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Abstract — This paper presents a reconfigurable trans-
missive metasurface operating at 8.5 GHz. The metasur-
face consists of a four-layer stacked structure of circular
radiating patches, with varactor diodes integrated into
the patches to achieve 360° continuous transmission
phase control. The structure exhibits a transmission loss
of less than 2 dB and a relative bandwidth of approxi-
mately 12%. By tuning the capacitance of the varactor
diodes, the transmission phase can be precisely and
continuously adjusted. Compared to switch-diode-based
metasurfaces, this approach offers a simpler design and
enables dynamic continuous phase modulation. Both
simulation and measurement results, including the rela-
tionship between transmission magnitude and phase
shift versus bias voltage, show strong agreement. The
metasurface demonstrates excellent bandwidth charac-
teristics. This work provides a valuable strategy for
designing dynamically tunable broadband metasurfaces
and holds significant potential for applications in high-
gain phased array antennas and efficient beamforming
systems.

Index Terms — Active metasurface, transmission phase,
varactor tuning.

I. INTRODUCTION

Metamaterials are novel synthetic materials engi-
neered to achieve specific properties not normally found
in nature [1]. However, large volume and inflexibility of
normal metamaterials make them impractical in many
applications. Based on the generalized Snell’s law, meta-
surface, a kind of metamaterial with a planar structure,
was proposed [2]. Since then, the study of phase gradient
metasurfaces (PGMS) has attracted the interest of many
researchers. PGMS is capable of providing predefined
in-plane wave vectors to manipulate the directions of the
refracting/reflecting waves [3]. The wave beam can be
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controlled by introducing sudden phase changes at dif-
ferent positions on the plane and making its distribution
meet certain rules.

In [4], a multilayer square-ring metallic structure
was employed to design a phase metasurface, where
transmission phase variation was achieved by adjusting
the perimeter of the square rings. In addition, the design
procedure of some metasurfaces is to change the size of
unit cell firstly, then combine them properly to achieve
electromagnetic wave control [5—10].

Another way to adjust the phase of the unit is to
rotate the metasurface unit. A new type of metasurface
design is used to generate vortex beams [11], the pro-
posed metasurface units are rotated at different angles
and then distributed regularly. In [12], a transmission—
reflection-integrated metasurface is proposed, which
enables full-space amplitude and phase control of cir-
cularly polarized (CP) waves. By rotating the receiving
and transmitting patches of each meta-atom around their
respective feed points, the transmission and reflection
phases can be independently tailored. Also, a similar
principle is used to adjust the phase of the unit in
[13-16].

The above two methods to change the phase of
the unit are realized by changing the shape of the
unit structure under the passive condition. Changing the
shape of the unit structure compromises the dynamic
control of the phase. In order to dynamically control
the transmission phase, a multilayer metasurface unit
is proposed, and the PIN diodes are attached to each
unit [17]. However, since the PIN diode only has two
states, on and off, it is complicated for this kind of
metasurface to realize continuous controlling of phase.
Another type of active metasurface for vortex beam
generation is designed in [18]. The method is to divide
the entire metasurface into several regions and then
control capacitance in different regions. But this active
metasurface only allows full phase adjustment within the
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limited bandwidth. Reference [19] presents a metasur-
face capable of both transmission and reflection func-
tionalities, where the switching between transmission
and reflection modes is achieved using only a single PIN
diode. However, the phase control of the unit cells in this
design relies solely on geometric dimension variations,
making dynamic phase tuning unattainable. Moreover,
the integration of varactor diodes into metasurfaces
enables dynamic phase tuning. In [20], a varactor-
based metasurface was developed to achieve continuous
phase modulation. Under different bias voltages, the
unit cell demonstrated a transmission phase shift of
245° and a reflection phase shift of 300°. However,
the design exhibited an insertion loss of approximately
3 dB. In [21], a novel metasurface incorporating varactor
diodes was proposed, capable of simultaneously con-
trolling both amplitude and phase, and achieving 360°
phase tuning. Nevertheless, the operational bandwidth
was relatively narrow, limited to only 6%.

In this paper, an active metasurface which can
dynamically adjust the transmission phase over a broad
bandwidth is proposed and its prototype has been sim-
ulated in [22]. Each unit of the metasurface consists
of a circular patch and two strip patches, with two
varactor diodes placed in the gap between the two
types of patches. By changing the capacitance of the
varactor diodes, the transmission phase can be changed
efficiently. The two ends of the varactor diode are fed
by the strip patch and the circular patch respectively to
avoid the influence of the re-designed feed structure on
the metasurface performance. The simulation and mea-
surement results show that the metasurface can reach
a bandwidth of 12% and a tunability of transmission
phase over 0° — 360° with a transmission magnitude
more than 0.8.

II. TUNABLE METASURFACE DESIGN
AND ANALYSIS

A. Metasurface unit cell design

The perspective structure of the proposed active
transmissive metasurface is shown in Fig. 1 (a). Its
metasurface structure can produce different electromag-
netic responses with continuously adjustable phases to
incident waves. Figure 1 (b) presents the geometrical
model of the unit cell of the active metasurface. The
structure primarily consists of three dielectric substrate
layers and four metallic patch layers. The substrates are
square-shaped and made of Rogers AD260A material,
with a thickness of 1.4 mm, a relative permittivity of
2.65, and a loss tangent of 0.0017. The first and fourth
metallic layers employ circular patches with a radius of
r1, while the second and third metallic layers use circular
patches with a radius of r,. The significant difference
in patch radii between the two groups results in distinct
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Fig. 1. Structure of the proposed metasurface. (a)
Schematic diagram of the overall metasurface structure.
(b) Cross-section view. (c) Circular patch layer structure
with radius ry. (d) Circular patch layer structure with
radius ;. (e) Single-layer radiating patch resonant cir-
cuit model structure.

frequency responses. For a circular patch with radius R,
the approximate value of the resonant frequency is given
by the following equation [23]

_ 1.841-c
o ZER,/Sreﬁc’

where f, is the resonant frequency of the metasurface
unit, ¢ is the speed of light, R is the radius of the circular
patch, and & is the effective dielectric constant.

Two varactor diodes are placed symmetrically on
both sides of the circular patch. Each diode has one
terminal connected to the circular patch and the other
terminal connected to a bias line etched on the bottom
layer of the substrate. The equivalent resonant circuit of
a single layer is illustrated in Fig. 1 (e). The incident
electromagnetic wave can be modeled as a parallel LC
resonant circuit comprising an inductance L, and a
capacitance Cr [24]. where, Cr represents the equiva-
lent capacitance between the metallic bias line and the
circular patch, while L, corresponds to the equivalent
inductance of the metallic patch. Consequently, the cir-
cular patch no longer behaves as a pure resonant cavity
but forms an LC-tunable resonator, with its resonant
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frequency determined by

1
= 2
fi” 27'[ LT N CT’ ( )
Cr= Cpatch + Cva 3

where Cpuc, denotes the capacitance between the metal-
lic patches, and C, represents the variable capacitance
of the varactor diode. The values of Ly and Cpyyep, are
determined by the geometry of the patches and the
corresponding current paths. Therefore, its equivalent
resonant structure is not only determined by the geomet-
ric dimensions, but also affected by the variable capaci-
tance C,. The configurations of the two types of circular
patches are shown in Figs. 1 (b) and (c¢). The components
marked in blue represent varactor diodes, specifically
the MAVR-000120-14110, with a capacitance range of
0.14 — 1.1 pF, which ensures adequate tunability to
meet the capacitance requirements of the metasurface.
The components marked in red are inductors with an
inductance value of 3.3 nH, used to isolate AC signals.
The geometric parameters are defined as follows: p =
10 mm, w = 0.2 mm, r; =4 mm, r, = 1.8 mm. The unit
cell is simulated using the finite element method (FEM),
with periodic boundary conditions applied to all four
sidewalls. The simulated transmission characteristics
of a single-layer metallic patch on a single dielectric
substrate are presented in Figs. 2 and 3. The simulation
results show that when the patch area of the unit cell
is larger, the transmission magnitude is easier to be
stabilized in a certain range. When the patch area of the
unit cell is smaller, the adjustment range of transmission
phase can be larger. At the same time, it is found that
for a transmission metasurface, it is difficult to achieve a
phase adjustment of 360° by using the structure of single
patch and substrate, but such a phase adjustment can
be easily achieved by simply adding a phase offset in
a multi-layer structure.

B. Transmission phase principle analysis

As shown in Fig. 1 (e), the impedance of the parallel
resonant circuit of a single-layer metal patch is Z; =
— 1 whichis put into the transmission model,
j(a,%p*w T
and the electromagnetic transmission matrix [24] can be
expressed as

A B| |l Z 1 0|1 Zp
C D| |0 1||1/Z, 1]|0 1
_ 1+ZO/Z.V 2Z0+Z(%/ZS

/2,  Zo/Zy+1 |’

where Zg = 377Q is the wave impedance in free space.
The transmission coefficient of a single-layer metal
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Fig. 2. Simulation of transmission characteristics for a
single-layer circular radiating patch with a radius of r;.
(a) Transmission magnitude. (b) Transmission phase.

patch can be expressed as

2
" A+B/Zy+CZy+D’

Sa1 &)

According to the above analysis, the transmission
amplitude and phase of the artificial electromagnetic
structure are related to the equivalent electrical parame-
ters. By changing the electromagnetic structure to affect
the corresponding electrical parameters, the amplitude
and phase of the incident electromagnetic wave can be
controlled. The overall matrix transmission parameters
can be described as [25].

ST{) _ S;l S%l Sgl
2 1 2 1 1 3 5%2'552'3%2 2
(1—S7,-8%) [1-587;- 50,5, +5% ©)
_ S%l 'S%I 'Sgl
1=81; St =S58, =1, -84, T

Y

where S', §2, $3, and S7° represent the first matrix,
second matrix, third matrix, and overall cascaded matrix,
respectively, and T = (53,)? — (53,)%. When the char-
acteristics of the selected substrate remain constant, the
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1.0

the other end of the varactor diode. Also, the inductors
are added for blocking alternating current to reduce the
influence of the feeding structure on the performance
of the metasurface [27]. When the direct current (DC)
power supply is used to feed the metasurface, the pos-
itive pole of the power supply is connected with the
circular patch while the negative pole is connected with
the strip patch. The width of all the bias lines is 0.2 mm.

Transmission Magnitude

0.0 i : i i ; III. SIMULATION AND MEASUREMENT
7.0 7.5 8.0 8.5 9.0 9.5 10.0 RESULTS
Frequency [GHz] In order to ensure that the transmission metasurface
(a) can achieve a phase shift of 360°, the varactor diode
values in the range of 0.14 — 0.7 pF are determined.
From the simulation results as shown in Fig. 4, the
phase and magnitude of the transmission metasurface at
different capacitance values can be intuitively obtained
respectively. The simulation results show that within the
range of 1.01 GHz from 8.05 GHz to 9.06 GHz, the
257 ‘ ——014pF transmission phase can be adjusted 360° by adjusting
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Fig. 3. Simulation of transmission characteristics for a
single-layer circular radiating patch with a radius of r;. Z-3004
(a) Transmission magnitude. (b) Transmission phase.
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each conductive layer unit. Therefore, using multilayer E
conductive patches can enhance the transmission phase 3R
of the metasurface unit. E
071
C. Metasurface design g
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As shown in Fig. 1 (a), the overall structure P e 0,70 pF =020 pF
. . e (), 14 pF e ). 30
of the proposed metasurface consists of 8 x 7 unit 0.5 ! ’
cells. The dimension of the whole structure is 6.6 7 75 8 85 9 926

100.0 mm x 90.0 mm. Since each unit cell of the Frequency(GHz)
metasurface has no need to be fed independently, exper- )
imental measurements are facilitated. In order to avoid
the tedious design of additional feeding structure, the  Fig. 4. Simulated results of the proposed transmission
strip patch of every unit cell can directly function as metasurface consisting of the unit cell with different
the feeding structure to feed one end of the varactor  capacitance values. (a) Transmission phase. (b) Trans-
diode [26] while the circular patch can be used to feed mission magnitude.



997

the transmission magnitude can be stabilized above 0.8,
indicating the transmission loss remains within —2 dB
across the operating frequency band. This means that
the transmission phase can be continuously and dynam-
ically adjusted by 360° at each frequency point in the
frequency band, while the transmission amplitude is also
well controlled. It is noted that, due to the resonance
in the metasurface with the capacitance of 0.2 pF, the
transmission magnitude is decreased significantly near
7.32 GHz, resulting in the maximum bandwidth limita-
tion of the proposed metasurface.

An 8 x 7 metasurface as shown in Fig. 5 was
fabricated by using a printed circuit board to verify the
performance of the metasurface proposed in this paper.
The metasurface was measured in a microwave anechoic
chamber as shown in Fig. 6, and the different layers
of the metasurface are fixed with plastic screws. The
wires connect the metasurface and the DC power supply
ZF-303D to feed the two ends of the varactor diode. A
PNA network analyzer of KEYSIGHT N5227A and two
horn antennas were selected to measure the fabricated
metasurface. The end face dimensions of the two horn
antennas (7.05 — 10.0 GHz) are 57.0 mm x 42.0 mm,

Fig. 6. Measurement setup.

ACES JOURNAL, Vol. 40, No. 10, October 2025

which is smaller than that of the metasurface. To accu-
rately characterize the transmission amplitude and phase
response of the metasurface under various bias condi-
tions, a near-field measurement setup was employed,
with a fixed test distance of 47 mm between the horn
antennas and the metasurface.

The transmission magnitude and phase of the meta-
surface controlled by different uniform bias voltages
at 8.05 GHz, 8.5 GHz and 9.06 GHz are shown in
Figs. 7-9, respectively. By adjusting the voltage at
both ends of varactor diode from 1.0 V to 10.0 V,
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Fig. 7. Measurement results of transmission phase and
transmission magnitude at different bias voltages at
8.05 GHz.
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the fabricated metasurface realizes full phase adjust-
ment of transmission phase. However, at 8.05 GHz
and 9.06 GHz, the transmission amplitude is measured
below 0.8 at some bias voltages. One reason for the
differences between the measurement results and the
simulation results is that the size of the varactor diode
is very small and there is a size error in production, that
is, the length and width of all varactors are not exactly
the same. Another reason is the limited measurement
conditions. In addition, the phase shows a good linearity
with the biased voltage.

Table 1: Comparison between proposed design and
others

Source Transmission | Tunability | Bandwidth
Phase

[18] 360° Yes 3.7%

[20] 245° Yes 7%

[21] 360° Yes 6%

[28] 2bit Yes 5.89%

[29] 360° Yes 4.1%
This Work 360° Yes 12%

For a comparison, Table 1 lists the transmission
phase tunability, and relative bandwidth of other designs
and this work. It should be noted that the operating
bandwidth is determined on the basis that 360° trans-
mission phase control can be achieved at all frequencies
and the transmission amplitude is above 0.8. Refer-
ence [18] uses a single-layer dielectric substrate design.
While it uses a varactor diode to achieve 360° phase
tuning, its operating bandwidth is only 3.7%. Compared
with [20, 21], and [29], all of which use a three-layer
dielectric substrate and add a varactor diode, this design
has a wider operating bandwidth while achieving a
dynamic phase tuning of 360°. Reference [28] uses a
double-layer substrate design, but it only achieves a 2-
bit tuning phase. This shows that this design is superior
to other designs in terms of relative bandwidth and, more
importantly, the transmission phase can be dynamically
and continuously controlled.

IV. CONCLUSION

A broadband transmission metasurface with a
dynamic phase adjustment is proposed. Through the
analysis of the equivalent circuit of the transmission
model, a new optimization method to stabilize the
transmission amplitude of the metasurface is adopted.
Simulation results show that the proposed transmission
metasurface can achieve an adjustment of 360° for the
transmission phase in the working frequency band of
about 1.01 GHz, while maintaining the transmission
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magnitude above 0.8. In order to verify the performance
of the proposed metasurface, a sample including 8 x 7
unit cells is fabricated, and the measurement results are
consistent with the simulation results. This work will
benefit significantly the development of wave manip-
ulation technology used for beamforming in high-gain
phased antennas.
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