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Abstract – Antennas fed by waveguides with irregu-
lar cross-sections are efficiently simulated through the
hybridization of the mode-matching (MM) method and
the higher-order method of moments (HOMoM). To
obtain the waveguide modes required in the MM method,
a 2-D finite element method (FEM) is utilized and com-
bined with the hybrid MM/HOMoM method, which
enables the proposed method to model irregular wave-
ports. The accuracy and efficiency of the proposed
method are demonstrated by simulating log-periodic
antennas (LPAs) and an asymmetric single-ridge slot
waveguide antenna.

Index Terms – Eigenvalues, finite element method
(FEM), higher-order method of moments (HOMoM),
irregular cross-sections, mode-matching (MM), wave-
ports.

I. INTRODUCTION
Waveguides are widely used in antennas due to their

high power capabilities and low loss properties. With
the development of microwave technology, the structures
of microwave devices and waveport aperture surfaces
tend to become increasingly complicated. Therefore, the
accurate and efficient simulation of microwave devices
with waveports has attracted much attention.

For the analysis of waveguide problems, the method
of moments (MoM) is widely considered numerically
accurate [1]. On the other hand, due to the high
efficiency of the mode-matching (MM) method, it
has been widely used to design waveguide compo-
nents. As a result, the MoM and MM method are
hybridized to analyze waveguide coupling and radiation
problems [2]. In 2000, the MM/MoM hybrid method
was applied to analyze the metallic N-port waveguide
structures, where the RWG basis functions were used
for modeling, and the electric field integral equation
(EFIE) was adopted for construction of the impedance
matrix [3]. The Piggio-Miller-Chang-Harrington-Wu-

Tsai (PMCHWT) formulation was utilized for analyz-
ing dielectric loaded waveguides [4]. Later, the higher-
order vector basis functions modeled with curvilinear
triangles were used to improve the simulation efficiency
of non-rotationally symmetric structures [5]. In 2015,
the MM method was introduced to the higher-order
method of moments (HOMoM) for constructing per-
fectly matching terminators for waveports. The higher-
order basis functions modeled with quadrilaterals further
reduced the number of unknowns [6]. Recently, a set
of coupled integral formulations were derived to han-
dle the loading problem of the metal-dielectric com-
posite structures, and the orders of the basis functions
were adaptively adjusted, yielding accurate and effective
results [7].

However, the majority of previous investigations
focused on regular waveguides, such as rectangular and
circular ones. The previous method is no longer appli-
cable when the cross-section of the waveport becomes
irregular due to fabrication or architectural require-
ments, e.g. the coaxial center conductor may be eccentric
or non-cylindrical [8]. Therefore, modeling of waveg-
uides with irregular cross-sections based on the hybrid
MM/MoM method is worth discussing.

In this paper, the MM/HOMoM method and FEM
are hybridized to solve the coupling and radiation prob-
lems fed by waveports with irregular cross-sections. The
use of higher-order basis function defined on the bilinear
quadrilaterals can greatly improve efficiency while main-
taining numerical accuracy, and the adoption of FEM
extends the flexibility.

II. THEORY AND FORMULATION
A. MM/HOMoM hybrid method

Let us consider an arbitrarily shaped cavity con-
taining several objects connected by N waveports, as
depicted in Fig. 1. The object surfaces are classified
into three categories: metallic, dielectric, and composite
metal-dielectric surfaces [9].
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Fig. 1. Multiport cavity structure containing composite
objects connected by N waveports.

The unknown current densities are expanded by a set
of linearly independent basis functions f n and gn as:

Jl = ∑
NJ
n=1 αnf n metal/dielectric surfaces

Ml = ∑
NM
n=1 βnf n dielectricsurfaces

M port = ∑
Np
n=1 η0νngn waveguideapertures

, (1)

where η0 denotes the wave impedance of free space, and
NJ , NM, and Np represent the number of unknowns in the
scattering body and waveguide apertures, respectively.
αn, βn, and νn represent the unknown coefficients. f n is
the higher-order basis functions defined on the quadri-
laterals, and the definition is given in [10]. gn denotes
the waveguide basis functions defined on the apertures of
waveguides, which is expanded using the eigenvectors of
different waveport modes.

Since the analysis of conventional scattering prob-
lems has been discussed in detail previously [9, 11],
this paper discusses only the matrix associated with the
waveguide basis functions. According to the equivalence
principle, the surface integral equation of the electromag-
netic field could be established. The integral equations
can be written as follows by applying boundary condi-
tions to the waveguide apertures, the metallic surfaces,
and the dielectric surfaces, respectively:{

n̂i ×Ei = n̂i ×∑
∞
j=1[η0L(J j)−K(M j)] =−ζ Mi

n̂i ×Hi = Ji
,

(2)
where the real number ζ equals 1.0 when modeling the
dielectric surfaces or waveguide apertures and 0 other-
wise. The integral operators L and K are the same as
[6]. Ji and Mi denote the electric and magnetic currents
defined on the i-th surface of the elements, which are dis-
cretized with the higher-order basis functions defined on
bilinear quadrilateral elements, and n̂i (i = 1,2,3 ...) is
the unit normal vector on the i-th surface.

Adopting the MM technique, the electromagnetic
field outside the waveport can be written as [6]:

{
E port =−∑

∞
i=1 ei

∫
A(n̂× ei) ·M ds

H port =
2n̂×e j

η j
+∑

∞
i=1

n̂×ei
ηi

∫
A(n̂× ei) ·M ds

, (3)

where n̂ is the outer normal vector for each waveport, ei
is the normalized eigenvector of the waveport, e j is the
excitation mode, and ηi is the wave impedance of the i-th
mode of the waveport.

The whole structure is divided into the scattering
body (represented by s) and waveports (denoted by p).
Using Galerkin’s method to test the above equation with
the basis functions of the scatterer body and the basis
functions of the waveports, the integral equations of
matrix form can be written as:[

Zss Zsp

Zps Zpp

]
·
[

Is

Ip

]
=

[
0

Vp

]
, (4)

where Is is the unknown coefficients vector associated
with the scattering body, and Ip is the unknown coeffi-
cients vector associated with the waveport aperture. Vp

represents the right-hand vector excited by the waveport.
Zab represents the impedance matrix resulting from the
interaction of structures a and b. Letters a and b can be
replaced by s (the scattering body) or p (the waveport).

The matrix elements in (4) can be expressed as:

Zsp
mn =

〈
fi,

[
ζ

2

(
n̂×Mport

j

)
+K

(
Mport

j

)]〉
, (5)

Zps
mn =

〈
Mport

i , n̂×J j
〉
, (6)

Zpp
mn =

〈
Mport

i ,
n̂× e j

η j

∫
A
(n̂× e j) ·Mport

j ds
〉
, (7)

Vp
m =

〈
Mport

i ,
2n̂× e j

η j

〉
=−2η0

η j

∫
A

ei · e j ds, (8)

where m and n denote the row and column numbers of
the matrix elements, ⟨·⟩ denotes inner product operator,
and the definition of ζ is the same as in (2).

B. Analysis of waveguide eigenvalue problem
A variety of methods are used to analyze the waveg-

uide cross-sectional field distribution, including MoM,
FDTD, and FEM. Among all these methods, 2-D FEM
is the most generally applicable and versatile [12].

Here, to facilitate integrated modeling, the 2-D vec-
tor FEM is adopted to analyze the waveguide eigenvalue
problems. The tangential electric field Et and longitudi-
nal electric field Ez on the element are defined as fol-
lows, where N and W represent the scalar and vector
basis functions, respectively [13, 14]:

Ez = Nez = [L1 L2 L3]ez, (9)
Et = [W]et = [W12 W23 W31] et , (10)
Wi j = li j(Li∇tL j −L j∇tLi), (11)

where Li (i = 1,2,3) are area coordinates of the element,
li j is length of edge that starts from node i to node j,
∇t is the gradient operator, and ez and et represent the
coefficients to be solved for the transverse and direction
vectors, respectively.
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In order to obtain the eigenvector of the waveguide
aperture, the generalized eigenmatrix equation is derived
from the Helmholtz equation [12]:[

A 0
0 0

][
et
ez

]
=−β

2
[

H G
GT B

][
et
ez

]
, (12)

A =
∫

Ω

[
1
µr

(∇t ×W)T(∇t ×W)− k2
0εrWTW

]
dΩ,

(13)

H =
∫

Ω

[
1
µr

WTW
]

dΩ, (14)

B =
∫

Ω

[
1
µr

(∇tN)T · (∇tN)− k2
0εrNTN

]
dΩ, (15)

G =
∫

Ω

[
1
µr

WT(∇tN)

]
dΩ, (16)

where εr and µr represent relative permeability and per-
mittivity of the medium corresponding with the waveg-
uide, β is the propagation constant, k0 is the wave num-
ber of free space, Ω is the cross-section of the waveguide
apertures, and N and W represent the scalar and vector
basis functions [10, 11].

According to (18), the orthonormal modal field dis-
tributions on quadrilaterals are obtained through the
operation, ei is the i-th mode normalized eigenvector of
the waveguide, e j is the excitation mode, and δi j is Kro-
necker delta:∫

S
ei · e j dS = δi j =

{
1 , i = j
0 , i ̸= j . (17)

Finally, by using nested one-dimensional Gaussian
sampling on the quadrilaterals, we obtain the modal
field distribution at the Gaussian sampling points of the
waveguide aperture. Applying the results to matrix ele-
ments, the 2-D FEM is associated with the MM/HOMoM
hybrid method, making the method more flexible.

III. NUMERICAL EXAMPLE
Simulation examples are given in this section to val-

idate the accuracy and computational efficiency of the
proposed method, and all simulations employ double-
precision numerical accuracy. The computational plat-
form used in these examples is a workstation with two
Intel Xeon(R) Gold 5118 CPUs and 512 GB RAM.

A. Asymmetrical single-ridged slotted waveguide
antenna

Due to the advantages of easy fabrication and
low loss, slotted waveguide antennas have been widely
used. Among these, the asymmetrical slotted waveguide
antenna is not only small in size, but also has good
low sidelobe characteristics [15, 16]. Firstly, a slotted
antenna fed by an asymmetrical single-ridged waveguide
is analyzed to demonstrate the flexibility of the proposed
method. As shown in Fig. 2 and Table 1, the dimensions
of the waveport aperture and antenna model are given

here, and all slots are the same size. The other side of
the antenna waveguide port is connected to a matched
terminator.

The S11 is computed from 8.5 to 9.5 GHz
(11 frequency points). The model is discretized into
7774 quadrilateral elements and expanded into 15418
unknowns using the proposed method. When using tri-
angles for modeling in FEKO, the antenna is discretized
into 17187 meshes and 26949 RWG-MoM unknowns
when using a λ/12 mesh size.

The S parameter and computational statistics com-
parison are depicted in Fig. 3 and Table 2. The proposed
method’s efficiency is much greater than the RWG-MoM

Fig. 2. 3-D model of the slotted waveguide antenna and
dimensions of the single-ridged waveport cross-section.

Fig. 3. Comparison of S parameters of the slotted waveg-
uide antenna.

Table 1: Geometrical parameters of the slotted waveg-
uide antenna. All dimensions are in millimeters (mm)

w w1 w2 l d1 d2
13.72 5.48 4.12 131.9 15.7 4.55

a0 b0 h1 h2 h3 ∆d
0.9 10.15 4.93 7.76 5.79 4.41
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Table 2: Computational statistics of the slotted waveg-
uide antenna when 24 cores are used

Method Present
Method

FEKO
(λ/12)

Number of Unknowns 15418 26949
Memory [GB] 3.5 10.8

Time [s] 1071 4554

Fig. 4. Radiation pattern of the single-ridged waveguide
antenna.

in FEKO. Moreover, the radiation pattern of the slotted
antenna is computed. The operating frequency is set to
8.8 GHz, which is the resonant frequency of the waveg-
uide. As seen in the Fig. 4, the gain of the xoz plane and
the yoz plane agree well.

B. Log-periodic antennas
A log-periodic antenna (LPA) is then analyzed to

illustrate the accuracy and efficiency of the proposed
method. The 3-D model of the antenna is shown in
Fig. 5, and the dimensions of the antenna are listed in
Table 3. The antenna consists of two orthogonal lin-
ear polarization elements and a perfect electric conduc-
tor (PEC) reflector plane. The antenna has the follow-
ing parameters: number of elements N = 18, scaling
factor τ = 0.77, and spacing factor σ = 0.125. The
lengths (ln), widths (wn), and spacings (rn) of the antenna
decrease logarithmically as defined by the geometric
ratio τ and the spacing factor σ [17, 18]. The top two
identical waveguide ports are arranged orthogonally as
feeders:

τ = ln+1/ln = wn+1/wn, (18)
σ = rn/4ln. (19)

The operating frequency of the simulation is carried
out in 1.0 GHz, and the model is discretized into 6140

Fig. 5. 3-D model of the log-periodic antenna.

Table 3: Geometrical parameters of the log-periodic
antenna. All dimensions are in millimeters (mm)

a b c d e
2.5 0.5 3.6 1000.0 18.0
l1 h1 w1 r1 d0

350.0 17.0 16.8 178.0 66.0

bilinear quadrilaterals and 12290 unknowns when using
the proposed method. The model was discretized into
13926 triangular patches in FEKO, and the mesh size
was λ/12, yielding 20869 RWG-MoM unknowns. For
comparison, the result of FEM is also given to verify the
correctness of the proposed method, in which the resid-
ual is set to 0.005.

Figure 6 shows a comparison of the radiation pat-
tern results. It can be observed that the presented method
in this paper has great agreement with FEKO and FEM
within the main lobe, with a small difference below -
20 dB. The computational statistics are summarized in
Table 4. Due to the use of higher-order basis functions,
the number of unknowns can be effectively reduced in
the proposed method compared to the RWG-MoM with-
out losing numerical accuracy. Furthermore, the pro-
posed method has advantages in memory and solution
time.

To further illustrate the effectiveness of the current
approach, we present an example of an LPA array. This
array consists of the five antenna elements mentioned
above and a PEC reflector with a side length of 2000 mm.
Figure 7 and Table 5 show the 3-D model of the array
and the distribution in the xoy plane. Figure 8 gives the
comparison of the radiation pattern between the present
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(a)

(b)

Fig. 6. Radiation patterns of the log-periodic antenna:(a)
xoz plane (b) yoz plane.

Table 4: Computational statistics of the log-periodic
antenna when eight cores are used

Method Present
Method

FEKO
(λ/12)

Number of Unknowns 12290 20869
Memory [GB] 2.3 6.5

Time [s] 119 437

method and FEKO. Additionally, as indicated in Table 6,
the proposed method outperforms RWG-MoM in terms
of memory usage and time required.

Fig. 7. 3-D model of the log-periodic antenna array.

Table 5: Distribution of the log-periodic antenna in the
xoy plane. All dimensions are in millimeters (mm)

Index Coordinates
(1) (0,0)
(2) (500,200)
(3) (200,−500)
(4) (−500,−200)
(5) (−200,500)

Fig. 8. Radiation pattern of the log-periodic antenna
array.

Table 6: Computational statistics of the log-periodic
antenna array when 24 cores are used

Method Present
Method

FEKO
(λ/12)

Number of Unknowns 58332 102799
Memory [GB] 50.7 157.5

Time [s] 1619 14025
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IV. CONCLUSION
The MM/HOMoM method and FEM are hybridized

to analyze waveguide problems with irregular cross-
sections. In order to facilitate integrated modeling, 2-
D FEM is used to solve the eigenvalue problem of the
waveguide. In addition, higher-order basis functions are
used to reduce the unknowns effectively. Results show
that the proposed method has the advantage of high effi-
ciency and high numerical accuracy.

ACKNOWLEDGMENT
This work was supported by the Key Research

and Development Program of Shaanxi (2022ZDLGY02-
03, 2023-ZDLGY-42, 2021GXLH-02) and the Funda-
mental Research Funds for the Central Universities
(QTZX23018).

REFERENCES
[1] A. J. Sangster and H. Wang, “A combined

FEM/MOM technique of coupling and radiating
apertures in rectangular waveguide,” IEEE Trans.
Magn., vol. 31, no. 3, pp. 1554-1557, May 1995.

[2] F. Arndt, “Fast CAD and optimization of waveg-
uide components and aperture antennas by hybrid
MM/FE/MoM/FD methods-state-of-the-art and
recent advances,” IEEE Trans. Microw. Theory
Techn., vol. 52, no. 1, pp. 292-305, Jan. 2004.

[3] R. Bunger and F. Arndt, “Moment-method analysis
of arbitrary 3-D metallic N-port waveguide struc-
tures,” IEEE Trans. Microw. Theory Techn., vol. 48,
no. 4, pp. 531-537, Apr. 2000.

[4] V. Catina, F. Arndt, and J. Brandt, “Hybrid sur-
face integral-equation/mode-matching method for
the analysis of dielectric loaded waveguide filters
of arbitrary shape,” IEEE Trans. Microw. Theory
Techn., vol. 53, no. 11, pp. 3562-3567, Nov. 2005.

[5] V. Catina and F. Arndt, “Fast method-of-moments
analysis of a class of dielectric loaded horns apply-
ing higher-order vector basis functions,” in IEEE
AP-S Int. Antennas Propag. Symp., Honolulu, HI,
pp. 3596-3599, 2007.

[6] Y. Wang, X. Zhao, Y. Zhang, S. W. Ting, T. K.
Sarkar, and C. H. Liang, “Higher order MoM
analysis of traveling-wave waveguide antennas
with matched waveports,” IEEE Trans. Antennas
Propag., vol. 63, no. 8, pp. 3718-3721, Aug. 2015.

[7] Z. Lin, X. Zhao, Y. Zhang, and H. Liu, “Higher
order method of moments analysis of metal-
lic waveguides loaded with composite metallic
and dielectric structures,” IEEE Trans. Antennas
Propag., vol. 66, no. 9, pp. 4958-4963, Sep. 2018.

[8] M. Razmhosseini, R. Zabihi, and R. G. Vaughan,
“Wideband antennas using coaxial waveguide,”
IEEE Trans. Antennas Propag., vol. 69, no. 10, pp.
6273-6283, Oct. 2021.

[9] K. C. Donepudi, J.-M. Jin, and W. C. Chew,
“A higher order multilevel fast multipole
algorithm for scattering from mixed conduct-
ing/dielectric bodies,” IEEE Trans. Antennas
Propag., vol. 51, no. 10, pp. 2814-2821, Oct.
2003.

[10] B. M. Kolundzija, “Electromagnetic modeling of
composite metallic and dielectric structures,” IEEE
Trans. Micro. Theory Techn., vol. 47, no. 7, pp.
1021-1032, July 1999.

[11] P. Yla-Oijala and M. Taskinen, “Application of
combined field Integral equation for electro-
magnetic scattering by dielectric and composite
objects,” IEEE Trans. Antennas Propag., vol. 53,
no. 3, pp. 1168-1173, Mar. 2005.

[12] J. F. Lee, D.K. Sun, and Z. J. Cendes, “Full-wave
analysis of dielectric waveguides using tangential
vector finite elements,” IEEE Trans. Microw. The-
ory Techn., vol. 39, no. 8, pp. 1262-1271, Aug.
1991.

[13] R. D. Graglia, P. Petrini, and A. F. Peterson,
“Full-wave analysis of inhomogeneous waveguid-
ing structures containing corners with singular
hierarchical curl-conforming vector bases,” IEEE
Antennas Wireless Propag. Lett., vol. 13, pp. 1701-
1704, 2014.

[14] K. Zhang, C.-F. Wang, and J.-M. Jin, “Broadband
monostatic RCS and ISAR computation of large
and deep open cavities,” IEEE Trans. Antennas
Propag., vol. 66, no. 8, pp. 4180-4193, Aug. 2018.

[15] W. Wang, S. S. Zhong, Y.-M. Zhang, and X.-
L. Liang, “A broadband slotted ridge waveguide
antenna array,” IEEE Trans. Antennas Propag., vol.
54, no. 8, pp. 2416-2420, Aug. 2006.

[16] V. V. Zemlyakov, G. F. Zargano, A. A. Gadzieva,
and S. V. Krutiev, “Microwave slot antenna based
on asymmetrical ridged waveguide,” Int. Conf.
Antenna Theory Techn., pp. 193-195, Sep. 2013.

[17] O. Sushko, S. Piltyay, and F. Dubrovka, “Sym-
metrically fed 1–10 GHz log-periodic dipole
antenna array feed for reflector antennas,” in 2020
IEEE Ukrainian Microw. Week (UkrMW), Kharkiv,
Ukraine, pp. 222-225, 2020.

[18] H. Qi, “Elimination of anomalous resonances in
coaxial-fed LPDA and its array with integrated Φ-
shaped balun,” IEEE Trans. Antennas Propag., vol.
71, no. 11, pp. 9000-9005, Nov. 2023.



95 ACES JOURNAL, Vol. 40, No. 02, February 2025

Ning Ding received the B.S. degree
from Xidian University, Xi’an,
China, in 2017, and is currently
working toward the Ph.D. degree
at Xidian University. His current
research interest is computational
electromagnetics.

Zhongchao Lin received the B.S.
and Ph.D. degrees from Xidian
University, Xi’an, China, in 2011
and 2016, respectively. In 2016, he
joined Xidian University as a Post-
Doctoral Fellow, where he was lately
promoted as an Associate Professor.
His research interests include large-

scale computational electromagnetics, scattering, and
radiation electromagnetic analysis.

Lei Yin was born in Yinchuan,
Ningxia, China, in 1995. He received
the B.S. degree in electronic and infor-
mation engineering from Xidian Uni-
versity, Xi’an, China, in 2017. He is
currently pursuing the Ph.D. degree
with Xidian University, Xi’an, China.
His current research interests include

computational electromagnetic, parallel computing, and
electromagnetic radiation and coupling.

Xunwang Zhao received the B.S.
and Ph.D. degrees from Xidian Uni-
versity, Xi’an, China, in 2004 and
2008, respectively. He joined Xid-
ian University in 2008 as a Faculty
Member, where he was lately pro-
moted as a Full Professor. He was a
Visiting Scholar with Syracuse Uni-

versity, Syracuse, NY, USA, from December 2008 to
April 2009. As a Principal Investigator, he works on
several projects, including the project of NSFC. His
research interests include computational electromagnet-
ics and electromagnetic scattering analysis.

Yu Zhang received the B.S., M.S.,
and Ph.D. degrees from Xidian Uni-
versity, Xi’an, China, in 1999, 2002,
and 2004, respectively. In 2004, he
joined Xidian University as a Fac-
ulty Member. He was a Visiting
Scholar and an Adjunct Professor
with Syracuse University, Syracuse,

NY, USA, from 2006 to 2009. As a Principal Investiga-
tor, he works on projects, including the project of NSFC.
He has authored four books, Parallel Computation in
Electromagnetics (Xidian University Press, 2006), Par-
allel Solution of Integral Equation-Based EM Problems
in the Frequency Domain (Wiley IEEE, 2009), Time
and Frequency Domain Solutions of EM Problems Using
Integral Equations and a Hybrid Methodology (Wiley,
2010), and Higher Order Basis Based Integral Equation
Solver (Wiley, 2012), as well as more than 100 journal
articles and 40 conference papers.


	INTRODUCTION
	THEORY AND FORMULATION
	MM/HOMoM hybrid method
	Analysis of waveguide eigenvalue problem

	NUMERICAL EXAMPLE
	Asymmetrical single-ridged slotted waveguide antenna
	Log-periodic antennas

	CONCLUSION

