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Abstract — In this paper, we proposed a multiple graph-
ics processing units (GPU) platform accelerated dis-
continuous Galerkin time-domain (DGTD) method for
solving electrically large-scale problems. Rather than
simply porting the code to a GPU, we proposed a cache
optimization strategy tailored to the GPU architecture.
Furthermore, by grouping and reordering the elements
and employing asynchronous techniques, we achieve a
linear speedup ratio when scaling across multiple GPUs.
The numerical examples not only validate accuracy of
the proposed method, but also demonstrate excellent
performance, achieving up to 40 times speedup even
compared to parallelism CPU implementations.

Index Terms — Discontinuous Galerkin time-domain
(DGTD) method, multiple graphics processing units
(multi-GPU).

I. INTRODUCTION

Electrically large-scale problems have always been
a challenge in computational electromagnetics (CEM).
Their considerable computational complexity demands a
combination of high-performance hardware and efficient
algorithms. Among various electromagnetic numeri-
cal methods, the discontinuous Galerkin time-domain
(DGTD) method [1-4] has attracted growing attention
from researchers. As an efficient algorithm, DGTD
offers greater flexibility than traditional approaches
when dealing with complex problems, as it supports
non-conformal, unstructured, and mixed-type meshes
while maintaining reliable accuracy [5-7]. The numer-
ical flux introduced by the finite-volume time-domain
(FVTD) method [8] allows the boundaries between adja-
cent elements to be non-conformal. Moreover, models
can be decomposed into several subdomains with dif-
ferent time iteration step increments [9, 10], facilitating
the solution of multiscale problems. DGTD also exhibits
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strong potential for parallel computing [11-13]. During
the time iteration process, computations within each
element are entirely independent, making DGTD highly
suitable for high-performance computing (HPC).

However, traditional CPU-based parallelization is
still unable to handle such large computational loads.
Consequently, GPU-based acceleration has attracted sig-
nificant attention in DGTD research. In [14], DGTD was
deployed on the GPU, achieving approximately 50 times
speedup over serial computation. The authors of [15]
implemented a hybrid MPI/GPU DGTD algorithm with
local time stepping (LTS). In [16], the GPU-accelerated
DGTD method was used to solve the scattering prob-
lem of electrically large targets. In [17], GPU-DGTD
is used to solve hybrid meshes. The authors of [18]
implemented GPU acceleration of a low-storage Runge-
Kutta (LSRK) time iteration method. The authors of [19]
used GPU-accelerated DGTD to simulate EM systems
with field-circuit interactions. A common limitation in
the above studies is that they do not fully leverage
systems equipped with two or more GPU, and the use
of multiple GPUs has been widely applied in other
numerical methods. The authors of [20] assembled the
finite-element method (FEM) matrices on both single
GPU and multiple GPUs. The authors of [21, 22] discuss
strategies for load balancing and for reducing cross-GPU
communication. The authors of [23] solved FEM using
a distributed message passing interface (MPI) approach.
Unlike these algorithms, the DGTD has lower memory
requirements when solving electrically large-scale prob-
lems, but its challenge lies in the massive amount of
computation. Therefore, using multiple clusters actually
increases unnecessary communication overhead. DGTD
is better suited to a shared-memory programming model,
using OpenMP to control multiple GPU devices, and
also offers the practical advantage of minimal intrusion
into the existing codebase. For example, a multi-GPU
leap-frog scheme was proposed in [24].
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This paper proposes a multi-GPU DGTD method.
Combined with an asynchronous multi-GPU strategy
to hide data transmission time and cache optimization
strategy to minimize data access latency, our method
delivers superior performance, enabling the solution
of electrically large-scale problems that are intractable
with traditional CPU-based approaches due to excessive
computational demands.

II. FORMULATIONS AND GPU
ACCELERATED IMPLEMENTATION
A. DGTD method

In the source-free region 2, consider Maxwell’s
equations in the time domain:

JH
HWZ—VXE (D
E
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where € is the permittivity, ( is the permeability, ¢ is
the conductivity, E is the electric field intensity, and H
is the magnetic field intensity. To solve equations (1)
and (2), the computational domain Q is divided into K
non-overlapping tetrahedral elements as Q ~ Ule Q.

Here we express (1) and (2) as the conservation
formulation [25]:
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where ey, e,, and e; are the unitary vectors along the axis
in the cartesian coordinate system.

In each tetrahedral element Q;, we assume that
the approximation solution of (3) is g (r,#) and can be
expressed as:

Np
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where /;(r) is the Lagrange polynomial basis function,
N, is the number of degrees of freedoms (DOFs) and its
relationship with the number of Lagrange order 7 is:

(n+1)(n+2)(n+3)
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Since @*(r,¢) and ¢*(r,?) are not identical, we use
Galerkin’s method to force the projection between the
test function and residual to be zero. We have the semi-
discrete system of Maxwell’s equations:

E
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where M* and S* are the local mass matrix and stiffness
matrix, respectively, and n denotes the unit normal vec-
tor points from the element Q; to the neighbor element.

In the DGTD method, the fields inside each ele-
ment must remain continuous, while discontinuous are
allowed across the boundaries of adjacent elements.
These adjacent elements are connected through the
numerical fluxes, so the solving process inside each
element is independent and parallelizable. There are a
variety of types of numerical fluxes to choose from, and
here we list only the formulation of the central numerical
flux:

1

an*:Enx(EﬂLE*), (11)
1

an*:Enx(H++H—), (12)

where E™ or H™ denote the field inside the element Q;
on the boundary, and E™ or H™ denotes the field in the
neighbor element on the boundary.

The equations above can be solved by various meth-
ods. Considering that the memory resources of the GPU
are limited, we employ the LSRK [18] method to solve
the DGTD equations:

PO = qn(t)
Ki = aK; 1 +Atf(Pi_1,t +c;At)
P, =P, +bK; ’
q,(t +Ar) =Ps (13)

where subscript i is taken to be 1, 2, 3, 4, and 5, which
means the number of stages, coefficients a;, b;, and c;
define the properties of the LSRK, and At is the time
step of DGTD.

B. Multi-GPU accelerated DGTD implementation
Among the various GPU programming frame-
works, compute unified device architecture (CUDA) was
selected as the primary platform for our multi-GPU
DGTD implementation, owing to its mature architecture,
comprehensive toolchain, and widespread community
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support. To fully leverage the floating-point computing
power brought by GPUs, DGTD must be parallelized as
fine-grained as possible. According to the previous sec-
tion, during each iterative step, the electric and magnetic
field at each Lagrange-Gauss-Lobatto (LGL) point can
be computed independently. These field components,
such as E, and E,, are defined as the smallest parallel
tasks, as shown in Fig. 1.

Device Calculation task g

Grid blockldx.x= .
Block Block Block
0,0) (1,0) (2,0)

Block Block Block
0,1) (1,1) 2,1)

blockIdx.y
Block threadldx.x
Thread Thread Thread
(0,0) (1,0) 2.,1)
Thread Thread Thread
0,1) (L,1) (2,0)
threadldx.y

Y Np

Fig. 1. Computing tasks of six scalar fields on one
LGL point are packed as the minimum parallel unit and
distributed to a Thread of a CUDA kernel function.

When using multiple GPU devices, it is better
to use GPUs with the same specifications to ensure
balanced computational load distribution. Maintaining
a balanced load across devices is important to avoid a
situation where one device is working while others are
idle. Especially when the complex problems require a
large number of iterations, the efficiency loss cannot
be ignored. Assume that the computing platform has
Ngevice CUDA devices. During the iterative process, the
host will launch N ;.. CPU Threads, and each GPU is
assigned to its corresponding CPU Thread. Each GPU
is assigned an equal share of the total tasks, which is
(K X Np)/Ndevice-

The key distinction between multi-GPU and single-
GPU execution lies in the data dependency for numerical
flux calculations. Each element requires field data from
its neighbors to compute the numerical flux. When using
a single GPU to execute time step iterations, the data can
be stored in the device memory, and there is no need to
exchange data with the host memory during the iteration.
However, when using multiple GPUs for iterations, if the
neighboring elements are in the same device, they can be
directly obtained, but if they are in different devices, they
need to be obtained from the storage of other devices.
Consequently, in each time step of iteration, although the
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calculation time of multi-GPU is reduced, the additional
data exchanges will cause performance loss.

C. Rearrange elements and asynchronous iteration

Load distribution does not simply divide the mesh
elements into several equal parts and assign them to
different devices. Because the mesh generated by the
pre-processing software is not always ordered, direct
distribution will cause a large amount of information to
be exchanged between devices. Therefore, we need to
reduce the number of exchanged elements as much as
possible when grouping mesh elements. In this paper,
the mesh is partitioned into several equal sections along
its longest axis, as shown in Fig. 2.
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Fig. 2. Schematic diagram of the elements grouping
of the target. Elements that are not connected to other
groups are called internal elements, otherwise they are
called exchange elements. Elements in the same group
will be assigned to the same CUDA device.

During each iteration, the data of the exchange
elements in each group needs to be transferred to other
devices. While grouping only reduces the number of
these elements, the storage order of exchange and inter-
nal elements becomes interleaved. Since data transfer
between GPU and host is most efficient when performed
as a single contiguous Block, we rearrange the element
order within each group. In this paper, all data of
exchange elements within a group are placed at the head
of the array, as shown in Fig. 3.
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Fig. 3. Schematic diagram of data transfer during time
step iterations.

Since the data transfer is significantly slower than
computation, reducing only the amount of exchanged
data does not yield satisfactory acceleration. However,
the asynchronous characteristics of CUDA provide a
solution by allowing the GPU to overlap computation
with data transmission. To leverage this, we propose an
asynchronous iteration strategy. In each time step, the



exchange elements are computed first, and then differ-
ent CUDA streams are used to simultaneously execute
two tasks: transferring the exchange elements data and
computing the internal elements. Because the number
of internal elements is much larger than the exchange
elements, the time of data exchange can be covered by
the calculation time, thereby masking the latency of data
exchange.

D. Cache optimization strategy

The low memory consumption of DGTD mitigates
the constraints of limited GPU memory capacity, thereby
leveraging its advantages in speed and bandwidth. Fur-
thermore, this section introduces an on-chip caching
strategy designed to further accelerate data access.

As shown in Fig. 1, when a CUDA kernel func-
tion is launched, the kernel initializes a Grid contain-
ing multiple Blocks. These Blocks are distributed to
streaming multiprocessors (SMs) for execution. Within
each Block, Threads can transmit data through on-chip
Shared Memory, which offers lower latency than global
memory. In our implementation, all tasks on one element
are packed as a Block, which means they can share
the same set of geometric and material data, and only
need to access the global memory once. In addition,
we utilize texture memory to accelerate data retrieval
from global memory. By binding the texture references
to the corresponding global memory regions, CUDA
cores can access the required data in fewer clock cycles.
Additionally, the data that has been accessed will be
stored in the on-chip cache, avoiding accessing the
global memory again, which further optimizes memory
performance.

III. NUMERICAL RESULTS

In this section, we will use several numerical exam-
ples to demonstrate the accuracy and efficiency of the
multi-GPU DGTD method proposed in this paper.

A. Cache optimization and asynchronous data

exchange strategy

The first example will be used to verify the accu-
racy and efficiency of the multi-GPU DGTD in solving
radiation problems. As shown in the Fig. 4, we built
a 50¥*60 mm patch antenna model and divided into
24080 tetrahedron elements. The substrate material has
€ =4.4and u = 1. We solved the S11 parameters from
1 GHz to 10 GHz. As can be seen from the Fig. 4, the
proposed method also has reliable accuracy compared
with software HFSS [26] in solving radiation problem:s.

In this example, the performance of our strategy
was evaluated on a Dell workstation equipped with three
Nvidia Quadro K6000 GPUs. We first use one GPU to
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test our cache optimization strategy, and the computation
times are shown in Table 1. In the baseline code without
cache optimization, CUDA cores directly read and write
to the device memory. In the cache-optimized version,
the CUDA core will read data through the texture
memory, and the data during the calculation process is
temporarily stored in registers and Shared Memory and
are written to the device memory after the calculation is
completed, which minimizes interaction with the device
memory. It can be seen from Table 1 that using cache
instead of device memory as much as possible can
effectively improve computing efficiency.

3 HESS |
» DGTD|
el s ; ; ; ; ; ; ; ;
1 2 3 4 s 6 7 8 9 10

Frequency (GHz)

Fig. 4. Patch antenna model and comparison of numeri-
cal results of Multi-GPU DGTD and HFSS.

Table 1: Time comparison of antenna model with and
without cache optimization

Method Number of GPUs | Calc. Time (s)
no cache opt. | 1 4370.1
cache opt. 1 1869.1

Table 2: Time comparison between synchronous and
asynchronous data exchange

Method Number of | Calc. Acc.
GPUs Time (s) | Ratio

Synchronous 3 715.06 2.61

Asynchronous | 3 687.73 2.72

Next, we validated the multi-GPU implementation
based on the asynchronous data exchange strategy. The
cache-optimized single-GPU program from the previ-
ous test will be used as the baseline because it does
not require data exchange. The computation times of
synchronous and asynchronous strategy program are
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compared in Table 2. Acc. Ratio in Table 2 denotes the
acceleration ratio and represents the ratio of the solving
speed of different methods to the baseline, calculated
as the execution time of the baseline divided by our
proposed approach. From the time comparison, it can
be seen that multi-GPU implementation has a significant
acceleration compared to single GPU. Furthermore, the
efficiency improvement brought by the asynchronous
strategy makes the speedup of multi-GPU implementa-
tion setups closer to linear.

B. Efficiency Comparison Between GPU and CPU

In this example, we expand the problem size to
demonstrate the advantages of the multi-GPU strategy
over traditional CPUs. We designed a perfect electric
conductor (PEC) ship model as shown in Fig. 5. The
ship model has a length of 50 m and 125477 tetrahedron
elements. The bistatic radar cross-section (RCS) of the
ship at 100 MHz frequency is solved and compared with
the results of Feko [27] and CST [28] in Fig. 5. It can be
seen that our method has reliable accuracy in calculating
complex electrically large-scale targets.

T T T T T T 1

30

20

Bistatic RCS (dBsm)

Feko
CST
5 DGTD
0 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180
Theta (degree)

Fig. 5. Ship model and comparison of numerical results
of Multi-GPU DGTD, Feko, and CST.

Table 3: Comparison of calculation time of ship model
between CPU and GPU

Hardware | Calc. Time
CPU 18h
GPU 1649.7 s

We believe that it is unfair to use products with
different positioning or release times when comparing
the efficiency between CPU and GPU. Therefore, in
this example, the GPU program was executed by two
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Nvidia RTX 2080Ti, the CPU program was parallel
executed by Intel 19-9900k with all eight physical cores.
Hardware used in this example are flagship products
of the same period. Furthermore, the GPU program is
compiled by nvcc, and CPU program is compiled by
icpx, which can provide more aggressive optimizations
for Intel CPU to maximize performance, making them
several times faster than CPU programs compiled by
nvce. From the time comparison in Table 3, we can
see that the efficiency improvement of our multi-GPU
DGTD is very impressive.

IV. CONCLUSION

In this paper, we proposed a multi-GPU acceler-
ated DGTD method for solving electrically large-scale
problems. Through cache optimization strategy and
asynchronous data exchange strategy, we improved the
efficiency of GPU programs and achieved linear speedup
when using multiple devices. The several numerical
examples not only prove that the proposed method is
effective and accurate but also show that, when encoun-
tering complex electric large-scale problems that the
CPU program cannot solve in a limited time, using GPU
is the only option.
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