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Abstract – A simple, robust, and easy-to-implement
method is considered for verification of homogenous
half-space dyadic Green’s matrices (DGMs) that relate
electric and magnetic fields to elementary current
sources placed near an infinite ground plane. The DGMs,
as a rule, are calculated using either the Sommerfeld
integrals or their approximations. The verification is
based on an alternative method for evaluation of DGMs,
in which elementary current sources are modeled by
electrically small antennas and the infinite ground plane
is modeled by a finite-sized piece of ground, i.e. the
ground clump. The method is demonstrated by using
a typical 3-D EM solver based on the method-of-
moments (MoM) solution of surface integral equations
(SIEs). The single-antenna scenario is proved effec-
tive for obtaining results with controllable accuracy,
with relative error going from 10−2 to 10−5, which is
demonstrated for ground clumps up to 20λ in diameter.
A set of three electric and three magnetic dipoles is
recommended for fast verification of DGMs.

Index Terms – Dyadic Green’s matrix, Hertzian dipole,
method of moments, Sommerfeld integrals, surface inte-
gral equation.

I. INTRODUCTION
For the past 100 years, there has been continuous

interest in simulating antenna and scattering scenarios
above and inside real ground (the half-space problem)
[1–3]. This interest has risen with the recent develop-
ment of space, aerial, and land systems for applications
such as microwave remote sensing, ground-penetrating
radar, and propagation of radio waves [4–8].

In order to compute the electromagnetic (EM) field
of a realistic antenna near the half-space interface, one
must first find the field responses to elementary electric

and magnetic current sources in the same environment.
These responses constitute the so-called dyadic Green’s
matrices (DGMs), the elements of which are either
Sommerfeld integrals (SIs) or their linear combinations.
There are many proposed solutions to SIs, i.e. the
elements of DGMs, both approximate analytical and
numerical. In this study, we consider solutions that are
appropriate for large-scale homogenous half-space prob-
lems [9–13], and verifiable in terms of accuracy. The
interest for such scenarios is high within the scientific
and industrial community, e.g. in automotive [14], which
motivates this study.

There are few reliable verification methods for
DGMs that are available in the open literature. One
straight-forward and direct method would be compari-
son of the obtained numerical results of individual SIs to
the proven numerical values from previously published
work [15]. In other methods, the authors refer to the inte-
grals of Sommerfeld type (not necessarily the original
SIs), the solution of which is known in closed form, thus
verifying their numerical algorithms with exact error
calculation [10, 16]. Most of the published approaches
are, actually, indirect methods. For instance, when com-
puting particular matrix elements of SIs one can observe
their convergence, while increasing the computational
resources [13, 17], but there is no easy way to check if
an SI is converging to a wrong solution. Other methods
rely on representative observables (e.g. input impedance
of antenna, magnitude of electric or magnetic near and
far field, radiation pattern) that are verified via results
obtained from simulations of complex, yet approximate
half-space scenarios, using 3-D EM simulation tools
[18–22]. The major downside of all these approaches
is the lack of a thorough verification process and of
guidelines for accuracy evaluation of arbitrary SI.

Therefore, a more general approach for verification
of half-space DGMs is required. It is desirable that
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such a verification method can evaluate the EM field
with various accuracy levels, and that the evaluation can
be performed by the computational resources available.
One such method is to model the infinite ground half-
space by a finite sized piece of ground, i.e. the ground
clump [23]. Although the ground-clump method is not
the most efficient one, it is robust, reliable, and easy
to implement in any frequency-domain general-purpose
3-D EM solver that can (a) model arbitrary composite
metal and dielectric structures of finite size and (b) con-
trol the accuracy of the simulation by increasing the
computational resources (number of unknowns, mem-
ory, and CPU time) [24–26].

In order to achieve the postulated objective, we
propose a method based on simulation of two scenario
projects in a commercial tool. In the first scenario,
the elementary electric and magnetic dipoles are mod-
eled as short dipole antennas and small loop antennas,
respectively, in free space. In the second scenario, these
antennas are placed in the vicinity of infinite ground
plane, approximated by a specifically designed model of
finite-sized piece of ground, i.e. a ground clump.

The desired DGMs are obtained by processing the
two simulation results of input antenna impedances, and
electric and magnetic fields in a selected grid of spatial
points. Furthermore, we propose the following novel-
ties: (a) rapid-verification set made of three orthogonal
dipole antennas and three orthogonal loop antennas with
minimal coupling, (b) optimal truncated ground-clump
model for modeling of infinite ground boundary with
respect to computational resources, (c) strategies for
rapid verification of DGMs and strategies for assessment
of high accuracy, and (d) rules for adjusting the geom-
etry of the antennas and of the truncated ground clump
(TGC), as well as simulation parameters, that allow for
desirable accuracy with as low computer resources as
possible.

In this paper, we address only the homogenous half-
space problems, with particular interest in electrically
large scenarios, whereas the multilayered or grounded-
slab problems [11, 27, 28] are out of scope of this work.
The implemented EM field is computed using all of the
near-field terms, making the method valid for arbitrary
source-observer distances. However, since the far field
can be easily obtained using the reciprocity theorem and
Fresnel reflection coefficients, the scope of this work is
the near and intermediate radiation zone.

The basic concept is roughly presented in [29],
while the details are elaborated in Section II. Appli-
cation of the verification method by using a typical
3-D EM solver based on surface integral equations
(SIEs) is described in Section III. Numerical exam-
ples are given in Section IV and the conclusions in
Section V.

II. GENERAL CONCEPT OF THE
VERIFICATION METHOD

Let us consider x, y, and z-oriented elementary
Hertzian electric dipoles of length ∆l and electric-current
intensities Ie

x , Ie
y , and Ie

z , respectively. The dipoles are
placed at source point A, on z-axis at height z′ above
lossy homogeneous half-space (real ground) of permit-
tivity ε = ε0εr and permeability µ = µ0µr, as shown
in Fig. 1. (Alternatively, we will consider x, y, and z-
directed Hertzian magnetic dipoles of length ∆l and
magnetic current intensities Im

x , Im
y , and Im

z .)
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Fig. 1. Scenario in general purpose 3-D EM solver.
(a) Finite-sized-body approximation of infinite half-
space. (b) Model of y-oriented Hertzian electric dipole.
(c) Model of x-oriented Hertzian magnetic dipoles.

The total electric field vector at an arbitrary obser-
vation point P, which is placed above the half-space,
represents the sum of the direct field due to the dipoles
and their field reflected from the boundary surface of
the half-space. Cartesian components of the reflected
electric field vector, Ee, are related to the set of Hertzian
dipoles by DGM as:Ee
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Formally, the same relations can be written for
Cartesian components of reflected magnetic field, He,
due to Hertzian electric dipoles, as well as for Cartesian
components of reflected electric and magnetic fields,
Em and Hm, due to Hertzian magnetic dipoles. (In
these cases, the superscripts for DGM elements are
“me”, “em”, and “mm”.) The total number of DGM
elements to be evaluated in one point is 36. Usually, the
high-accuracy evaluations of these matrix elements are
performed by numerically computing the individual SIs,
which is also the path taken here, in which we followed
[12, 13, 15]. Final expressions are given in [30]. The
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total number of integrals to be evaluated is 28. Obvi-
ously, it is a challenging task not only to develop a
code that performs this numerical evaluation, but also
to verify the accuracy of the results in the broad range of
parameters of interest.

In this paper, we will illustrate verification of DGMs
using a general-purpose 3-D EM solver in frequency
domain in which we consider the reflected field at
observation point P above ground, due to x, y and z-
oriented Hertzian dipoles at the source point A (Fig. 1).
Since the reflected field is mainly due to the nearby piece
of the ground, for an approximate evaluation of reflected
field at this point, it suffices to take into account only
a finite part of this scenario. This finite size scenario
can be modeled in any general-purpose 3-D EM solver.
The ground is modeled as a body of finite size (ground
clump), in the shape of a vertical cylinder of arbitrary
cross-section, made of lossy homogeneous material of
complex relative permittivity εr. The cylindrical body of
square cross-section is shown in Fig. 1 (a).

Elementary Hertzian dipoles are modeled as equiv-
alent thin-wire antennas. “Equivalent” means that thin-
wire antennas produce approximately the same electric
and magnetic fields as elementary Hertzian dipoles,
at least for distances between source and observation
points much greater than the antenna dimensions. In
particular, the elementary Hertzian electric dipole is
modeled as electrically short symmetrical linear dipole
antenna of length le (le ≪ λ ) as shown in Fig. 1 (b).
Note that the total current along one arm of such antenna
decreases linearly from input current I0 to zero. Hence,
in order for such an antenna to produce approximately
the same electric and magnetic field as Hertzian electric
dipole, it is necessary that:

Ie
∆l =

I0le
2

. (2)

The elementary Hertzian magnetic dipole is mod-
eled as electrically small, square-loop antenna of side
length lm (l2

m ≪ λ 2), as shown in Fig. 1 (c). In order
for such an antenna to produce approximately the same
electric and magnetic field as Hertzian magnetic dipole,
it is necessary that:

Im
∆l = jωµ0I0l2

m. (3)

The general verification procedure is performed in
several steps:

1. One by one, equivalent wire antennas, shown in
Figs. 1 (b) and 1 (c), are placed in the source point
A, above ground clump, as depicted in Fig. 1 (a).

2. For each such project, the simulation is performed
with and without the ground clump, resulting in total
and direct field at observation point P.

3. Difference of these two fields gives the reflected field
at observation point P.

4. Once the reflected field is known, one column of the
DGM elements can be determined from equation of
type (1).

For instance, let us consider the first project, in
which the wire antenna equivalent to x-directed ele-
mentary Hertzian electrical dipole is placed above the
ground clump. After the third step, the reflected field Ee

is determined. Since in these simulations Ie
y and Ie

z are
equal to zero, the 1st column of DGM can be determined
from (1) as:

Gee
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zx =
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z
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, (4)

where Ie
x ∆l = I0le/2 according to (2) and I0 is the current

intensity of ideal current generator used for excitation
of the wire antenna. In particular, by setting unit value
for Ie∆l, DGM elements in (4) become equal to electric
field components. (Alternatively, the wire antenna can
be excited by an ideal voltage generator. In that case its
voltage should be adjusted to give the same input current
I0 in two scenarios used in the second step.)

The accuracy of DGM elements evaluated in this
way depends on two factors: (1) the accuracy of the finite
size scenario simulation and (2) the size of the ground
clump, intended to emulate the infinite ground. In the
first case, the accuracy can be improved by increasing
the resources used for the simulation (e.g. number of
unknowns, memory, and CPU time). In the second case,
the ground clump can be enlarged, which also increases
the resources used for the simulation. In this way,
the accuracy of DGM elements can be systematically
increased up to desired level.

The verification method described above can be
easily adjusted for the field transmitted into the ground,
or for elementary Hertzian dipoles placed inside the
ground.

III. IMPLEMENTATION OF THE
VERIFICATION METHOD USING

TYPICAL 3-D EM SOLVER BASED ON
SURFACE INTEGRAL EQUATIONS

The proposed verification method is applied using
WIPL-D Pro [26], a typical general-purpose frequency-
domain 3-D EM solver based on method-of-moments
solution of surface integral equations (MoM/SIE). In the
case of MoM/SIE methods, the finite size material body
is taken into account by equivalent electric and magnetic
currents, placed over its surface. These currents are
directly related to the components of the electric and
magnetic field that are tangential to the surface. Note
that in the case of lossy ground, electric and magnetic
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field weaken rapidly with the distance from the Hertzian
dipoles, so that for a large enough ground clump, the
equivalent currents on the sides and bottom of the
ground clump are negligible compared to those on the
top. Consequently, the side and bottom surfaces can be
omitted from the ground-clump model without effect
on accuracy of simulation [23]. In the case of lossless
ground, even though the decline of the field is somewhat
slower, the same approximation can be applied. In the
remainder of the text, such finite-sized model of ground
will be referred to as TGC.

In this application, we started with a ground clump
in the form of a vertical cylinder of height h = 2a, of
circular cross-section of radius a, as shown in Fig. 2 (a).
The total surface area of such clump is S = 6a2π . In the
MoM/SIE solvers, the number of unknowns and related
simulation time depends on surface area in wavelengths
squared. This number can be reduced using higher
order basis functions (up to 7th order) over quadrilateral
patches, whose sides have maximum dimension of two
wavelengths in air, i.e. dmax = 2λ . In this case, the
number of unknowns needed per wavelength squared of
the clump surface for typical real ground and default
simulation parameters is about 64, so that the total
number of unknowns approximately amounts to N =
1200 (a/λ )2. Generally, all problems up to 120,000
unknowns can be easily solved on a standard desktop
machine. It means that radius of the ground clump can be
easily increased up to a = 10λ . By omitting the side and
bottom surfaces, the cylindrical ground clump is reduced
to a circular ground surface, as shown in Fig. 2 (b). In
this way, the active surface for simulation, as well as
the number of unknowns, is reduced approximately six
times. Accordingly, the radius of such TGC can be easily
increased to a = 25λ . In addition, diffraction effects at
the sharp edge of circular TGC can be mitigated by
adding a rounded rim, as shown in Fig. 2 (c). It is
found that the optimal value for rim radius is half of a
wavelength, ra = λ/2, since its further increase does not
further mitigate the diffraction effects, but increases the
number of unknowns.

One way to improve the accuracy of simulation is
to increase the number of patches, while keeping more
or less the same maximum order of basis functions per
patch. To enable such functionality, the initial model is
created using the patches whose sides have maximum
dimension much greater than dmax, while internal mesh-
ing routine is automatically used to subdivide the initial
mesh into minimal number of patches whose sides have
maximum dimension not exceeding dmax. In this case,
by keeping more or less the same maximum order of
basis functions per patch, the number of patches can be
increased by decreasing dmax. It is found that high accu-
racy of simulation is achieved by setting dmax = 0.8λ all

over the model, and dmax = 0.4λ over the inner circle
of radius b = λ , as shown in Fig. 2 (d). In this way
the number of unknowns is increased approximately six
times.

Antennas are modeled using WIPL-D Pro’s built in
thin-wire approximation, in which the wire segments are
modeled as cylinders, as previously shown in Fig. 1.
Dimensions of antennas are set to le = λ/500, lm =
λ/250, and rw = λ/30,000. The number of unknowns
used for antennas is negligible, being that N = 1 for
the dipole antenna and N = 4 for the loop antenna. The
antennas are excited by ideal voltage generators.

x
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P(x,y,z)

A(0,0,z')

h

a
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ra
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Fig. 2. Different realizations of truncated ground clump.
(a) Cylindrical clump. (b) Circular disk. (c) Enlarged
part of disk with additional curved rim for diffraction
mitigation. (d) Entire disk with a curved rim and a
colored central disk, denoting part of the clump surface
with local settings.
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Fig. 3. Examples of excitations that consist of elemen-
tary electric- and magnetic-current sources, realized as
wire models. Electric-current sources are short dipoles,
whereas magnetic-current sources are simulated as short
square wire loops. (a) A pair of collinear electric-current
and magnetic-current sources. (b) Three orthogonal
electric-current sources. (c) Six coexisting sources.
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To speed up the verification process, a number
of equivalent wire antennas can be combined into an
antenna system, as a single project, by exciting one-
generator-at-a-time (OGAT) operation mode. Namely,
the most consuming part in MoM/SIE simulation is the
evaluation of the MoM matrix and its LU decomposi-
tion. Once the LU decomposition is performed, the solu-
tion of the matrix equations can be quickly obtained for
various excitations columns by forward and backward
substitution. This is exactly how the OGAT mode oper-
ates: one-by-one voltage generator is turned on, while
all other generators are turned off, giving each time the
corresponding excitation columns. For each excitation
column, the solution is found for overall currents and
electric and magnetic fields are evaluated in a grid of
points of interest. If the coupling between antennas is
negligible, the results obtained for each excitation col-
umn will correspond to those of a stand-alone antenna.
For example, there will be no coupling at all if we
combine wire antennas equivalent to vertical Hertzian
electric and magnetic dipoles, as shown in Fig. 3 (a), or
wire antennas equivalent to x, y, and z-directed Hertzian
electric dipole, as shown in Fig. 3 (b). Also, there is a
practically negligible coupling between three orthogonal
loop antennas, even if they are combined with the system
of electric dipoles, resulting in configuration shown in
Fig. 3 (c).

Once placed above the ground clump, all antennas
will be additionally coupled. However, if the antenna
system is not too close to the ground clump, this cou-
pling remains negligible.

IV. NUMERICAL EXAMPLES
In order to analyze the proposed verification pro-

cedure, we perform numerical simulations, in which SI
solutions, obtained by applying the approach from [13]
to equations elaborated in [30], are tested against the
reference TGC MoM-based solutions. We assume an
arbitrary real ground with relative permittivity εr = 10−
j5 and relative permeability µr = 1, above which unit
current sources, Hertzian dipoles, are placed and oper-
ating at frequency f = 1 GHz. All examples consider
only the reflected field from the real ground due to
the Hertzian dipoles, as well as their wire equivalents,
excited by Ie∆l = 1Am and Im∆l = 1Vm. The presented
results are calculated in single precision. Specific to each
example is the type of excitation antenna system, the
type of TGC, the radius of TGC, the heights of the
source z′ and of the observation point z, and the range
of x- and y-coordinates for observation points.

A. Six-antenna scenario: Rapid verification
In the first example, the fast verification method is

demonstrated. The radius of the ground clump, shown

in Fig. 2 (c), and the maximum patch size are adjusted
to a = 2.5λ and dmax = 0.8λ , respectively. The full
set of dipoles, shown in Fig. 3 (c), is placed at height
z′ = 0.1λ . The reflected electric and magnetic fields are
evaluated in yOz-plane at height of z = z′, in a range of
y-coordinates, y ∈ [0.01λ ,a]. The field magnitudes are
shown in Fig. 4. Generally, excellent agreement between
TGC and SI solutions is observed. The only exception
are the results for magnetic field due to equivalent y-
directed Hertzian electric dipole in a short range of
y-coordinates, around y = 0.5λ , marked by a black
circle in Fig. 4 (b). In this range, the magnetic field
due to equivalent y-directed Hertzian electric dipole is
extremely small, so that mutual coupling to equivalent
Hertzian magnetic dipole antennas is not negligible.
Namely, if magnetic dipoles are omitted from the sce-
nario, which correspond to the set of dipoles shown in
Fig. 3 (b), this deviation vanishes.

(a) 

(b) 

Fig. 4. Magnitude of electric and magnetic field due to
Hertzian dipoles, versus y-coordinate (z′ = z= 0.1λ ,a=
2.5λ ). TGC and SI solution are compared. (a) Electric
field. (b) Magnetic field.
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B. Single-antenna scenarios
In the following examples, single-antenna sources

are applied, i.e. short electric dipoles (Fig. 1 (b)). The
antennas are placed above the ground-clump model
from Fig. 2 (d). The objective is to demonstrate the
level of accuracy that can be achieved with the TGC
solution. The relative error evaluated by TGC method
is defined as:

δX =
|XTGC −XSI|

|XTGC|
, (5)

where XTGC and XSI are electric or magnetic complex
vector fields obtained from the TGC and SI solutions,
respectively. The plots for the relative error of the mag-
netic field are omitted whenever they are similar to those
for the electric field.

The relative error of the electric field versus x- and
y-coordinates, for an x-directed Hertzian electric dipole
(z = 0.1λ , a = 5λ ) is shown in Fig. 5. The error slowly
increases as we approach the rim and then rises sharply
beyond it. Obviously, the error is lower in the direction
that is orthogonal to the dipole axis.

In Figs. 6 (a) and 6 (b), the relative errors of the
electric field due to vertical (z-oriented) and horizontal
(x-directed) Hertzian electric dipole for various radii of
the ground clump are presented. By increasing the radius
of TGC from a = 2.5λ to a = 10λ the general level
or the relative error for vertical dipole decreases from
10−2 to 10−3, while in the vicinity of y = 0, this level
is even lower by an order of magnitude. In the case of
the horizontal dipole, the general level or relative error
decreases from 3 · 10−4 to 3 · 10−5. By further increase
of the radius, the relative error can be lowered only
if the number of unknowns is also increased and the
simulation is performed in double precision.

Fig. 5. Relative error of electric field due to horizontal
(x-directed) Hertzian electric dipole versus x- and y-
coordinates in plane z = 0.1λ (z′ = 0.1λ ,a = 5λ ).

(a) 

(b) 

E
E

Fig. 6. Relative error of electric field due to Hertzian
electric dipole versus y-coordinate, for various radii, a,
of the ground clump (z′ = z = 0.1λ ,x = 0). (a) Vertical
dipole (z-directed). (b) Horizontal dipole (x-directed).

An analysis of the same scenario with the Hertzian
magnetic dipoles shows that the general level of the
relative error remains around 10−2, independently of
the value of the TGC radius (first four curves in
Figs. 7 (a) and 7 (b)). Obviously, an electrically small
square current loop does not model the infinitesimal
magnetic Hertzian dipole as well as an electrically
short wire dipole models infinitesimal electric Hertzian
dipole. However, by taking advantage of the duality of
the expressions for fields resulting from electric and
magnetic current moment above magnetic and electric
grounds, respectively [30], an alternative simulation is
conducted. Namely, electric dipoles are placed above
lossy magnetic TGC, with converse parameters, i.e. εr =
1 and µr = 10 − j5. The obtained electric field corre-
sponds to the magnetic field of the original problem and
vice versa. The error resulting from such dual simulation
is evidently lower, as denoted by δHm and given by last
four curves in Figs. 7 (a) and 7 (b).
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(a) 

(b) 

Fig. 7. Relative error of electric field due to Hertzian
magnetic dipole versus y-coordinates, for various radii,
a, of the lossy dielectric ground clump. For comparison,
results are shown for a dual problem, relative error of
magnetic field due to Hertzian electric dipole above
lossy magnetic ground clump (z = 0.1λ ,x = 0,a = 5λ ).
(a) Vertical dipole (z-directed). (b) Horizontal dipole
(x-directed).

C. Elevation analysis in single-antenna scenarios
Besides the size of the TGC, also the impact of

the heights of the source and observation points are of
interest. In that sense, a set of simulations is performed
where we fix the height of the observation point and
vary the height of the dipole up to 100λ , and vice versa.
The relative error of the electric field due to horizontal
(x-directed) Hertzian electric dipole is shown in Fig. 8.

We observe that by increasing the height of the
dipole, the general level of relative error rises from
3 ·10−5 to 10−2, except in the vicinity of y = 0, where
this level is higher for half an order of magnitude
(Fig. 8 (a)). In the converse case (Fig. 8 (b)), we can
see that for heights of observation point up to z = 1λ ,
the general level of the relative error is between 3 ·10−5

and 3 · 10−4, while by increasing this height up to z =
100λ , this level rises up to 10−2. This result is expected,
since the high elevation above TGC reduces the model
adequacy for half-space scenarios.

(a) 

(b) 

Fig. 8. Relative error of electric field due to horizontal
(x-directed) Hertzian electric dipole versus y-coordinate,
for various heights of source and observation points.
(a) Height variation of the source point, z′ (z = 0.1λ ,x =
0,a = 5λ ). (b) Height variation of the observation point,
z (z′ = 0.1λ ,x = 0,a = 5λ ).

V. CONCLUSION
In this work, an alternative approach to verification

of a family of Green’s functions, namely the homoge-
nous half-space dyadic Green’s matrices, is presented.
The elements of these matrices are typically linear
combinations of numerically demanding Sommerfeld
integrals and represent field responses to unit excita-
tions, such as magnetic- or electric-current moments, i.e.
elementary Hertzian dipoles.

Due to the diversity of practical half-space prob-
lems, it is often more tedious and less efficient to
program a published algorithm as a reference solution
for each of the possible scenarios, than to assemble a
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3-D model in a proven EM tool, using basic primitives
like wires, plates, and cylinders. However, testing a
half-space computational procedure against complete
and complex EM scenarios, e.g. by observing param-
eters of installed antenna, like impedance or radiation
field, conceals the accuracy information on the actual
algorithm that computes the elements of the Green’s
matrices. Therefore, we propose verification of that
numerical algorithm through simulations of fundamental
scenarios that consist of elementary dipoles carefully
designed as electrically small antennas, and of a model
of infinite ground plane that is adjustable and thought-
fully constructed as finite-sized piece of ground, i.e.
the ground clump. The procedure is easy to implement
using any general-purpose 3-D EM solver in frequency
domain and is applicable for all combinations of source
and observation points directly above the clump, up to
the height equal to the transversal dimension of the
clump. With increase of the distance between the points,
their heights, and the required accuracy, the resources
required for the simulation also increase (e.g. number
of unknowns, memory, CPU time). In order to reduce
the simulation resources, the full ground-clump model is
replaced by the upper boundary surface with a rounded
rim (i.e. the TGC), and the number of rules is set for
adjusting the simulation parameters, as well as the size
and shape of antennas.

For fast and coarse verification of the DGMs, a
multi-antenna scenario, based on simultaneous excita-
tion of a set of three orthogonal electric dipoles together
with a set of three orthogonal magnetic dipoles is recom-
mended. The single-antenna scenarios allow us to attain
more accurate results, where the relative error ranges
from 10−2 to 10−5. This is successfully demonstrated
for ground clumps up to 20λ in transversal dimension.
Further refinement of the finite 3-D model and of the
basis functions may allow for lower error levels.

The proposed method is convenient for quick and
simple verification of new algorithms that compute the
elements of the half-space DGMs with somewhat lim-
ited, but controlled, accuracy. The analysis illuminates
the potentials and provides guidelines for accurate ver-
ification in any 3-D EM analysis tool. Even though
the given examples consider only the reflected fields,
the proposed approach can also be extended to the
transmitted fields, since the associated SIs are of similar
nature. Naturally, care must be taken in the design of
the elementary dipoles that are submerged in the ground
clump.

The specific design of the TGC as open surface-
of-rotation is currently limited to homogenous half-
space scenarios. In future work, a multilayered TGC will
be investigated and compared to the corresponding SI-
based solutions.
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