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Abstract – User-Centric Cell-Free Massive Multiple-
Input Multiple-Output (UC-CFmMIMO) is a promis-
ing architecture for B5G networks, offering improved
spectral efficiency (SE) and fairness by enabling joint
transmission from distributed access points. However,
uplink power control remains challenging due to inter-
user interference and the decentralized network struc-
ture. This paper introduces a Grey Wolf Optimiza-
tion (GWO)-based uplink power control scheme tai-
lored for UC-CFmMIMO, targeting two practical objec-
tives: maximizing sum SE and enhancing user fairness.
Inspired by the hunting behavior of grey wolves, the
proposed algorithm efficiently navigates the non-convex
solution space without relying on convex assump-
tions. Numerical results demonstrate that the proposed
scheme significantly improves fairness among users
(e.g., achieving 3.39-bit/s/Hz at a cumulative distribu-
tion function (CDF) of 0.1) while maintaining high
throughput performance (e.g., 118.99-bit/s/Hz at a CDF
of 0.5). Moreover, the algorithm exhibits excellent scala-
bility and computational efficiency, making it a practical
and effective solution for large-scale B5G deployments.

Index Terms – Grey wolf optimization, max-min
fairness, sum-rate maximization, uplink power control,
user-centric cell-free massive MIMO.

I. INTRODUCTION
Next-generation wireless networks (B5G/6G) are

envisioned to support massive connectivity, ultra-
reliable low-latency communication, and pervasive
intelligence across diverse industrial and urban scenarios
[1–6]. User-Centric Cell-Free Massive Multiple-Input
Multiple-Output (UC-CFmMIMO) represents a pivotal
component in the architectural evolution toward B5G
networks, where densely distributed access points (APs)
collaboratively serve users without cell boundaries. This
cell-free and user-centric paradigm enhances spectral
efficiency (SE), fairness, and scalability, enabling seam-
less connectivity in ultra-dense and Industry 4.0/5.0

environments such as smart factories, autonomous sys-
tems, and intelligent logistics [5–9]. Through central-
ized coordination and flexible resource allocation, UC-
CFmMIMO supports the hierarchical and distributed
computing architecture fundamental to B5G network
design.

Power control remains a key enabler for UC-
CFmMIMO performance optimization by mitigating
inter-user interference and regulating transmission
power efficiency [5]. Conventional convex-based opti-
mization methods, including geometric programming
and bisection search [7–10], provide analytical tractabil-
ity but exhibit limitations in large-scale non-convex
settings due to their high computational complexity and
reliance on convexity assumptions [11–14]. The fixed-
point algorithm (FPA), while effective for convex formu-
lations, encounters convergence degradation under user-
centric interference coupling and dynamic channel con-
ditions [5]. These pitfalls restrict adaptability to rapidly
varying topologies and heterogeneous quality of service
requirements in dense B5G deployments.

Recent research has explored advanced computa-
tional intelligence to overcome these challenges. In
particular, Grey Wolf Optimization (GWO) has gained
attention as a population-based metaheuristic that effi-
ciently explores non-convex search spaces and mit-
igates premature convergence [15–17]. Beyond clas-
sical optimization, machine learning and intelligent
control have emerged as complementary approaches
for adaptive communication and control systems. For
instance, machine learning-enabled channel estima-
tion (CE) frameworks, such as distributed compressed
sensing-based MIMO-filter bank multicarrier estima-
tion for Industrial Internet of Things (IIoT) [18], low-
complexity sparse CE for industrial big data [19],
and sparse Bayesian learning-based CE for Filter bank
multicarrier with offset quadrature amplitude modu-
lation IIoT networks [20], demonstrate the capability
of learning-assisted models to address sparsity, inter-
ference, and channel uncertainty. Likewise, intelligent
control models, including fuzzy-tuned brain emotional
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learning-based intelligent controller for satellite attitude
regulation [21] and linear matrix inequalities-based sta-
bilization of input derivative positive systems [22], illus-
trate the adaptability of learning-driven optimization and
control paradigms across dynamic environments.

Motivated by these developments, this study pro-
poses a GWO-based centralized uplink power control
framework for UC-CFmMIMO networks, aligned with
the B5G vision of sustainable, intelligent, and energy-
efficient connectivity. Two distinct optimization formu-
lations are considered: a fairness-oriented design maxi-
mizing the minimum SE among users and a throughput-
oriented design maximizing the aggregate SE. The
GWO algorithm is adapted to efficiently solve each
non-convex problem without convex approximation,
enabling scalable operation under dense user and AP
deployments. Simulation results demonstrate that the
proposed GWO-based schemes achieve superior trade-
offs in fairness, throughput, and computational effi-
ciency compared with conventional FPA, full power
control (FPC), and bat algorithm (BA) benchmarks.

The main contributions of this paper are summa-
rized as follows:

• We formulate two uplink power control problems
in UC-CFmMIMO networks, one designed to
enhance user fairness and the other to maximize
system throughput.

• We adapt and integrate the GWO algorithm into
the UC-CFmMIMO uplink power control frame-
work, marking its first application in this context
to effectively solve the formulated non-convex
problems.

• We provide extensive simulation-based compar-
isons with conventional schemes (FPA, FPC) and
BA to evaluate the performance of each proposed
formulation in terms of SE, fairness, computa-
tional complexity, and scalability.

The remainder of this paper is structured as fol-
lows. Section II presents the system model. Section III
formulates the optimization problem. Section IV details
the proposed GWO-based solution. Section V provides
numerical results validating the effectiveness of our
approach. Section VI concludes the study and discusses
its implications for sustainable wireless networks.

II. SYSTEM MODEL
We consider a UC-CFmMIMO network consisting

of K single-antenna user equipment (UE) and L APs,
each having N antennas as indicated in Fig. 1. The
wireless channel is assumed to follow the block-fading
model, where the channel remains constant over a coher-
ence block and changes independently between blocks.
A coherence block is a time-frequency block whose time

duration equals the coherence time and whose band-
width equals the coherence bandwidth. Hence, the chan-
nel between each AP-UE pair is constant and frequency-
flat within a coherence block and can therefore be
represented by a single channel realization.

In the considered time-division duplex protocol,
each coherence block consists of τc transmission sym-
bols, which are divided into three parts: τp symbols
for uplink pilots, τu symbols for uplink data, and τd
symbols for downlink data, satisfying τc = τp + τu + τd .
The uplink pilots are transmitted prior to downlink data
so that channel estimates can be obtained and used for
precoding.

The channel between the lth AP and the kth UE in
an arbitrary coherence block is denoted by hkl ∈ CN ,
modeled as a correlated Rayleigh fading distribution
hkl ∼NC(0N ,Rkl). Here NC(0N ,Rkl) denotes a circu-
larly symmetric complex Gaussian distribution with zero
mean vector and covariance matrix Rkl ∈ CN×N . The
vector 0N represents an N × 1 all-zero vector. Rkl ∈
CN×N is the spatial correlation matrix between the lth
AP and the kth UE. The Gaussian distribution is utilized
to represent the effects of small-scale fading, while the
positive semidefinite correlation matrix Rkl character-
izes large-scale fading, which encompasses factors such
as geometric path loss, shadowing, antenna gains, and
spatial channel correlation [3–5].

k

k

l

Fig. 1. UC-CFmMIMO network with L access points
jointly serving K user equipment.

The uplink transmission powers can be represented
as a vector p = [p1, . . . , pK ]

T, influencing all UEs.
The uplink SE of the kth UE is determined by its
effective signal-to-interference-plus-noise ratio (SINR),
which depends on p. Specifically, the numerator of
the SINR is influenced by the transmission power pk
of the desired signal, while the interference term in
the denominator is affected by all power components
in p. The effective SINR for the kthUE, applicable to
centralized uplink operations, can be expressed in a
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generalized form as [5]:

SINRk(p) =
bk pk

cT
k p+σ2

k
, (1)

where bk represents the average effective channel gain of
the desired signal for the kth UE, ck = [ck1, . . . ,ckK ]

T ∈
RK
≥0 contains the average interference coefficients, and

σ2
k denotes the effective noise variance. These parame-

ters are given by

bk = |E{vH
k Dkhk}|2 ∀k, (2)

ckk = E{|vH
k Dkhk|2}−bk ∀k, (3)

cki = E{|vH
k Dkhi|2}−bk ∀k, ∀ i ̸= k, (4)

σ
2
k = σ

2E{∥Dkvk∥2}, (5)

where E{·} denotes the statistical expectation operator.
The combining vector vk denotes the centralized receive
filter used at the CPU to extract the data of the kth
UE from the aggregated uplink signal. In a centralized
architecture the CPU collects (or has access to) the
received signal components from all the L APs and
applies a single global linear combiner vk ∈ CLN to
the stacked receive vector. Concretely, vk is formed by
stacking the local combining vectors from each AP vk =
[vT

k1, . . . ,v
T
kL]

T, where vkl ∈ CN is the local combiner
applied to the N-antenna signal at the lth AP. The
combined scalar observation used to detect the kth UE is
vH

k y, where y is the full LN-dimensional received signal
stacked across APs. Dk = diag{Dk1, . . . ,DkL} is a block-
diagonal matrix. hi : i= {1, . . . ,K} is the channel vectors
from all K UEs. Therefore, the uplink SE of the kth UE
depends on p and can be written as [5]:

SEk(p) =
τu

τc
log2(1+SINRk(p)). (6)

Here τu and τc are the numbers of symbols for
uplink data and the total symbols in a coherence block,
respectively.

Equations (1)–(6) represent the standard central-
ized SE formulation for uplink UC-CFmMIMO, derived
from the general SINR structure given in [5, Theorem
5.2]. This formulation enables a unified optimization of
the transmission powers across all UEs.

III. PROBLEM FORMULATION
The uplink power control process involves deter-

mining the appropriate uplink power levels for UEs to
maximize a specific utility function, typically related to
SE. In this study, we address two key power control
problems: max-min SE fairness and sum SE maxi-
mization, each defined by its corresponding objective
function F1(p) and F2(p), respectively.

Here, F1(p) represents the minimum SE among
all users, aiming to enhance user fairness, while F2(p)
denotes the aggregate SE of the system, focusing on
maximizing total throughput. These functions are for-
mulated as:

F1(p) = min
k∈{1,...,K}

SEk(p), (7)

F2(p) =
K

∑
k=1

SEk(p). (8)

Accordingly, the two optimization problems can be
expressed as:

(P1): max
p

F1(p)

s.t. 0 < pk ≤ pmax, k = 1, . . . ,K. (9)

(P2): max
p

F2(p)

s.t. 0 < pk ≤ pmax, k = 1, . . . ,K. (10)

While max-min SE fairness prioritizes users with
poor channel conditions, it may not fully exploit the
potential for higher SE in large networks. In contrast, the
sum SE maximization problem focuses on maximizing
the total number of transmitted bits, regardless of their
distribution among UEs. This approach is particularly
suitable for scenarios where each UE interferes only
with a small subset of neighboring users.

These two optimization problems highlight differ-
ent objectives: max-min SE fairness ensures equitable
resource allocation, whereas sum SE maximization pri-
oritizes overall throughput. In the following section, we
develop a GWO-based approach to efficiently solve both
formulations.

IV. PROPOSED APPROACH
We propose an uplink power control scheme using

the GWO to address optimization challenges in UC-
CFmMIMO systems. GWO efficiently explores high-
dimensional solution spaces, overcoming the limitations
of conventional methods by avoiding local optima and
ensuring robust performance in complex wireless envi-
ronments [23–25].

A. Fitness function formulation
Our approach addresses two distinct objectives:

max-min fairness and sum SE maximization. To this
end, we design separate fitness functions that directly
represent each goal under system constraints, enabling
the GWO algorithm to efficiently search for optimal
power control solutions.

For the identified problems (P1) and (P2) defined
in section III, each defined as a single-objective
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optimization, we construct two corresponding fitness
functions, F1(p) and F2(p), to guide the GWO algo-
rithm toward fairness and throughput optimization,
respectively.

The constraints define the allowable power control
range for each user, ensuring compliance with system
limitations. We set the feasible search space within
[0, pmax], where pmax represents the maximum transmis-
sion power. This ensures that all solutions generated
by GWO satisfy power constraints while optimizing
performance.

These formulations allow the algorithm to target
distinct power control objectives in UC-CFmMIMO sys-
tems. This separation of objectives highlights the flexi-
bility of the GWO framework in addressing diverse opti-
mization goals under a unified metaheuristic paradigm.

B. Proposed algorithm
The GWO is a metaheuristic optimization technique

inspired by the hierarchical leadership and cooperative
hunting strategies of grey wolves. It categorizes wolves
into four roles (alpha, beta, delta, omega), where the
alpha leads the search process. The key strength of GWO
lies in its ability to balance exploration and exploitation,
efficiently navigating complex solution spaces while
avoiding local optima [16].

Leveraging these properties, we develop a GWO-
based algorithm to optimize uplink power control in
UC-CFmMIMO systems. The detailed mathematical
formulation of the proposed procedure is provided in
Algorithm 1, which outlines the initialization, fitness
evaluation, position update, boundary control, and termi-
nation criteria for achieving the optimal power allocation
vector p∗← pα .

First, system-specific parameters such as the num-
ber of APs, UEs, antennas, and maximum transmission
power are initialized, together with the GWO parameters
including population size, search limits, and the fitness
function. The initial power control vectors pi are then
randomly generated within the search domain to ensure
solution diversity.

Each wolf’s fitness is evaluated according to the
optimization objective, and the top three wolves (alpha,
beta, delta) are identified to guide the search. Subse-
quently, all wolves update their positions using adap-
tive coefficients that simulate encircling and attacking
behaviors, balancing exploration and exploitation.

A random exploration factor is introduced to mit-
igate premature convergence. The iterations continue
until a stopping condition is met, either the maximum
iteration count or convergence in the fitness value.
Finally, the best solution p∗ is returned, representing the
optimal power control vector that ensures an effective

Algorithm 1. Proposed GWO-based uplink power
control algorithm.
Input: UC-CFmMIMO parameters; number of APs,
number of UEs K, population size npop, maximum
iterations niter, lower bound 0, upper bound pmax, fitness
function F(p) ∈ {F1(p),F2(p)}
Output: Optimal transmission powers p∗← pα

for i← 1 to npop do
if i = 1 then

p1← pmax1l×K
else

pi←U ([0, pmax]1×K)
end
Evaluate F(pi) and update pα ,pβ ,pδ

end
p∗← pa

for t← 1 to nitter do
a← 2−2t/niner
for i← 1 to npop do

A j←U ([−a,a]1×K), j ∈ {α,β ,δ}
C j← 2U ([0,1]1×K), j ∈ {α,β ,δ}
X j← p j−A j⊙|C j⊙p j−p j|, j ∈ {α,β ,δ}
pi← (Xα +Xβ +Xδ )/3

if pi > pmax or pi < 0 then
Project pi back into [0, pmax]

end
Evaluate F(pi) and update pα ,pβ ,pδ

end
end
return

trade-off between efficiency and fairness in uplink power
control.

V. NUMERICAL RESULTS
To evaluate the proposed GWO-based uplink power

control scheme in UC-CFmMIMO scenarios, a network
is deployed over a 1×1 km area with 100 randomly
distributed APs and 20 UEs. Each AP is equipped with a
single antenna, resulting in a total of 100 antennas across
the network. Both AP and UE positions vary across
1000 independent network setups, each simulated over
50 channel realizations to ensure statistical robustness.

Communication occurs over a 20 MHz bandwidth,
with a receiver noise power σ2 = −94 dBm accounting
for both thermal noise and a 7 dB receiver noise figure.
UEs have a maximum uplink transmission power of
pmax = 100mW, reflecting power constraints in practical
deployments. The coherence block consists of samples
aligned with a 2 ms coherence time and a 100 kHz
coherence bandwidth, accommodating user mobility and
outdoor propagation in sub-6 GHz bands. Large-scale
fading follows the 3GPP Urban Microcell model, with
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Rayleigh fading channels exhibiting spatial correlation
based on a local scattering model.

For performance benchmarking, the proposed
GWO-based schemes are compared with conventional
methods, including FPA, FPC, and BA [26]. The BA
approach follows the same centralized uplink operation
and optimization objectives as the proposed formula-
tions, ensuring consistent evaluation criteria across all
algorithms.

For optimization, both GWO and BA operate with a
population size of 300 and 50 iterations to ensure a fair
comparison. The BA parameters are configured as loud-
ness of 0.5 and pulse rate of 0.5. The GWO algorithm
and its procedural steps are fully presented in section IV
in algorithmic form to facilitate reproducibility.

The chosen population size and iteration count were
determined based on the theoretical balance between
exploration and exploitation in population-based meta-
heuristics. In GWO, a larger population enhances global
exploration capability, reducing the risk of premature
convergence, while an excessive number of iterations
primarily improves local refinement at the cost of higher
computational complexity. In this study, the selected
configuration of 300 agents and 50 iterations achieves
stable convergence behavior and consistent optimization
performance, as evidenced in section V part A. The
convergence profiles confirm that this setting allows
GWO to reach near-optimal solutions efficiently without
requiring additional computational overhead. Therefore,
the adopted parameters are both theoretically motivated
and empirically validated to ensure robust and efficient
operation for the UC-CFmMIMO uplink power con-
trol problem. SE serves as the main performance met-
ric, evaluated through cumulative distribution function
(CDF) curves and average SE measures to characterize
both fairness and throughput trends across various net-
work configurations.

A. Effectiveness of proposed scheme
The effectiveness of the proposed uplink power con-

trol schemes is validated through extensive numerical
experiments, as illustrated in Figs. 2–5. The experi-
ments were performed on a Windows Server 2019 using
MATLAB R2023a with two Intel® Xeon® Gold 5115
Processors to assess computational performance and
convergence efficiency.

Figure 2 depicts the convergence behavior of
the normalized fitness functions corresponding to the
two optimization formulations (F1-GWO for fairness-
oriented P1 and F2-GWO for throughput-oriented P2).
Both formulations exhibit rapid convergence toward
optimality, with F1-GWO stabilizing after approxi-
mately 220 iterations and an average computation time

of 5.25 ms. The slower convergence of F1-GWO reflects
the complexity of achieving balanced SE distribution
among UEs. In contrast, F2-GWO reaches convergence
almost instantly because maximizing the sum SE inher-
ently corresponds to full-power transmission, which is
evaluated at initialization.

After 50 iterations, the normalized fitness values
of F1-GWO and F2-GWO reach 0.96214 and 0.99991,
respectively, confirming the high convergence efficiency
of the proposed algorithm. These results demonstrate
that the selected configuration (a population size of 300,
50 iterations) achieves near-optimal performance with
minimal computational cost, providing a strong balance
between convergence accuracy and runtime efficiency.

The strong convergence behavior observed in
both F1-GWO and F2-GWO highlights the algo-
rithm’s potential for near real-time applicability in UC-
CFmMIMO systems. With an average computation time
of only a few milliseconds per optimization round, the
proposed framework can efficiently adapt to moderate
variations in user distribution or channel conditions
within a coherence block. Given that the uplink power
control problem is quasi-static over short time intervals,
the GWO process can be periodically reinitialized or
triggered by network dynamics to update transmission
powers with negligible latency. These attributes make
the proposed approach particularly suitable for practical
deployments requiring low-latency adaptation and con-
sistent trade-offs between fairness and throughput.

To benchmark SE performance, Figs. 3–5 com-
pare the proposed F1-GWO and F2-GWO schemes
against conventional FPA and FPC. At CDF = 0.1,
the F1-GWO scheme achieves 3.39-bit/s/Hz, outper-
forming FPA (3.18-bit/s/Hz). At CDF = 0.5, F1-GWO
reaches 4.24-bit/s/Hz, while F2-GWO attains 5.66-
bit/s/Hz, exceeding FPA (3.90-bit/s/Hz). These improve-
ments indicate that GWO enhances SE optimization
through dynamic adaptation of search agents, leading to
superior power allocation.

The fairness performance comparison in Fig. 4
reveals that F1-GWO consistently achieves higher min-
imum SE than both FPC and F2-GWO, confirming
its robustness in supporting users with weak links. At
CDF = 0.5, F1-GWO records 3.87-bit/s/Hz, surpassing
FPC (3.15-bit/s/Hz) and F2-GWO (3.14-bit/s/Hz). The
gain in minimum SE demonstrates that GWO effectively
mitigates interference in decentralized UC-CFmMIMO
networks, where local AP-UE associations cause hetero-
geneous link qualities.

Figure 5 illustrates the sum SE performance. At
CDF = 0.1, F2-GWO and FPC both reach 107.0-
bit/s/Hz, while F1-GWO achieves 76.6-bit/s/Hz, out-
performing FPA (63.7-bit/s/Hz). At CDF = 0.5, F2-
GWO maintains parity with FPC (118.99-bit/s/Hz), and
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Fig. 2. Convergence of the normalized fitness functions
for the two optimization objectives: F1-GWO (fairness-
oriented) and F2-GWO (throughput-oriented). The F1-
based GWO scheme converges after around 220 itera-
tions, whereas the F2-based GWO converges instantly,
confirming the rapid convergence and computational
efficiency of GWO.

Fig. 3. Cumulative distribution of SE per user for differ-
ent uplink power control schemes. The proposed F1- and
F2-based GWO schemes outperform conventional FPA
and FPC methods, achieving higher median and tail SE
values.

F1-GWO continues to exceed FPA (89.98-bit/s/Hz vs.
77.97-bit/s/Hz). These results confirm that GWO can
achieve comparable or superior throughput performance
to conventional benchmark schemes while maintaining
better fairness balance.

In summary, the proposed GWO-based schemes
provide a comprehensive balance between fairness
and SE while demonstrating computational efficiency
and scalability advantages. The additional comparative
insights and interpretation presented here strengthen the
understanding of the proposed method’s value and its
distinction from prior optimization approaches in UC-
CFmMIMO systems.

Fig. 4. Minimum SE comparison among power control
schemes. The fairness-oriented F1-GWO scheme pro-
vides the highest minimum SE, demonstrating improved
user fairness relative to FPC, FPA, and F2-based GWO.

Fig. 5. Sum SE comparison among power control
schemes. The F2-GWO scheme achieves throughput
comparable to FPC while the F1-GWO surpasses FPA,
confirming the efficiency of GWO in optimizing both
fairness and throughput.

B. Impact of number of APs and UEs
This section investigates the influence of AP and

UE scaling on system performance in terms of the aver-
age minimum SE and sum SE. The evaluation further
includes the BA for comparative analysis, employing
the same optimization objectives as the proposed GWO
schemes. The additional F1-BA and F2-BA cases pro-
vide a relevant benchmark, as BA has been previously
adopted for centralized uplink power control in UC-
CFmMIMO systems [26].

Figure 6 demonstrates that increasing the number
of APs enhances average minimum SE due to improved
spatial diversity and reduced signal attenuation. At
200 APs, F1-GWO achieves 6.02-bit/s/Hz, higher than
FPA (5.95-bit/s/Hz) and F1-BA (5.84-bit/s/Hz), con-
firming the superior fairness control capability of
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GWO. The F2-GWO scheme also attains 5.28-bit/s/Hz,
outperforming FPC (5.18-bit/s/Hz) and F2-BA (5.21-
bit/s/Hz). These results indicate that GWO achieves
better exploitation of distributed resources and faster
convergence toward balanced power allocation com-
pared with BA.

Figure 7 shows that the average sum SE improves
with more APs, benefiting throughput-oriented schemes.
At 200 APs, F2-GWO reaches 157.85-bit/s/Hz,
exceeding both FPC (156.44-bit/s/Hz) and F2-BA
(157.07-bit/s/Hz). Similarly, F1-GWO attains 130.62-
bit/s/Hz, outperforming FPA (119.04-bit/s/Hz) and F1-
BA (124.86-bit/s/Hz). The consistent gain over BA
highlights the adaptability of GWO in complex multi-
dimensional search spaces and its robustness to local
optima.

Fig. 6. Average minimum SE versus number of APs.
Increasing APs enhances spatial diversity and fairness.
F1-GWO achieves the highest SE (6.02-bit/s/Hz at
200 APs), outperforming F1-BA and FPA, highlighting
GWO’s superior resource utilization and convergence.

When the number of UEs increases, inter-user
interference becomes dominant, causing a reduction in
minimum SE for all schemes. Figure 8 shows that F1-
GWO maintains higher minimum SE across all user
densities. For instance, at 30 UEs, F1-GWO records
2.78-bit/s/Hz, compared to 2.53-bit/s/Hz (F1-BA), 2.80-
bit/s/Hz (FPA), and 1.83-bit/s/Hz (FPC). This confirms
that the fairness-oriented F1 formulation stabilizes user
performance even under increased network loading.

In contrast, Fig. 9 reveals that total SE rises
with the number of UEs because more concurrent
uplink transmissions contribute to overall throughput.
F2-GWO shows the highest growth, from 69.42 to
148.32-bit/s/Hz as UEs increase from 10 to 30, outper-
forming both FPC (70.46- to 146.85-bit/s/Hz) and F2-
BA (70.63- to 147.24-bit/s/Hz). Furthermore, F1-GWO
consistently surpasses FPA (51.99- to 115.63-bit/s/Hz
versus 49.91- to 84.12-bit/s/Hz) and F1-BA (46.84- to

Fig. 7. Average sum SE versus number of APs. Both
GWO-based schemes show steady throughput improve-
ment as APs increase. F2-GWO attains 157.85-bit/s/Hz
at 200 APs, exceeding FPC and F2-BA, confirming
better scalability and optimization robustness.

105.23-bit/s/Hz), proving that fairness-oriented GWO
retains competitive throughput.

Overall, the results confirm that both proposed
schemes, F1-GWO for fairness optimization and F2-
GWO for throughput maximization, achieve superior
trade-offs compared with BA and conventional bench-
marks. The study differs from our prior work by extend-
ing power-control optimization to the UC-CFmMIMO
framework under centralized uplink operation, incor-
porating GWO as an adaptive metaheuristic alterna-
tive to BA, and providing a more detailed scalability
analysis with respect to both AP and UE densities.
These outcomes emphasize the efficiency, robustness,
and generalization capability of the proposed GWO-
based formulations for UC-CFmMIMO uplink systems.

Fig. 8. Average minimum SE versus number of UEs.
As UE density rises, inter-user interference reduces
SE for all methods. F1-GWO consistently maintains
higher fairness, outperforming F1-BA and FPC, espe-
cially under heavy network loading.
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Fig. 9. Average sum SE versus number of UEs. Through-
put increases with user density, and F2-GWO exhibits
the steepest growth, outperforming both BA- and FPC-
based counterparts. F1-GWO also achieves superior
throughput compared with FPA and F1-BA, verifying its
robustness across network scales.

Although the simulations are conducted for sub-
6 GHz UC-CFmMIMO systems, the proposed GWO-
based optimization framework is not limited to a specific
frequency band or communication standard. Its meta-
heuristic structure can accommodate varying system
models by redefining the spectral-efficiency function or
power constraints according to the target standard (e.g.,
mmWave or 6G massive MIMO). Moreover, the algo-
rithmic scalability demonstrated across different AP and
UE densities suggests strong adaptability to heteroge-
neous and evolving network environments. Future work
may extend this analysis to include diverse communica-
tion standards and dynamic user distributions to further
validate the robustness and generalization capability of
the proposed approach.

VI. CONCLUSION
This paper presents a GWO-based uplink power

control framework for UC-CFmMIMO systems,
addressing fairness and throughput optimization through
two formulations: F1-GWO for max-min fairness and
F2-GWO for sum-SE maximization. The proposed
approach achieves rapid and stable convergence, with
F1-GWO reaching approximately 96% of its optimal
normalized fitness and F2-GWO nearly full convergence
(approximately equal to 100%) within 50 iterations. The
average computation time of only a few milliseconds
per optimization cycle highlights its feasibility for
near real-time implementation. Numerical evaluations
demonstrate that F1-GWO significantly enhances user
fairness, while F2-GWO achieves throughput compara-
ble to full-power transmission, both outperforming BA
and conventional optimization schemes across various
AP and UE densities. These outcomes confirm the
robustness, scalability, and practical potential of the

GWO framework for centralized UC-CFmMIMO uplink
power control in future intelligent and adaptive wireless
networks.

Despite its efficiency and adaptability, the GWO-
based approach remains a data-agnostic metaheuristic
that relies on iterative search rather than learning from
prior network states. As such, it performs reactive opti-
mization after network changes rather than proactive
adaptation. Additionally, the current analysis focuses on
static user distributions and sub-6 GHz operation, with-
out explicitly modeling long-term temporal correlations
or heterogeneous communication standards.

Future work will extend this study toward learning-
based optimization frameworks that integrate GWO
with machine learning or reinforcement learning. Such
hybrid models could predict user mobility, channel
variations, or traffic dynamics to enable proactive and
context-aware power control. Further research will also
investigate multi-objective formulations, joint uplink-
downlink optimization, and online adaptation across
diverse communication standards (e.g., mmWave and
6G networks), enhancing the generalization capability
of the proposed framework in dynamic and large-scale
wireless environments.
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