer magnets near the air-gap, the region of the layer

magnets far from the air-gap is treated as a vacuum, as
shown in Fig. 4 (a). The governing 3-D Poisson equation
is:

∂ 2φ2

∂ r2 +
1
r

∂φ2

∂ r
+

1
r2

∂ 2φ2

∂θ 2 +
∂ 2φ2

∂ z2 =
1
μr

divM. (17)

Utilizing the technique of separating variables,
according to (4), the 3-D analytical expression of (17)
is:

φ j
2 =

∞
∑

m=0

∞
∑

i=1,3...

[
A j

2mi
ek j

2z +B j
2mi

e−k j
2z − ωi

j ·1M j
xmi

μrk
j
2

2

]
× cos(ω j

i x)cos
{

ω j
m

[
(y+( j− nt+1

2 )
1Ty
nt

]} ,

(18)
where: {

ω j
i = ip/α1R j

k j
2 =

√
ω j

i
2 +ω j

m2
, (19)

where A2mi
j and B2mi

j are the undetermined coeffi-
cients in the region of the layer magnets near the air-gap.

C. 3-D governing equation for layer magnets far from
the air-gap

For the layer magnets far from the air-gap, in one
electrical cycle, the expressions of 3-D components of
magnetization are:⎧⎪⎨
⎪⎩

2M j
x = 0

2M j
y = 0

2M j
z = Br/μ0

−α2πR j
2p ≤ x ≤ α2πR j

2p
0 < z < h2

, (20)

⎧⎪⎨
⎪⎩

2M j
x = 0

2M j
y = 0

2M j
z =−Br/μ0

2α1πR j−α2πR j
2p ≤ x ≤ 2α1πR j+α2πR j

2p
0 < z < h2

,

(21)
where 2Mx

j, 2My
j and 2Mz

j are the x, y and z-axis com-
ponents of magnetization for the j-th group of layer mag-
nets far from the air-gap, respectively.

Adopting the double Fourier decomposition,
the magnetizations in region S2 (−2Tx/2≤x≤32Tx/2,
−2Ty≤y≤2Ty) can be written as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2M j
x = 0

2M j
y = 0

2M j
z =

∞
∑

m=0

∞
∑

i=1,3,5

2M j
zmi

× cos(ω j
i x)cos

{
ω j

m

[
(y+( j− nt+1

2 )
2Ty
nt

]} ,

(22)
where:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2M j
x0i

= 2M j
xmi

= 0
2M j

z0i
= 1

2Tx·2Ty

∫∫
S2

2M j
z cos(ω j

i x)dxdy
2M j

zmi
= 1

2Tx·2Ty

∫∫
S2

2M j
z cos(ω j

i x)

× cos
{

ω j
m

[
(y+( j− nt+1

2 )
2Ty
nt

]}
dxdy

, (23)

where 2Tx = α1πR j/p and 2Ty = R2-R1 are the half
cycles of the j-th group of layer magnets far from the
air-gap in the x- and y-axis direction, respectively.
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During prediction of the magnetic field due to the
layer magnets far from the air-gap, the region of layer
magnets near the air-gap is regarded as a vacuum. The
governing 3-D Poisson equation is:

∂ 2φ3

∂ r2 +
1
r

∂φ3

∂ r
+

1
r2

∂ 2φ3

∂θ 2 +
∂ 2φ3

∂ z2 =
1
μr

divM. (24)

Using the technique of separating variables, accord-
ing to (4), the 3-D analytical expression of (24) is:

φ j
3 =

∞
∑

m=0

∞
∑

i=1,3...
A j

3mi
(ek j

2z − e−k j
2z)cos(ω j

i x)

× cos
{

ω j
m

[
(y+( j− nt+1

2 )
2Ty
nt

]} , (25)

where A3mi
j is the undetermined coefficient in the region

of the layer magnets far from the air-gap.

IV. SOLUTION OF COEFFICIENTS

There are four unknown coefficients A1mn
j, A2mi

j,
B2mi

j and A3mi
j in the foregoing analytical equations.

They need to be uniquely determined by the specific
boundary conditions.

A. Boundary conditions at z = h2
At the boundary between different layer magnets

(z = h2), the flux density and the magnetic field intensity
are satisfied as:⎧⎨

⎩
2B j

z (x,y,z)
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, (26)

where 3Bz
j(x,y,z) and 3Hx,y

j(x,y,z) are the z-axis compo-
nents of the flux density and the magnetic field intensity
of the j-th group of layer magnets far from the air-gap,
respectively.

According to (26), the relationship between the
undetermined coefficients A2mi

j, B2mi
j, and A3mi

j can be
expressed as:⎧⎨
⎩ A2mi

j = [k2(
1Mzmi
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(27)

B. Boundary conditions at z = h1
At the boundary between the air-gap and layer mag-

nets near the air-gap (z = h1), the flux density and the
magnetic field intensity are expressed as:⎧⎨

⎩
1B j
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, (28)

where 1Hx,y
j(x,y,z) and 1Bz

j(x,y,z) are the z-axis compo-
nents of the magnetic field intensity and the flux density
in the air-gap domain. 2Hx,y

j(x,y,z) and 2Bz
j(x,y,z) are

the z-axis components of the magnetic field intensity and
the flux density for the j-th group of magnets in the layer
magnets near the air-gap, respectively.

According to (28), substituting (6) and (18) into (2)
and (3), the equations can be expressed as:
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Accounting for the orthogonality of the trigonomet-
ric functions, from (27) and (29), a matrix equation can
be constructed as:[

C
j
1m C

j
2m

F
j
1m F

j
2m

]
·
[

A
j
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j
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where C1m
j is a n×n matrix with m and n, C2m

j is a n×i
matrix with m, n and i, F1m

j is a j×n matrix with m, n
and i and F2m

j is an i×i matrix with m and i.
By solution of (30), the unknown coefficients can be

achieved. If the j-th group of magnets are calculated, the
total magnetic flux density is the superposition of multi-
ple groups of magnets and can be written as:

Bres =
nt

∑
j=1

Bj. (31)

V. 3-D ANALYTICAL PERFORMANCE OF
SIAFM ACCOUNTING FOR SLOTTING

AND AIR-GAP FRINGING EFFECT

The slotless flux density Bz at h1+g in the z-axis
direction can be written as:

Bz|h1+g =−2μ0 ∑nt
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(32)
In order to compute the magnetic field in the slot-

ted SIAFMs, the slotting effect needs to be considered.
Thus, the Carter’s coefficient method is utilized. This
method uses several equivalent air-gap lengths instead of
the actual relatively complex air-gap distributions [23].

According to the analytically derived slotless mag-
netic field, the coefficient with the equivalent air-gap
length is given as:

C′
s =

{
Cs ((R2 +R1)/2Ns −ns,π (R2 +R1)/2Ns +ns)
1 others ,

(33)
where Cs is Carter’s coefficient, Ns is the slot number and
ns is the circumferential length of half one slot.

By Fourier decomposition of Carter coefficient in
one period, the coefficient is written as:
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where:
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The flux density in the air-gap of the slotted SIAFM

can be expressed as:

Bslotted =
Bres

C′
s
. (36)

Because of the continuous magnetic circuit, there
exists a magnetic field outside the air-gap and iron in the
3-D space. This is named the air-gap fringing effect. For
high computation accuracy, the air-gap fringing effect
cannot be ignored and needs to be considered. The air-
gap fringing magnetic field is shown in Fig. 5. The air-
gap fringing field coefficient is defined as:

Cfr = 1+
π(2|y|− 1Ty)

4g
. (37)

Thus, the slotted flux density in the z-axis direction
can be written as:
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(38)
where:

β = R j[−ωrt +αcp(s−1)], (39)

Fig. 5. Air-gap fringing magnetic field in 3-D model.

where ωr is the angular speed, αcp is the coil pitch angle
and s denotes the s-th slot.

The flux linkage of one coil is:

Ψ = N
∫∫
S3

Bz

∣∣∣∣∣∣
′

h1+g

dS, (40)

where N is the number of coil turns. The scope of S3 is
β−αcpR j/2≤x≤β+αcpR j/2 and −1Ty≤y≤1Ty.

The back electromotive force (EMF) for the s-th coil
is expressed as:
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(43)
The analytical calculation formula for the electro-

magnetic torque is:

Te =
eAiA + eBiB + eCiC

ωr
, (44)

where ia, ib and ic are the three-phase currents.

VI. 3-D ANALYTICAL COMPARSION AND
VERIFICATION

Using the given 3-D analytical equations, the per-
formances of the SIAFM with T-shaped segmented Hal-
bach magnets can be predicted. Table 2 presents its main
parameters. The performances of the SIAFMs for con-
ventional and Hat-shaped three-segment Halbach mag-
nets are also investigated for comparison. It is noted that
all SIAFMs have the same magnet usage.

For the SIAFM with T-shaped magnets, the polar-
arc ratio α2 and the magnetization angle θ 1 are cho-
sen as two optimization variables. The single optimiza-
tion objective is to maximize the electromagnetic torque.
Figure 6 shows the 3-D analytical average electromag-
netic torque with θ 1 and α2. It is derived that the optimal
variables are θ 1 =55◦ and α2 =0.27.
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Table 2: SIAFM model parameters
Symbol Parameter Value

p/Q Numbers of poles/slots 20/24
Br (T) Magnet remanence 1.1

μr Magnet relative permeability 1.05
N Number of turns of one coil 16

R1/R2 (mm) Inner/outer radii of rotor 25/35
g (mm) Air-gap length 1

α1 Pole-arc ratio 0.67
L (mm) Machine axial length 30

J (A/mm2) Current density 6.37
n (r/min) Rated rotational speed 3000

Fig. 6. 3-D analytical electromagnetic torque with vari-
ables for T-shaped Halbach magnets.

A 3-D FEA model is used for verification. The input
parameters include the geometric dimensions and mate-
rial properties and the three-phase currents. The applied
boundary conditions are that the scalar potentials on all
the outer surfaces are set to zero for the whole 3-D cylin-
drical solution region.

Figure 7 (a) compares the 3-D analytically pre-
dicted air-gap flux density waveforms for three SIAFMs.
Figure 7 (b) presents the main harmonic comparison
corresponding to their air-gap flux density waveforms
of three SIAFMs. Table 3 lists the air-gap flux density
comparison. It is obviously seen that the T-shaped Hal-
bach magnets has the best waveform. Figure 7 (c) com-
pares the air-gap flux density waveforms of optimized T-
shaped Halbach magnets from 3-D analytical and FEA
models. It can be clearly observed that the two wave-
forms match well.

Figure 8 (a) presents the comparison of phase back-
EMF waveforms for three different SIAFMs. Figure 8

Table 3: Air-gap flux densities of three SIAFMs
Conventional Hat-shaped T-shaped

Fundamental 0.74 T 0.62 T 0.87 T
THD 45.51% 34.69% 34.52%

(a)

(b)

(c)

Fig. 7. Comparison of air-gap flux density waveforms:
(a) 3-D analytical predictions of flux density waveforms
for three different SIAFMs, (b) flux density waveform
harmonics for three SIAFMs and (c) two flux density
waveforms for optimized T-shaped Halbach magnets
from 3-D analytical and FEA models.

(b) shows the main harmonic comparison corresponding
to their phase back-EMF waveforms of three SIAFMs.
Table 4 lists the back-EMF value comparison. It is obvi-
ously seen that the T-shaped Halbach magnet has the best
waveform. The two phase back-EMF waveforms of the
optimized T-shaped Halbach magnets from 3-D analyti-
cal and FEA methods show excellent consistency, as pre-
sented in Fig. 8 (c).

Electromagnetic torque is an important machine
operation performance. Figure 9 (a) presents the three
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(a)

(b)

(c)

Fig. 8. Comparison of back-EMF waveforms: (a) 3-D
analytical predictions of back-EMF waveforms for three
different SIAFMs, (b) back-EMF waveform harmonics
for three SIAFMs and (c) two back-EMF waveforms for
optimized T-shaped Halbach magnets from 3-D analyti-
cal and FEA models.

Table 4: Back-EMFs of three SIAFMs
Conventional Hat-shaped T-shaped

Fundamental 31.02 V 26.23 V 36.53 V
THD 17.12% 12.33% 11.63%

electromagnetic torque waveforms for the compared
SIAFMs. Table 5 lists the electromagnetic torque value
comparison. It can be observed that the T-shaped Hal-
bach arrangement has the largest fundamental and ripple

(a)

(b)

Fig. 9. Comparison of torque waveforms: (a) three
torque waveforms of three different SIAFMs and (b) two
torque waveforms of optimized T-shaped Halbach mag-
nets from 3-D analytical and FEA models.

Table 5: Electromagnetic torques of three SIAFMs
Conventional Hat-shaped T- shaped

Average 1.075 Nm 0.885 Nm 1.187 Nm
Ripple 0.0103% 0.00654% 0.0122%

values. The reason for the largest ripple value is inter-
esting. For the T-shaped Halbach arrangement, although
the 3rd harmonic of each-phase back-EMF is the lowest,
according to (44), the resultant electromagnetic torque
generated by all integer multiples of the 3rd harmon-
ics of three-phase back-EMFs multiplied by the funda-
mental component of three-phase currents is zero. In
addition, the two torque waveforms for the optimized T-
shaped Halbach magnets obtained from 3-D analytical
and FEA models show excellent agreement, as presented
in Figure 9 (b).

In addition, the amplitude of the reluctance torque
of the three compared machines is less than 1.1 mNm. It
can be ignored compared to the electromagnetic torque.
Thus, the reluctance torque waveform is not presented.

For actual industrial applications, the nonlinearity
of the iron core of machines usually needs to be con-
sidered. Different from linear magnetic permeability,
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the magnetic field can be determined through the rel-
atively complex iteration solution process with setting
a convergence value. Compared with the linear SIAFM
model, the flux density value of nonlinear SIAFM model
is low. Thus, due to the saturation effect, the EMF and
electromagnetic torque values of nonlinear SIAFM are
lower than those of corresponding linear SIAFM. The
specific numerical value depends on the saturation level.

VII. CONCLUSION

Different from the 2-D radial flux machines, it is
necessary to consider the air-gap fringing effect for
SIAFMs. Using the proposed 3-D linear analytical model
for SIAFMs, with the principle of linear superposition,
analysis of the 3-D magnetic field is made for SIAFMs
with T-shaped Halbach magnets, taking into account the
edge effects of the rotor. In addition, the two parame-
ters of the Halbach magnets are selected as the optimiza-
tion variables to optimize the electromagnetic torque.
With equal consumption of permanent magnets, com-
pared with the SIAFM models with conventional and
Hat-shaped Halbach magnets, the SIAFM with opti-
mized T-shaped Halbach magnets has the best air-gap
flux density and back-EMF, and the largest electromag-
netic torque. FEA results verify the correctness of the 3-
D analytical and optimization model with T-shaped Hal-
bach magnets.

For computational electromagnetics, firstly, compu-
tation time is of great significance. The proposed 3-D
analytical model can solve and optimize the magnetic
field in much less time than the 3-D FEA model. In
other words, the proposed model has very high compu-
tational efficiency. Secondly, computation accuracy is of
equal importance. It is known that the FEA model has
high computation accuracy with enough mesh. Based on
Maxwell’s equations, the proposed model can exhibit
high accuracy. Finally, the proposed 3-D analytical
model can show clearly the relationships between differ-
ent physical variables. These advantages are very useful
for design and development of novel machines for indus-
trial applications.

In future work, other performances of this kind
of machines with different magnet configurations will
be investigated. Based on electromagnetic computation,
thermal optimization solutions and advanced cooling
techniques to ensure operational stability in high-torque
applications will be explored. These in-depth explo-
rations not only reflect the foundational significance of
the existing work but also offer a perspective on the evo-
lutionary potential of research in this area.
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