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Abstract – A novel adaptive multi-objective particle
swarm optimization (AMOPSO) is proposed to address
the focus shift and redundant hotspots issues prevalent
in current microwave hyperthermia treatment planning
for breast cancer. By optimizing the excitation of phased
array elements, more accurate beam focusing effect is
achieved and the redundant hotspots are reduced, which
significantly improves the treatment of breast cancer.
The algorithm uses the difference between the opti-
mized and target results as a feedback to self-constrain
the algorithm, and introduces ratio of the peak power
absorption (pPA) between the redundant hotspots and
the target hotspot as a key objective function to reduce
the number of redundant hotspots. Compared with the
existing hyperthermia treatment planning (HTP) opti-
mization algorithms, the proposed algorithm is capable
of achieving precise focusing and a more substantial
reduction in the number of redundant hotspots in a
shorter computation time. Furthermore, the introduction
of the pPA is capable of more effectively reducing the
number of redundant hotspots and achieving a lower
damage rate to healthy tissues.

Index Terms – Hyperthermia treatment planning
(HTP), particle swarm optimization (PSO), phased
arrays, specific absorption rate (SAR).

I. INTRODUCTION
Breast cancer poses a serious risk to women’s health

and life as it is one of the most common malignant
tumors in the female population [1]. Among the avail-
able technologies, microwave hyperthermia treatment

(MHT) has garnered significant attention due to its dis-
tinctive advantages [2]. This technology employs phased
arrays to generate focused microwaves [3], offering
merits such as rapid ablation, accurate localization, ease
of use, lower risk of postoperative complications, and
inexpensive medical costs [4, 5].

However, the practical application of MHT remains
challenging, with the most significant hurdle being the
precise focalization of microwave energy on tumor
tissues while avoiding damage to surrounding healthy
tissues [6]. Time-reversal (TR) technique is frequently
employed in the optimization of hyperthermia treatment
planning (HTP). However, the focused energy usually is
shifted away from the target due to the attenuation and
dispersion of microwaves in biological tissues, which
negatively impacts the effectiveness of the treatment. To
overcome these challenges, researchers usually optimize
the excitation of the phased array elements to improve
the focusing performance. In order to concentrate energy
in a particular area within a semicircular breast model,
Curto et al. [7] used the Nelder-Mead Simplex (NMS)
method to study and adjust the phase of a 4-element
phased array. In another study, Elkayal et al. [8] opti-
mized a 4-element phased array to minimize focus shift
using particle swarm optimization (PSO). Although the
previously described studies were successful in focus-
ing on the tumor, the focus range was far wider than
the actual tumor area, causing greater damage to the
surrounding healthy tissues, and the focusing resolution
was obviously insufficient.

In order to increase the resolution, increasing the
number of elements of the phased array becomes an
intuitive solution [9]. For example, Nguyen et al. [10]
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optimized the excitation of a 24-element phased array
using PSO and Lyu et al. [11] optimized an 36-element
phased array using differential evolution (DE). However,
while these studies improved focusing accuracy to some
extent, the optimization results inevitably led to the
emergence of excess hotspots in the superficial region
of healthy tissues. The specific absorption rates reached
90% [10] and 115% [11] at the tumor. Although it is
possible to mitigate the effects of hotspots in this part
of the region using physical techniques such as cooling
liquids [12], this inevitably makes the therapy procedure
more complicated and expensive.

Although it is theoretically impossible to eliminate
redundant hotspots due to their inherent nature in the
phased array, their effects can be suppressed through
optimization [13]. Traditional single-objective optimiza-
tion algorithms can be limited in their effectiveness
at reducing redundant hotspots. Therefore, Baskaran
et al. [14] employed a multi-objective genetic algorithm
(MOGA) to optimize the excitation of an 18-element
phased array , achieving greater tumor coverage and
fewer redundant hotspots. However, the tumor selected
in this study was in the superficial layer of breast
tissue, which may restrict the general applicability of
the results. Moreover, MOGA suffers from slow conver-
gence and focus shift, making it difficult to meet clinical
needs.

Recent studies have indicated that prevailing opti-
mization algorithms continue to encounter significant
obstacles in attaining accurate focusing effects and
effectively reducing redundant hotspots. Traditional
quantitative indicators such as hotspot to target quotient
(HTQ), average power absorption ratio (aPA), and spe-
cific absorption rate (SAR) are inadequate for providing
a comprehensive characterization of hotspots distribu-
tion. Moreover, extant algorithms evince suboptimal
efficiency and adaptability.

In this paper, an adaptive multi-objective particle
swarm optimization (AMOPSO) algorithm is proposed
to address these issues. First, it innovatively introduces
the peak power absorption ratio (pPA) as a quantita-
tive indicator, which provides a more comprehensive
assessment of hotspot distribution features. Secondly, an
adaptive feedback mechanism is designed. This mecha-
nism adjusts key parameters, such as inertia weight and
learning factor, based on the discrepancy between the
optimized and target results.

The proposed AMOPSO algorithm has been
demonstrated to enhance global search efficiency and
environmental adaptability of the algorithm through
an error feedback-based dynamic parameter adjust-
ment strategy. The incorporation of random perturbation
terms and nonlinear fitness functions serves to effec-
tively suppress the premature convergence phenomenon

of particle swarm and enhance the robustness of the
algorithm. The pPA indicator, when utilized in con-
junction with conventional evaluation metrics, fosters a
synergistic effect, thereby facilitating the establishment
of a multifaceted hotspot control evaluation system.
The findings from experiments suggest that, in compari-
son to conventional optimization algorithms, AMOPSO
demonstrates superior performance in critical metrics.

The rest of the paper is organized as follows.
Section II describes the research principles of HTP,
including quantitative indicators of treatment quality,
the optimization algorithm, the breast model and the
device. Section III presents a comparative analysis of the
optimization results of this algorithm, before concluding
with a summary in section IV.

II. THE PROPOSED ALGORITHM
A. Quantitative indicators of treatment quality

The aim of HTP is to accurately concentrate elec-
tromagnetic wave energy within the tumor, while pre-
venting the formation of redundant hotspots in healthy
tissue. If total thermal damage to the tumor tissue can
be accomplished and thermal damage to the surrounding
healthy tissue is kept to less than 5%, the HTP is usually
regarded as safe and successful [15].

The energy density deposition Q(r) in the breast
tissue is expressed as

Q(r) = 0.5σ(r)|E⃗(r)|2, (1)

where r = (x,y,z) are spatial coordinates, σ(r) is the
conductivity of the tissue and E⃗(r) is the total electric
field inside the tissue, which is given by

E⃗(r) =
N−1

∑
i=0

Ale−iϕi E⃗i(r), (2)

where Ai and ϕi are the amplitude and phase delays
of the ith antenna element, E⃗i(r) is the electric field
provided by the ith antenna, and N (N = 16 in this
work) is the number of antenna elements in the phased
array. Normally, we use SAR as a measure of absorbed
electromagnetic energy per unit time per unit mass of
a biological tissue [16], in units of W/kg. SAR(r) is
expressed as

SAR(r) =
Q(r)
2ρ(r)

=
σ(r)|E⃗(r)|2

2ρ(r)
, (3)

where ρ(r) is the density of the tissue. Since the phys-
ical properties of breast tissue are incorporated into
the SAR calculation, the absorption of electromagnetic
wave energy by breast tissue can be accurately observed
through the SAR distribution.
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When building the HTP optimization model, the
focus shift and the number of hotspots are usually taken
as the main optimization targets to ensure the precision
and safety of the treatment effect, weighing up treatment
accuracy and energy distribution uniformity. At the same
time, the model must consider several key indicators
comprehensively: HTQ, aPA, tumor coverage n% (TCn)
and damaged healthy tissue rate (DHTR) to enhance
the therapeutic effect and minimize damage to normal
tissues [17].

The focal shift is the spatial distance between the
center of the region of strongest energy focus and the
center of the target tumor, which is given by

FS = ∥rc − rt∥2, (4)

where rt = (xt ,yt ,zt) is the center coordinates of the
tumor, rc = (xc,yc,zc) is the center coordinates of the
strongest hotspot, obtained by

rc =
1

n(Hc)
∑

r∈Hc

r, (5)

where

Hc = {r ∈ Hmax | SAR(r)≥ 0.9×max(SAR(r))}, (6)

n(Hc) is the total number of points belonging to the
center area Hc of the strongest hotspot Hmax, which is
expressed as

Hmax = argmax
Hi

(
max
r∈Hi

SAR(r)
)
, (7)

Hi =

{
r | SAR(r)≥ 1√

2
×max(SAR(r))

}
, (8)

Hi is the region of hotspots, and the strongest one is
Hmax. The total number of Hi is the number of hotspots
N.

HTQ assesses the relationship between the region
of highest energy intensity and the average energy of the
tumor. It is expressed as the ratio of average SAR values
between in the top 1% healthy tissues and in the tumor,
which is

HT Q = SARV1/SARt , (9)

where V1 is the volume of the top 1% of healthy tissues
with SAR values ranking from the highest to the lowest,
SARV1 and SARt are the average SAR value in V1 and in
the tumor.

aPA assesses the relative energy absorbed by
tumors. It is calculated by expressing the average energy
difference between tumor tissue and healthy tissue,
which is

aPA =
(∑Pt)/Vt

(∑Ph)/Vh
, (10)

where Pt and Ph denote the power absorbed by the
tumor and healthy tissue, respectively, Vt and Vh are the
volumes of the tumor and healthy tissue, respectively.

TCn is expressed as

TCn =Vi(SAR > max(SAR)×n%)/Vi, (11)

TCn represents the percentage of tumor volume in which
the SAR value exceeds n% of the highest SAR observed
within the tumor.

DHTR was calculated using the formula

DHTR =Vd/Vn, (12)

where Vn is the volume of healthy tissue within 15 mm
from the tumor edge, Vd is the volume of damaged
healthy tissues.

However, the assessment of HTQ and aPA can vary
significantly for different array sizes and breast mod-
els. This variability poses challenges in standardizing
evaluation criteria and identifying redundant hotspots.
When these indicators are used as the objective func-
tions in algorithms, they often fail to effectively reduce
redundant hotspots, thereby increasing computational
complexity and optimization difficulty. To address these
limitations, this study proposes a novel indicator, the
pPA, which enables a comprehensive analysis of SAR
distribution characteristics and hotspot distribution, par-
ticularly the relationship between the strongest absorp-
tion region and other high-absorption areas.

The pPA can be obtained through an analytical
method based on the correlation of SAR values with
their respective domains. The fundamental aspect of
the method is the identification and determination of
local peaks and locations of SAR values within the
tissue by establishing a link between a specific point of
interest and its corresponding domain. Subsequently, the
strongest peak among these identified peaks is taken to
be the main hotspot, whose SAR value is SARpeakmax.
The maximum value after comparing the SAR value
SARpeak(i) at the remaining peak points with the SAR
value SARpeakmax at the main hotspot is defined as the
pPA, which is expressed as

pPA = max
(

SARpeak(i)
SARpeakmax

)
. (13)

In comparison with existing indicators, pPA directly
quantifies the relative strength of secondary hotspots
compared to main hotspot, thereby providing higher
accuracy in hotspot characterization. Furthermore, it
possesses a discernible threshold for hotspot redun-
dancy: when pPA is less than 1/

√
2 , SAR distribution

guarantees that there is only one valid hotspot [18, 19],
accurately quantifying the optimization objective.
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B. The proposed algorithm

In the PSO, a population of N particles searches
in a space of dimension D. At the tth iteration, the
vectors of position Xi,t and velocity Vi,t of each indi-
vidual i(1 ≤ i ≤ N) in the population are represented
by X j

i,t = (X1
i,t ,X

2
i,t , . . . ,X

D
i,t) and V j

i,t = (V 1
i,t ,V

2
i,t , . . . ,V

D
i,t )

, respectively. Each iteration updates the velocity and
position of each particle in each dimensional component
on the basis of the found locally optimal solution and the
globally optimal solution , which is updated as

V j
i,t+1 = wV j

i,t + c1r j
i,n(P

j
i,t −X j

i,t)

+ c2Rl
i,t(G

j
i,t −X j

i,t), (14)

X j
i,t+1 = X j

i,t +V j
i,t+1, (15)

where i = 1,2, . . . ,N, j = 1,2, . . . ,D, w is the inertia
weight, c1 and c2 are the learning factors, r j

i,n and R j
i,n are

two random numbers uniformly distributed in the range
[0,1].

In the context of multi-objective optimiza-
tion scenarios, existing multi-objective PSO algo-
rithms encounter several limitations when they are
extended [20–23]. Firstly, their adaptive strategies are
devoid of a robust theoretical foundation, exhibiting
an inadequate examination of particle movement
characteristics and predominantly relying on a singular
search strategy for updating particle states. Secondly,
these algorithms neglect to consider the disparities in the
optimization capabilities of individual particles, which
hinders the achievement of a balance between algorithm
convergence and solution diversity when confronted
with complex optimization problems. Finally, the
switching mechanism between global exploration
and local exploitation remains imperfect, causing the
algorithms to easily fall into local optimal solutions or
suffer from insufficient convergence accuracy.

In order to enable the algorithm to dynamically
adjust the balance between local and global searches
according to the optimization effect, this paper proposes
an adaptive search method combining a feedback adjust-
ment mechanism and a random perturbation strategy.
This method uses the discrepancy between the optimized
and targeted results as a feedback signal to adaptively
adjust the inertia weights and learning factors. The
complete flowchart of the algorithm is shown in Fig. 1.

The adaptive functions of each parameter are

w(x) = 0.65+0.5× cos
(

π

2
√

x
+

π

3

)
+
(

0.5−0.1× cos
(

π

2x

))
× r,

(16)

Fig. 1. Flowchart of the AMOPSO algorithm.

c1(x) = 1.6−0.4× sin
(

π

2x

)
+
(

0.4−0.2× cos
(

π

2x

))
× r,

(17)

c2(x) = 1.4+0.4× sin
(

π

2x

)
+
(

0.4−0.2× cos
(

π

2x

))
× r,

(18)

where x=∑ai ·(opti−tari)(x> 0) is the fitness function
related to the target parameters tari of the optimization
process, ai is defined as the weight corresponding to
the optimized results opti, which is influenced by the
importance of the ith target result, the range of variation
and the optimization process.

The configuration of the parameters is illustrated
in Fig. 2. As shown in the figure, it depicts the corre-
sponding values of parameters w, c1, and c2 when the
fitness function x takes values within the range of [0,20].
Considering the presence of random functions in (16),
(17) and (18), the simulation interval is set to 0.01.

The formula is composed of three primary compo-
nents: a constant term, a trigonometric term, and a ran-
dom perturbation term. The constant term is established
in accordance with the empirical ranges of the inertia
weight and learning factor from traditional PSO [20, 21],
thereby ensuring that the algorithm maintains its opti-
mization capability during local exploitation. In contrast
to the parameter changes observed in conventional
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Fig. 2. Parameter configuration simulation diagram.
(a) w, (b) c1, (c) c2.

AMOPSO, the trigonometric function term establishes
a dynamic adjustment mechanism based on a nonlinear
function. It considers the parameter intervals and transi-
tion criteria for the global exploration and local exploita-
tion phases, accurately reflecting the dynamic changes in
optimization. This nonlinear adaptation enhances global
search, thereby preventing premature convergence and
ensuring a balance between exploration and exploita-
tion. The random perturbation term employs the random
variable r to augment the algorithm’s robustness, thereby
substantially enhancing population diversity while pre-
serving convergence efficiency. Compared to existing
mainstream AMOPSO algorithm, this method demon-
strates superior problem adaptability and maintains sta-
ble and reliable optimization performance in complex
noisy environments and dynamic scenarios.

Furthermore, in order to optimize the utilization of
the resources of each individual particle, the velocity is
reassigned to those particles that have been identified as
outliers over an extended period of time. This enables
them to rapidly exit the outlier state. The particle veloc-
ity reset function Vr is

V j
r =

aFS

1+ exp(−(∆FS−5)/1.5)

+
apPA

1+ exp(−2×∆pPA)
−a,

(19)

where aFS, apPA and a are constants. ∆FS = FSbest −
FStarget , FSbest and FStarget are the optimal and target
values of the focus shift. ∆pPA = pPAbest − pPAtarget ,
pPAbest and pPAtarget are the optimal and target val-
ues of pPA, V j

r is the velocity vector of the new-
born particle, which decreases gradually with the opti-
mization process, allowing the search range to shrink
gradually to improve accuracy. In comparison with the
rudimentary approach employed in existing AMOPSO
algorithms [20, 24], the velocity reset strategy, which
takes into account the discrepancies between optimized
and targeted results, demonstrates superior performance.
The system has been demonstrated to adaptively reset
velocities for outliers, thereby boosting swarm activity
and guiding them back to the search path. This, in turn,
accelerates optimization and enhances accuracy.

C. Breast model and phased array device
The phased array model for MTP by the global

optimization algorithm is shown in Figs. 3 (a) and (b).

Fig. 3. Optimization process of phased array excitation
in HTP: (a) side view, (b) top view, (c) S11 parameters
of the phased array element, (d) flowchart of HTP.

The simplified breast model is placed in a circular
phased array formed by 16 antenna elements uniformly
aligned with a radius of 100 mm and a height of 200
mm. The size of the phased array element is 31.25 mm
× 21.4 mm, and it is made of Rogers RT5880 with
dielectric constant of 2.2, loss angle tangent of 0.009,
and thickness of 1.575 mm. S11 parameter is shown in
Fig. 3 (c), which is in working condition with S11 <−10
dB at 2–3 GHz and achieves a good performance of -36
dB at the operating frequency of 2.45 GHz. The phased
array and breast model were immersed in a coupling
fluid (oil-in-water) with a relative dielectric constant
of 22.9 and a conductivity of 0.07. The breast model
consisted of skin, fat, breast fibers, and tumor [25].The
HTP optimization process is shown in Fig. 3 (d). SAR
distribution data can be obtained by HFSS simulation
and then processed and analyzed to obtain the previ-
ously mentioned indicators in Matlab. The excitation of
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the phased array is iteratively optimized and adjusted
according to these indicators until it meets the prede-
fined objectives. Finally, we can obtain the appropriate
excitations of elements.

III. RESULTS AND ANALYSIS
A. Experimental results of different optimization
algorithms

In order to demonstrate the performance advantages
of the proposed AMOPSO algorithm, we compare it
with linearly decreasing weights PSO (LDW-PSO) [26],
GA [14], DE [11] and an adaptive MOPSO with multi-
strategy based on energy conversion and explosive muta-
tion (ecemAMOPSO) [20]. In the course of the com-
parison experiments, the algorithms were configured
to utilize the same population size, objective function,
number of iterations, and initial values. The simulations
and optimization procedures were applied to tumors
located at (0, 35, 35) mm.

The normalized SAR distributions of the optimiza-
tion effects of different optimization algorithms focusing
are shown in Fig. 4. The experimental simulation results
are shown in the breast model to observe the SAR distri-
bution more clearly. The red object represents the tumor,
and the rectangle represents the simplified antenna struc-
ture. The axial and coronal planes are selected based on
the location of the tumor center. The normalized SAR
distribution is shown in the plan view, and the positions
corresponding to the 3D map are marked. It can also be
observed that the AMOPSO algorithm achieved accurate
focusing and effectively reduced redundant hotspots,
and there were no redundant hotspots in the region
outside the focal plane of interest.

Table 1 shows the optimization results of each
algorithm. As observed, the LDW-PSO algorithm still
has difficulty in finding a desirable balance in multi-
objective optimization despite its improved weighting
strategy. The DE algorithm is unable to achieve syner-
gistic optimization among multiple objectives despite its
strong global search capability, thus affecting the overall
performance.

Table 1: Quantitative indicators of treatment quality with
different algorithms

FS n pPA aPA HTQ TC70 DHTR
DE 1.90 13 0.86 4.22 0.86 96.13% 18.48%
LDW- 1.91 3 0.78 4.62 0.70 94.36% 12.50%
PSO
GA 0.36 4 0.71 5.28 0.75 98.91% 9.94%
ecem- 0.30 3 0.75 5.90 0.75 99.80% 7.77%
AMO-
PSO
AMO- 0.32 1 0.46 5.95 0.64 99.97% 4.53%
PSO

While both the GA and ecemAMOPSO algorithms
have been demonstrated to achieve high precision in
identifying the optimization target, the GA algorithm’s
capacity for local development is comparatively defi-
cient. This limitation impedes the effective removal
of redundant hotspots. The adjustment process of the
parameter in ecemAMOPSO is closely coupled with the
duration of the iteration, which makes it difficult for
the algorithm to achieve stable convergence in a limited
time, resulting in redundant hotspots remaining outside
the target observation plane. In contrast, the AMOPSO
algorithm is significantly superior to other algorithms
in all indicators of pPA, HTQ, aPA and DHTR, which
proves the excellent comprehensive optimization ability
of AMOPSO high precision and multiple objectives.

The excitation results of the phased array obtained
after optimization using the AMOPSO algorithm are
presented in Table 2. The phase is defined as the relative
phase difference with respect to element 1, with a range
of [−180◦, 180◦], and the amplitude is the feeding
coefficient, with a range of [0, 1].

Table 2: Excitation of phased array elements
Element Number 1 2 3 4
phase(◦) 0 39.57 −163.06 38.11
amplitude 1 1 0.78 0.80
Element Number 5 6 7 8
phase(◦) −75.19 −157.14 −91.41 −101.58
amplitude 0.59 1 0.82 1
Element Number 9 10 11 12
phase(◦) 172.56 45.34 −48.15 −160.15
amplitude 0.34 1 1 1
Element Number 13 14 15 16
phase(◦) −64.71 49.60 −150.99 42.44
amplitude 0.37 0.97 0.82 1

In the context of microwave hyperthermia treatment
plans, the presence of phased array phase errors has
been observed to exert an influence on the performance
indicators associated with treatment outcomes. A sys-
tematic investigation was conducted to evaluate the
performance of phased array MHT under specific phase
error conditions. To this end, 50 independent replicate
experiments were performed, with phase differences
fluctuating within a range of ±10◦ [27]. The maximum
(Max), minimum (Min), average (Ave), and standard
deviation (SD) of the experimental results are shown in
Table 3.

The experimental results show that changes in phase
difference parameters significantly affect the accuracy
of focus positioning. This results in the FS and DHTR
exceeding the established limit. While certain indicators
may exceed the established limits, statistical analysis
reveals that such deviations are not pervasive, and the
results persist within acceptable ranges. The majority
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Fig. 4. Normalized SAR distribution with different algorithms. (a) DE, (b) LDW-PSO, (c) GA, (d) ecemAMOPSO,
(e) AMOPSO.

Table 3: The impact of phase error on optimization
results

FS n pPA aPA HTQ TC70 DHTR
Max 0.526 1 0.653 6.071 0.675 99.951% 5.153%
Min 0.311 1 0.421 5.854 0.639 98.594% 4.297%
Ave 0.373 1 0.522 5.537 0.642 99.873% 4.581%
SD 0.081 1 0.053 0.056 0.006 0.419 0.249

of indicators meet the specified requirements, thereby
demonstrating that the phased array system in MHTP
exhibits a certain degree of stability and reliability under
most conditions.

In consideration of the correlation between the
diversity of breast tissues and the efficacy of MHT, this
study employs the dielectric constant of breast tissues
as the primary variable for experimental analysis [28].
This study systematically investigated the impact of
dielectric constant fluctuations within a range of ±10%
on key quantitative indicators for thermotherapy. The
experimental results are shown in Table 3.

The experimental data demonstrate that alterations
in the dielectric constant of the tissue result in vari-
ability among all performance indicators of the system.
However, it is observed that all indicators meet the
established requirements, and the impact is deemed to
be within acceptable limits.

Table 4: The impact of dielectric constant fluctuations
on optimization results

FS n pPA aPA HTQ TC70 DHTR
Max 0.450 1 0.618 5,962 0.697 99.841% 4.893%
Min 0.320 1 0.445 5.642 0.640 96.714% 4.531%

B. Experimental results of algorithms optimized for
tumors at different locations

Due to the intricate distribution of dielectric proper-
ties, the difficulty of performing HTP varies for tumors
at different locations and depths. To verify that the algo-
rithm proposed can achieve optimal treatment for a wide
range of tumors, we performed focused experiments
using the AMOPSO algorithm for tumors located at (0,
25, 50) mm, (0, 35, 35) mm, (0, 45, 45) mm and (0, 55,
30) mm, respectively.

The normalized SAR distributions of tumors at
different positions are shown in Fig. 5.

As the location of the tumor deepens, electromag-
netic waves are more scattered and absorbed when
penetrating tissues, which causes the electromagnetic
wave energy to be more dispersed and decay more
rapidly. It can be observed from Fig. 5 that, as the
tumor approaches the mid-axis of the breast tissue,
the focal length progressively increases. Simultaneously,



LI, SHEN, ELSHERBENI, MAO, LYU: AN ADAPTIVE MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM 978

the energy peak outside the focal region slightly rises,
and the focal area gradually elongates. This phenomenon
can be attributed to the scattering effect experienced by
the electromagnetic waves as they penetrate the tissue,
leading to a more dispersed energy distribution and thus
an elongated focal region. Additionally, the absorption
of electromagnetic wave energy by the breast tissue
accelerates the attenuation of the waves, causing the
focal region to become narrower. This attenuation not
only alters the shape of the hotspot but also impacts on
the overall efficacy of the treatment.

The results of the focus optimization process for
tumors at different locations are presented in Table 5.
The DHTR value was found to be less than 5% for all
locations that were examined, suggesting that there was
minimal damage to healthy tissues. The lowest pPA was
observed at the focal position (0,45,40) mm. It is impor-
tant to note that the aPA exhibited a gradual decrease
in trend as the position of the tumor progressed deeper
into the breast tissue. This finding suggests a strong
correlation between the energy absorption efficiency and
the spatial distribution of the focal point.

Table 5: Quantitative indicators of treatment quality
optimized at different locations using AMOPSO

FS n pPA aPA HTQ TC70 DHTR
(0,25,50) 0.48 1 0.64 5.08 0.71 96.20% 3.78%
(0,35,35) 0.32 1 0.46 5.95 0.64 99.30% 4.54%
(0,45,45) 0.46 1 0.36 7.88 0.69 99.70% 4.75%
(0,55,30) 0.33 1 0.45 8.46 0.62 100% 4.80%

C. Experimental results for different objective
functions in AMOPSO

The AMOPSO algorithm is a system that guides
the movement of an individual based on the discrep-
ancy between optimized and target results. The objec-
tive function affects the optimization performance of
the algorithm. In order to verify the applicability and
superiority of the proposed objective function in HTP
applications, an experimental comparative analysis was
conducted to explore the optimization effect of different
objective functions. The minimization objectives that
have been selected for the optimization of the treatment
of tumors located at (0, 35, 35) mm are as follows

min(FS,1/aPA), (20)

min(FS,HT Q), (21)

min(FS, pPA,1/aPA,HT Q). (22)

The optimized normalized SAR distribution is
shown in Fig.6. It is evident from Fig. 6 that the out-
comes obtained using the three optimization objectives

are devoid of focus shift and redundant hotspot prob-
lems, thereby substantiating the AMOPSO algorithm’s
robust generalization capability.

The optimization results for each objective are dis-
played in Table 6. In the instance of objective (20)
being utilized as the optimization objective, the value of
aPA was determined to be 33.35% and 33.01% higher
compared to objective (21) and (22), respectively. This
optimization objective intuitively reflects the difference
in energy absorption levels in the region of tumor and
healthy tissues, achieved by decreasing the mean energy
of the healthy tissue and increasing the mean energy
of the tumor tissue. This results in an optimization that
exhibits enhanced energy coverage within the region of
tumor, though concomitantly results in elevated levels of
healthy tissue damage.

Table 6: Quantitative indicators of treatment quality
using AMOPSO with different objectives

FS n pPA aPA HTQ TC70 DHTR
Obj.(20) 0.33 1 0.63 0.68 7.91 100% 5.08%
Obj.(21) 0.33 1 0.49 0.66 5.93 99.70% 5.30%
Obj.(22) 0.32 1 0.46 5.95 0.64 99.30% 4.54%

In the instance of objective (21) being utilized as
the optimization objective, the value of HTQ was found
to be 3.36% lower in comparison to objective (20),
yet 3.15% higher than objective (22). The function of
objective (21) is to reduce the average energy of healthy
tissue, thereby reducing the energy in the tumor. This
results in an enhancement of the contrast between the
average energy of the tumor and the energy of the
region of highest energy intensity within the healthy
tissue. However, this adjustment resulted in the facile
dispersion of energy to other regions of the tissue, giving
rise to aPA values that were 35.01% and 0.23% lower
than the values observed for the other two objectives.
This resulted in a reduction in energy utilization and an
increase in TC70, as well as a decrease in DHTR, in
comparison to the other two objectives.

In the instance of objective (22) being utilized as
the optimization objective, the indicator of pPA effec-
tively evaluates the distribution of the strongest hotspot
and other important hotspots, thus demonstrating the
most comprehensive optimization effect. The value of
pPA is reduced by 25.8% and 6.1%, and the value of
DHTR is reduced by 10.8% and 14.6%, respectively,
compared with the other two objectives. It is evident
that this has led to a substantial enhancement in the
degree of optimization, which has consequently resulted
in a notable reduction in the damage caused to healthy
tissue, alongside a significant increase in the concen-
tration of microwave energy. This finding suggests that
the AOMPSO algorithm, utilizing objective (22) as the
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Fig. 5. Normalized SAR distribution with tumors at different locations using AMOPSO. (a) (0,25,50) mm, (b)
(0,35,35) mm, (c) (0,45,45) mm, (d) (0,55,30) mm.

Fig. 6. Normalized SAR distribution with different objectives. (a) Obj.(20), (b) Obj.(21), (c) Obj.(22).
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objective, is most effective in the context of phased array
microwave hyperthermia treatment for breast cancer.
This not only enhances the efficacy of treatment but
also ensures the minimization of energy distribution and
tissue damage in healthy tissues.

IV. CONCLUSION
In this paper, an AMOPSO algorithm is introduced

as a groundbreaking solution to address the problems of
focus shift and redundant hotspots in the HTP process of
breast cancer. What sets the AMOPSO algorithm apart
is its unparalleled superiority, as evidenced by compre-
hensive comparative analyses against other optimization
algorithms. It not only outperforms its counterparts in
terms of optimization efficacy but also stands out with its
remarkable efficiency. This rapid convergence enables
the algorithm to achieve pinpoint focusing accuracy
while drastically reducing the number of redundant
hotspots, resulting in a significantly enhanced treatment
outcome for tumors.

One of the AMOPSO algorithm’s most distinctive
features is its exceptional adaptability to different tumor
locations. An exhaustive investigation into its focalizing
aptitudes reveals that the algorithm reliably attains pre-
determined objectives with exactitude, notwithstanding
the intensifying complexity associated with more pro-
found tumor locations. This showcases its remarkable
ability to maintain accurate focusing over a wide range
of scenarios, highlighting its broad applicability and
versatility, which far surpasses that of many existing
algorithms.

Additionally, the paper meticulously compares dif-
ferent SAR-based objective functions and uncovers a
unique advantage of the AMOPSO algorithm. By incor-
porating pPA as an objective function, the algorithm
substantially improves treatment effectiveness, outper-
forming traditional objective functions commonly used
in HTP. This innovative approach represents a signif-
icant advancement in the field and demonstrates the
AMOPSO algorithm’s potential to redefine microwave
thermal therapy optimization standards.
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