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Abstract — While electromagnetics (EMs) may be
perceived to be a mathematically intensive subject, the
following discussion demonstrates that many important
education-related aspects of EM radiation can be “dis-
covered” through computational modeling. The goal
here is to demonstrate an intuitive learning environment
that reveals important features of EM physics to incen-
tivise a desire to learn about the underlying mathematics
on which the computer model is based. The idea is
that seeing the fascinating details that the equations
produce prior to confronting the possibly intimidating
background mathematics can be a more productive and
enjoyable exercise.

Index Terms — Charge acceleration, computer model-
ing, electromagnetic radiation, Lienard-Wichert fields,
Poynting vector, reflection radiation, source radiation,
time-domain electromagnetics.

I. INTRODUCTION

Electromagnetic radiation is a phenomenon pro-
duced by charge acceleration. This basic physical fact
provides the explanation for how antennas radiate and
receive electromagnetic (EM) energy (time domain) or
power (frequency domain) and for how other electro-
magnetic interactions occur. The mathematical equa-
tions that provide an analytical description for the radi-
ation, propagation and scattering of EM fields were
formalized by James Clerk Maxwell in 1846 and are
now called Maxwell’s Equations (MEs). His unification
of these equations originated from the experimental and
analytical work of numerous scientists (in alphabetical
order) such as Ampere, Columb, Farady, Gauss, Heavi-
side, Henry, Hertz, Kirchhoff, Lorentz, Oersted, Poisson,
Poynting, Volta, Weber and others. Some of these names
are attached to various quantities in electromagnetics
and electrical engineering as recognition of their con-
tributions. Most of this initial development involved
various measurements in the late 18" and 19 centuries
whose results led to mathematical formulas or models to
quantitatively describe them.
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The motivation for this discussion is not to present
a conventional introduction to the mathematics of MEs.
Instead, it is intended to illustrate, via various physics’
phenomena, that mathematics alone need not be the
sole focus of EM. Instead, computational modeling has
become a complementary and indispensable tool in the
discipline. The goal is to show prospective students
the fascinating reality of EM radiation made possible
by computational electromagnetics, literally computer
experimentation, to encourage student interest in its
study. The fundamental equation (1) below demonstrates
analytically the statement above about charge acceler-
ation. This expression, derived from MEs exhibits the
charge-acceleration dependence of EM radiation in what
is known as the Lienard-Wichert fields [1, 2]:

and

1
H=-RxE, )
R

for a point charge ¢ in free space at the origin having
velocity v and acceleration a = dv/dt where R is the
vector coordinate of the E and H field locations in a
spherical coordinate system. Note that when v < ¢ the
acceleration term in equation (1) simplifies to

E:r><r><aq/Rc27 3)

where r is a unit vector in the R direction.

A careful examination of Eq. (1) leads to the con-
clusion that only the acceleration term falls off as 1/R
to thus account for EM radiation, as may be clearer in
Eq. (3). This is because the EM power-flow density as
expressed by Poynting’s vector S is given by

S=ExHinw/m?, 4)
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and falls as 1/R? due to the acceleration terms of E
and H. This means that over an enclosing spherical
surface the total power radiated by the acceleration of
g becomes a constant independent of R in what is called
the radiation field.

Equation (1) may appear to be somewhat intimidat-
ing but is not used to obtain the results to be presented.
Rather, it is included to emphasize the point that charge
acceleration is the root cause of EM radiation. How-
ever, equation (1) is not routinely involved in solving
most engineering EM problems whose solutions are
developed from the Maxwell differential equations or
their integral counterparts. It should be appreciated that
charge acceleration does not explicitly appear in these
equations. Indeed, charge acceleration is not needed to
solve typical antenna, propagation or scattering prob-
lems. While this may appear to be a fortunate simpli-
fication, it can obscure important aspects of radiation
physics and the insight that knowledge could reveal
about where charge acceleration occurs on an antenna
or scatterer and radiation actually originates.

Any valid EM computational or numerical model
must include the effect of charge acceleration if it is
to correctly account for radiation. Thus it is reasonable
to expect that where charge acceleration occurs in any
such numerical model should be identifiable. While this
should be true however a given problem is modeled,
a time-domain approach seems more attractive since
acceleration is a time-domain phenomenon. Observe
that there are two principle types of time-domain EM
models based on either differential or integral equations.
A differential-equation-based computer model samples
the fields on a mesh having the dimensionality of
the problem being solved. Thus for a general three-
dimensional object the sampling is done on a 3D mesh,
with a popular approach known as finite-difference time
domain (FDTD) [3].

Here, however, the focus is instead on a time-
domain integral equation model specialized for wires,
the Thin-Wire Time Domain (TWTD) [4] code. This is
an especially relevant model for the charge-acceleration
cause of EM radiation. The time domain results derived
from TWTD will be demonstrated to provide insight
into EM radiation physics that is less obvious in the
frequency domain. A time-domain model also has the
advantage of yielding broadband frequency results in a
single computation.

Instead of sampling fields on a mesh, an integral-
equation approach is instead based on integrating over
an object whose current and charge produce electric and
magnetic fields. In the results to be presented below,
this is done by deriving from ME an expression for the
electric field due to the charge and current on a thin
wire. This is a “standard” boundary-value problem in
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electromagnetics where the wire object of interest is
usually, but not necessarily, a perfect electric conductor
(PEC). Equation (1) applies to a point charge in free
space but also accounts for the role of equivalent charge
on a PEC.! The goal is to find the current and charge
flow, or induced sources, on a wire of some specified
geometry when excited by some specified electric field.
Note that both time-domain models also have frequency-
domain counterparts. For a wire the perpendicular or
normal electric field (E-field) terminates on equivalent
charge and the circular or tangential magnetic field
terminates on equivalent current.

The thin-wire approximation, an exceptionally
well-validated approach used in TWTD and other wire
computational models as shown in Fig. 1, assumes:
(a) that the current on the wire surface can be modeled
as a filament flowing on the wire axis; and (b) that the
boundary condition of the electric field can be applied
a distance of the wire radius a away from the current
filament. The electric field of the filamentary current in
TWTD is given by [5]:

_ Ko S9N R
E(r.r) = 47r/c(r) [Rat’l(s’t)+cR2as’I(s’t)

762%97 (s',t’)}ds’, ®))
where I (s'.t") and g (s'.t") are the current and charge den-
sity respectively, and where C(r) is the spatial geometry
of the wire with s is a unit tangent vector at the wire
surface.

Also, s =s(r),s' =s(r'),ds’ =ds(r'),R=|R| =
|r —r’| and the unprimed coordinates r and ¢ denote the
observation point location and the primed coordinates
r’ and ¢’ =t — R/c the source location which accounts
for the propagation time delay between the source and
observation points. The differential operators in (5) are
with respect to the observation coordinates. If we let s =
s(r) and s’ = s(r’) be the unit tangent vectors to C(r) at
r and r’ then for a PEC wire the boundary condition is

s-(E-E*) =0, (6)

with EA the applied field that causes the current and
charge. When equation 6 is combined with equation 5,

! Assuming an object to be a PEC is a common boundary condition
used in EM computer modeling and is acceptably accurate for most
materials used for antennas and radar targets. This means that EM
fields originate or terminate at the surface of an object on what
are called equivalent sources. In particular, the normal electric field
creates an excess of charge at its termination point depending on
whether the E-field originates, causing positive charge or terminates,
to cause negative charge at that point on the wire’s surface. The
equivalent, essentially massless, charge density this creates follows the
propagating EM field moving at light speed in the external medium.
The validity of this model is confirmed by experimental measurements.
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Fig. 1. Geometry for thin-wire electric-field integral
equation (from [7]).

the following integral equation results:

Errg) = Mo $29
s-E (r’[)7475/c(r) {s SR&t’l(s’[)

s-R 0 s-R
+Cﬁﬂl (s',t') —czﬁq(sﬂt/) ds’,
(7

where r € C(r) +a(r) and a(r) is the wire radius at point
r and he charge is given by

’d
q(st') = — /_ () )

Equation (7) provides the analytical basis for
TWTD and is called an integral equation because the
unknown quantities requiring solution are under the
integral sign. The procedure used to develop a solution is
called the moment method [6, 7]. Most of the numerical
examples in the next section are obtained from TWTD,
but for illustrative comparison some frequencydomain
results obtained from the NEC (Numerical Electromag-
netics Code) [8] are also included.

To conclude this introductory discussion it’s rele-
vant to point out that there is a graphical approach to
demonstrate the effects of charge acceleration known as
the “E-Field Kink Method [8, 9] described next. This
method is useful for developing a dynamic visualization
of the radiation from a point charge as shown next in
Section II but is unlikely to be feasible for the current
and charge sources on an extended object.

II. THE E-FIELD KINK MODEL OF
RADIATION
Graphical displays of EM radiation fields can be
developed without actually solving the MEs using
what is known as the “E-field Kink Model of Radia-
tion” [9, 10]. This is made possible by two properties
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of EM fields, (a) that a charge produces continuous
electric-field lines of force and (b) that the speed of light
has a finite value.

Consider a point charge located at the origin of a
spherical coordinate system in an infinite, homogenous
medium. The charge emanates or terminates a radially
directed electric field whose lines of force are uniformly
distributed in angle with a density proportional to the
charge magnitude as in Fig. 2 (a). By convention these
field lines originate on positive charge and terminate on
negative charge or extend to infinity.

If the charge is instantaneously accelerated to veloc-
ity v and coasts for time t; its E -field lines will be as
shown in Fig. 2 where a “kink” has developed in its field
lines which has propagated a radial distance ct; from the
origin where c is the speed of light. Abruptly stopping
the charge at time t; causes another E-field kink to be
produced that at time t; later has now propagated a radial
distance ctp from the origin as illustrated in Fig. 2.

—b‘ 'Q—vtz

NV

vty

Fig. 2. A snapshot of the E-field of a point charge
that has been instantaneously accelerated to a speed v,
abruptly stopped at time t; and at an additional time
interval t, later (Fig. 1 from [15]).

Observe that following any of the field lines out-
ward the two kinks are of opposite sign. This is a
consequence of the acceleration term in equation (8)
since the starting and stopping accelerations are of
opposite sign. Note also in Fig. 2 that the length of the
field kink gets longer in proportion to distance from the
charge, associated with the 1/R fall off of the radiated E
field and that there is no field kink, or radiation, in the
direction of charge motion. Not shown in these plots is
the accompanying H-field component with their vector
cross product accounting for the Poynting vector power
flow in equation (9).

A computer program, Radiation 2, was developed
at Stanford University by Professor Blas Cabrerra and
his students [11, 12] that develops a time sequence of



plots to create a movie of the E-field lines for several
kinds of chargeacceleration motion such as oscillatory,
circular, etc. Two stills from this program are presented
in Fig. 3. Included in the program are a choice of the
geometrical motion and a selection of the peak charge
speed and acceleration.

Oscillatory Motion

7 7

Circular Motion

\\
N 2

Fig. 3. Single frames taken from an E-field kink com-
puter program [12] for a point charge undergoing oscil-
latory linear motion (a) and moving at constant speed
around a circle (b) (from [15]).

\

(2) (b)

1. TIME-DOMAIN RESULTS USING
TWTD

Electromagnetic radiation is obviously a time-
domain phenomenon as it results from the accelera-
tion of charge. Consequently it is most appropriate
to examine the details of EM radiation from a time-
domain perspective as is done below for a variety of
problems. The well-validated computer model based on
a time-domain electric-field integral equation for perfect
electric conducting (PEC) wires called TWTD (thin wire
time domain [5] was used to obtain the results that
follow. Basically, these results can be characterized, as
computer experiments that emulate what might be done
using laboratory measurements were the appropriate
equipment to be available. Further examples of the
results that follow can be found in [9]. For time-domain
modeling of antennas or scatterers, a Gaussian-shaped
impulsive excitation is normally used. This produces
time and space-limited current and charge pulses on the
object whose impulsive far-fields can be associated with
locations where they originate from the object being
modeled. A Gaussian time-dependent excitation pulse
used in TWTD is given by

V= V()€7a(t7[+trax)]2, (9)

where a is a width parameter and fp,x determines
the time at which the pulse maximum V, occurs. The
simplest timedomain wire geometry is a straight wire,
known as a dipole antenna when excited by a local
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voltage source. A dipole of length of 5.99 m is modeled
with 599 segments of length Ax = 0.01 m. A wire
radius of 1073 m and time step of Ar = Ax/c are used
throughout unless otherwise stated. The current I and
charge-density Q times light speed ¢ are shown at several
time steps in Fig. 4 for excitation of the dipole antenna
at segment 300 by a 1 —V peak Gaussian pulse, an
excitation used for all time-domain results presented in
the following.

2e-3

CURRENT[_ Time Ste-p 101 151 201 251 309
2o N A
§§ ANANANAINA FLER £ R A
& 5 0e+0
5
MiisES

CHARGE DENSITY Q x ¢

200 300 400
SEGMENT NUMBER
Fig. 4. Charge density Q times light-speed ¢ and the
current / for a 599-segment wire excited at its center by

a Gaussian voltage pulse at several time steps (Fig. 3.2
from [10]).

Several interesting observations can be made of the
results of Fig. 4.

(a) The positive I and Qc_pulses_are numerically equal
on the right-hand side of the dipole (i.e. Qc = I)
but are of opposite signs on the left-half side. This
is because a positive charge moving to the right
produces a positive current, as also does a negative
charge moving in the opposite direction to the left.
Their numerical equality implies that the current and
charge carry the same amount of energy, an effect that
is discussed further in connection with Fig. 9.

(b) The amplitudes of the I and Qc pulses decay as
they propagate outwards towards the ends of the wire
dipole.

(c) The uniformly spaced pulses are apparently moving
at a constant speed.

The latter observation is confirmed in Fig. 5 where
a best-fit straight line is shown on a time-distance plot
for the 599 segment dipole based on the peaks of
the rightward-propagating pulses some of which are
included in Fig. 6. There is no apparent discontinuity
effect upon to end reflection. The average speed of these
pulses as determined from the best-fit line is 2.9868 x
108 m/sec, within 1/3% of the 3 x 108m/sec input in
TWTD. Time on this plot is measured from the pulse at
367 time steps on Fig. 4.

The electric far fields normal to dipole antennas
of variable lengths as a function of time is plotted in
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Z(m) = 2.997 x 10A8 m/sec
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Fig. 5. A time-distance plot for the data of Fig. 4 using
additional time steps and a best-fit straight line.

Fig. 6 up to the time just beyond the time of the first end
reflection of the outward propagating pulses. This plot
reveals three different types of radiation. The first is due
to the initial charge acceleration caused by the center-
located voltage pulse. The second radiation pulses are
due to the I/Qc pulses reaching the wire ends and where
they reflect and reverse direction. The source-caused
radiation pulse is about half that of the L = 99 segment
wire, due to the fact that the source imparts a speed of
¢ to the outward-propagating pulses while end reflection
involves a speed change of 2¢. The end-reflected peaks
decrease with increasing dipole lengths due to an inter-
mediate, or traveling-wave reflection effect that causes
the decreasing magnitude of the reflected pulses.
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Fig. 6. The magnitude of the relative broadside radiated
electric fields in for various dipole lengths in 0.01 m long
segments (Fig. 3.4 from [10]).

This reflection is continuous as the I/Q. pulses
propagate down the dipole arms due to the wave
impedance of a constant-radius wire varying with dis-
tance from the feedpoint as shown by the admittance
in Eq. (10) [13]. This would not occur if the arms of
the dipole were cones instead, resulting in a length-
independent wave impedance as shown in Eq. (11) [14].
The wave-impedance reflection is also responsible for
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the decreasing end radiation exhibited in Fig. 6.

4 2 ] !
YW(Z)Nn[ln (Mir)+’2] )

. I(r) = (& !
TVE T [CO (4”

A plot of this propagation-caused radiated electric
field is presented in Fig. 7 normalized to the amount
of charge reflected per time step. The latter is obtained
by integrating the amount of charge in the outgoing
pulse at each time step to compute how much has
been reflected. This plot is somewhat jagged since it
involves the subtraction of two nearly equal numbers.
Nevertheless, the match between the electric field and
the reflected charge is on average within a few percent.

It’s interesting to compute the numerical ratio
between Qc and the corresponding radiated electric field
for these 3 radiation mechanisms, defined here as an
“Acceleration Factor” (AF). This is demonstrated in
Fig. 8 where the charge time variation multiplied by
its AF is plotted with its associated radiated E-field.
Although the AF values must be considered approxi-
mate as their computation is somewhat imprecise, the
endreflected AFg is estimated at 1.95 times that for the
source AFs, or about 2.5% different from the value
of 2 that might be expected. On the other hand the
propagation AFp is only 1.21 times that for the source.
This might be inferred to be so much less than 2 because
the reflection mechanism is “smoother” than reflecting
from an open wire end.

(1)

2.0e-3

w0
e
&

HARGE REFLECTED PER TIME STEP
BROADSIDE RADIATED ELECTRIC FIELD

1.0e-3

5.0e-4

CHARGE FRACTION REFLECTED
PER TIME STEP & FAR E-FIELD

0.0e+0
50 100 150 200 250 300

TIME STEP
Fig. 7. The time variation of the traveling-wave radiated
electric field and the reflected charge steps (Fig. 13
from [16]).

The acceleration factors presented in Fig. 8 and
using the equivalent approach for some other radiation
mechanisms are summarized for reference in Table 1.
While computing their values may be somewhat uncer-
tain in an absolute sense, their ratios may be useful
for comparing their relative influences in producing a
radiated field.
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Fig. 8. A combined plot of the propagation, source
and end-reflected broadside E-field magnitudes and the
respective time varying accelerated charges that produce
them (Fig. 12 (b) from [10]).

Table 1: AF values for various radiation types

Radiation Type Acceleration Factor
Source: AFg 27.4
Variable Wire Radius: AFyg | 29.2
Right-Angle Bend: AFp 47.0

Propagation: AFp 33.1
Resistance Load: AFg;, 59.4
End Reflection: AFg 53.5

A different way of demonstrating radiation effects
for the 599-segment dipole is illustrated in Fig. 9. The
current energy W;(r) and charge energy Wy, () measures
integrated over the dipole as a function of time are
obtained from

Wit = [ Pl (12)

LA —L4A
Wo(r) = l [ @@y [ G

—7+A

1 L
+3 7 QP(xr)dx| . (13)
LA

The Qc energy computation in Eq. (13) treats the end
segments of the dipole differently to account for the end
current going to 0 on those segments.

The current, charge and total energy measures plot-
ted as a function of time in Fig. 9. The initial energy
buildup is dominated by the charge but after about 50
time steps the current and charge energies become equal,
decaying smoothly together until the first end reflection.
These effects are due to the source and propagation
radiations. At each end reflection the current energy falls
to 0 when all of the energy is due to the charge with a
sharp decrease in the total energy. The opposite effect
occurs when the end-reflected pulses meet at the center
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feedpoint with an almost imperceptible loss of the total
energy.

3.0e-4
TOTAL ENERGY
wy 2.5e-4
= 2.0e-4 CHARGE
ﬁ NERGY  [FIRST END| RELECTION

g 1.5e-4 — 7 1, Q¢ PULSES AT CENTER

Fol

g 1.0e4] / SECOND END REFLECTION
= ~—

5.0e-51"F CURREN
ENERGY

200 400 600 800 1000 1200
TIME STEP

Fig. 9. The current, charge and total energy measures

as a function of time for an impulsively excited straight

wire as a dipole antenna (Fig. 4.6 from [10]).

Differentiating the total energy of Fig. 9 with
respect to time is useful to show the rate of the total
energy loss as displayed in Fig. 10. These rate curves
are rather noisy in appearance as this again involves
the difference of nearly equal numbers, an effect that
increases as the loss rate decreases by more than 2 orders
of magnitude. It’s interesting to see that the loss rate
is quite similar in each sequence. There is, however,
between the first and second end reflections a slight
“bump” of about 2 during the time interval when the
charge pulses overlap as they pass through the center
feedpoint.

=10 —=
L] —DUETO
s - URU
&
=}
.2.‘10‘z 3
= XF
=]
Ew"
> =
I~
2
c
=10
0 200 400 600 800 1000 1200

TIME STEP

Fig. 10. The differentiated total energy plot of Fig. 6
illustrating the doubling of the radiation-loss rate as the
counter-propagating charge pulses meet at the center of
the dipole (Fig. 4.8 from [10]).

This phenomenon occurs because the propaga-
tion of the counter-propagating-pulse radiation becomes
coherent or additive over the far-field sphere. This effect
is similar to what happens when 2 one-watt, frequency-
domain point sources are brought together, the result of
which is shown in Fig. 11. Their total radiated power
increases in an oscillatory fashion as they are moved
closer together until it doubles at zero separation.
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Fig. 11. The power radiated by 2 unit-amplitude point
sources as a function of their separation in wavelengths
(Fig. 1 (b) from [17]).

The current, charge and total energy measures as
a function of time for a 1.99 m straight wire excited
by a normally incident impulsive plane wave is shown
in Fig. 12. There is a periodic interchange between the
charge and current energies as they each pass through
successive oscillations of zero energy. The current (red)
and charge (blue) distributions at 9 time samples to
demonstrate this effect are exhibited in Fig. 13.

Se-5
TOTM.MGY

é 4e-5 1
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= - | T CHARGE ENERGY
S 2e- = e T e |
o
4
% le-5 T
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0e+0 + W ¢ i

100 300 400 500

200
TIME STEP

Fig. 12. The current, charge and total energy measures
as a function of time for an wire impulsively excited
by a normally incident plane wave dipole (Fig. 4.18
from [10]).

The frequency-domain normalized Poynting vec-
tor along a 10-wavelength dipole obtained from
Re[(IQ*c) /2] is plotted in Fig. 14. It is somewhat
analogous to the energy-measure time-domain result of
Fig. 9 over the time of the exciting source turn on to the
first end reflection. Differentiating this result yields the
rate of radiated power-loss as a function of position in
Fig. 15 for comparison with the energy-loss rate in the
time domain of Fig. 10 [15]. Whereas the time-domain
energy loss is monotonic except for the charge-pulse
overlap, that for the frequency domain is lobed because
the latter supports a standing-wave current.
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Fig. 13. The current (red) and charge (blue) distributions
at 9 time samples for an impulsive plane wave at normal
incidence scattering from a straight wire reading left to
right from the top dipole (Fig. 4.16 from [10]).

VECTOR

NORMALIZED POYNTING

5.0 2.5 0.0 2.5 5.0
POSITION ALONG DIPOLE (wls)
Fig. 14. The on-surface Poynting vector obtained from
NEC for a center-fed, 10-wavelength dipole with power
flow to the left negative and to the right positive (Fig. 5
from [18]).

A circular wire loop should be expected to exhibit
a higher energy loss versus distance than a straight
wire because the charge acceleration is greater than
the dipole due to the loop’s curvature. This effect is
illustrated in Fig. 16 where Qc pulses are shown in the
time domain at 100 time-step intervals on a dipole and
loop 1,200 segments long. The loop peak is at time
step 600 is incomplete because it is partially obscured
by the counter-propagating pulse meeting it at the side
opposite the feedpoint. The dipole is excited at segment
49 to avoid the first end reflection. Note that the loop
pulses are moving slightly faster than those on the dipole
because their associated electric fields straight-line path
is shortened by the loop curvature.

In a fashion similar to Fig. 9 for the dipole, the cur-
rent, charge and total energies for the circular loop are
presented in Fig. 17. There are two especially interesting
features to be seen here as the current and total ener-
gies asymptotically approach constant values while the
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Fig. 16. Comparison of the Qc pulses on 1,200 segment
dipoles and circular loops at 100-segment time steps
(Fig. 3.5 (a) from [10]).

10°
10"
102
107
10

TOTAL ENERGY |

3.349¢-14 Joules

o CURRENT ENERGY ik
M |

10°¢ t v
107
10
10" - . CHARGEENERGY|
10 10

NORMALIZED ENERGY MEASURE

0 200 800 1000

400 600
TIME STEP
Fig. 17. The current, charge, and total energies as a
function of time step for a loop of 5 m ( 100 segment)
circumference and wire radius of 0.02 m as a function
the time step (Fig. 5.2 from [10]).

charge energy decreases towards zero in an oscillatory
fashion. The oscillatory decay it exhibits occurs because
each time the opposite-signed, oppositely propagating
charge pulses meet moving around the loop, they cancel
to produce alternating minima because their accelera-
tions are radially inward and thus cancel. The charge
energy eventually becomes zero as the loop radiates
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the time-dependent energy deposited by the impulsive
excitation.

This results in a uniform, non-radiating, late-time
current I, and charge neutrality around the loop. Interest-
ingly, this current can be used to compute the inductance
of the loop [16]. Actually, this is possible for literally
any closed loop that can be modeled using TWTD or
a similar computer model. Note the contrast with the
late-time current and charge on an open object such as
a dipole where both decay to zero as charge neutrality is
restored.

IV. CONCLUSION

The results presented here demonstrate how EM
radiation is caused by various kinds of impulsive charge
acceleration for simple wire geometries using a time-
domain computer model derived from the Maxwell
Equations. The excitation, either a local voltage for an
antenna or a distributed electric field for a scatterer,
causes the initial acceleration. This excitation essen-
tially begins the process and results in an effective
speed increase of ¢ for the charge induced by the
applied electric fields. Other various reflection mech-
anisms subsequently exhibit somewhat different accel-
eration effects and produce speed changes of 2¢, due
to reversing the direction of the charge motion. These
include propagation radiation because of the location-
dependent wave impedance of a uniform-radius wire.
Other reflection radiation is caused by open wire ends,
changes in wire radius, sharp bends, smooth curves and
impedance loads. These reflection accelerations are due
to the electric fields that are terminated by charge on the
wire and whose speed must match that of the fields in
the medium

APPENDIX

The following information is provided for readers
who might like to perform similar computer “exper-
iments” using NEC or TWTD. The latest version of
NEC, 4.2, continues to be distributed by Lawrence
Livermore National Laboratory. Information concerning
its availability and cost can be obtained at “https://soft
warelicensing.lInl.gov/product/nec-v42”.

The TWTD code in a pdf Fortran file is available
from the author via email at no cost, along with a user’s
manual. Contact me at e.miller@ieee.org for any ques-
tions that you might have. Note that both codes include
a feature called FARS (Far-field Analysis of Radiation
Sources) [10] for determining the spatial distribution
of radiated power from a PEC object. FARS was not
included above because it wasn’t necessary to for this
introductory presentation.
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