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Abstract – A spatial modes filtering (SMF) finite-
element time-domain (FETD) method with periodic
boundary condition (PBC) is proposed for efficiently
analyzing the electromagnetic characteristics of 3-D
periodic structures with partial fine structures. The sys-
tem matrices of FETD become asymmetrical because
of the introduction of PBC, which prevents the sys-
tem eigenvalue analysis. By decomposing the system
matrix into PBC-independent and PBC-related parts, the
unstable spatial modes under the given large time step
can be found and removed from the symmetrical PBC-
independent system matrices. Then the system matrix
equation and time marching of the SMF-FETD and
SMF-FETD method based on local eigenvalue solution
(LES-SMF-FETD) with PBC are obtained. Numerical
results illustrate the efficiency and effectiveness of the
SMF-FETD method with PBC based on non-uniform
mesh for analyzing the transport properties of 3-D peri-
odic structures.

Index Terms – 3-D periodic structures, finite-element
time-domain (FETD), Floquet theorem, non-uniform
mesh, periodic boundary condition (PBC), spatial modes
filtering (SMF).

I. INTRODUCTION
Periodic structures [1, 2] are formed by finite or infi-

nite periodic arrangements of identical units and have
a vast range of applications, such as gratings [2, 3],
photonic bandgap [4, 5] and electromagnetic bandgap
[5–8] structures. For infinite periodic structures, the Flo-

quet theorem and periodic boundary condition (PBC)
can be applied to approximate the electromagnetic prop-
erties of the entire periodic structure by analyzing one
unit cell of the periodic structure. However, if the peri-
odic structure contains complex and fine structures, the
space step size of finite-element time-domain (FETD)
will be tiny to capture them accurately when discretiz-
ing the computational domain, increasing the number of
grids and memory demand by a considerable amount.
At the same time, FETD is limited by the stability con-
dition [9, 10]. The minimum space step restricts the
time step and has to be very small, which leads to
long calculation time and low efficiency. Recently, the
spatial modes filtering (SMF) method has been pro-
posed and introduced to FETD to break through the
stability condition [11–12] by filtering out the spatial
modes that are unstable under the given larger time
step from the numerical system, substantially improv-
ing computation efficiency. Later, the spatial modes fil-
tering finite-element time-domain (SMF-FETD) method
based on local eigenvalue solution (LES-SMF-FETD) is
proposed, also combined with non-uniform grids [13–
15]. The use of non-uniform grids not only ensures
the discretization quality required by fine structures
but also avoids over-division in the region without fine
structures, which has a natural advantage in the analy-
sis of periodic structures with complex fine structures.
Current research is limited in 2-D periodic structures
[16], the study of the transport properties of 3-D peri-
odic structures with higher practical value has not been
carried out.
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In this paper, PBC is introduced to the SMF-FETD
method with non-uniform grids for efficiently analyzing
the electromagnetic characteristics of 3-D periodic struc-
tures with partial fine structures. Through the

Floquet theorem, the correspondence of the elec-
tric field components of the periodic boundary elements
is given in detail. The mass and stiffness matrices of
FETD with PBC no longer maintain the symmetric pos-
itive definite or symmetric semi-normal definite char-
acteristic, which is a prerequisite for the SMF method.
To this end, the new system matrix is split into two
parts, PBC-independent and PBC-related, then through
the generalized eigenvalue decomposition of the PBC-
independent system and the unstable spatial modes are
filtered out. Then the system matrix equation and time
marching of the SMF-FETD and LES-SMF-FETD with
PBC are obtained. PBC effectively reduces the compu-
tational domain of the periodic structure to one peri-
odic unit cell then, combined with the non-uniform mesh
scheme, the number of unknowns is further reduced
while ensuring the mesh accuracy, effectively improving
the computational efficiency of the SMF-FETD method
for periodic structures. The accuracy of the SMF-FETD
with PBC is validated by calculating the transmittance of
an infinitely large dielectric plate. Furthermore, the effi-
ciency of the proposed method is demonstrated through
analysis of the transmission spectrum of the metallic
grating with grooves.

II. NUMERICAL FORMULATIONS
A. Periodic boundary condition in 3-D

A simple periodic structure model with an infinite
number of periodic unit cells T along the z-direction is
shown in Fig. 1 (a), according to the Floquet theorem:

f (x,y,z+T, t) = f (x,y,z, t) (1)
which means the physical structure and the field distribu-
tions of each unit cell T are the same. The computational

(a) (b)

Fig. 1. (a) Model of a simple periodic structure and its period T and (b) edges distribution of elements on periodic
boundary.

domain is restricted to any single T by PBC accord-
ing to (1), then the electromagnetic characteristics of the
entire periodic structure can be equated by this unit cell.
Because of the PBC, the boundary elements b and c are
located inside the computational domain, and a and d are
located outside. Elements a and c differ by one period T
in the z-direction, as do b and d. At this time, the electric
field distributions on the boundary elements satisfy the
following:
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where i denotes the edge number of the boundary ele-
ments.

The edges at the periodic boundary participate in
the construction of the computational domain’s inner
and outer boundary element matrices. As shown in
Fig. 1 (b), take the PBC-Top surface as an example,
the edges of the PBC surface not only participate in
the b-element matrix construction as the 3#, 4#, 6#,
and 8# edges but also participates in the a-element
matrix construction as the 1#, 2#, 5#, and 7# edges.
When forming the system matrices, according to (2),
the coupling relationship of the a-element edges can be
directly replaced by the corresponding edges of the c-
element. In other words, introduction of PBC is real-
ized by the extra special coupling relationship between
the b-elements and c-elements, which will change the
number and distribution of the non-zero elements of
the original system mass matrix and stiffness matrix of
FETD.
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Fig. 2. Partial non-zero elements distribution of Tnew.

B. SMF-FETD with periodic boundary conditions
With the new system mass matrix Tnew and stiffness

matrix Snew, the matrix equation of FETD with PBC can
be written as:

Tnew
d2e
dt2 +Snewe = j, (3)

where e denotes the correlation coefficient vector of the
edge basis function and j denotes the excitation vec-
tor. The core of the SMF-FETD method is the general-
ized eigenvalue analysis of the numerical system, which
requires that the system matrices must be symmetric pos-
itive or semi-positive definite [12]. Due to the non-zero
elements distribution given in Fig. 2, the new non-zero
elements caused by the introduction of PBC may located
at the same or different positions with the original non-
zero elements of T, resulting in the asymmetric charac-
teristic of Tnew. Similar to Tnew, Snew is also asymmet-
ric and its non-zero elements distribution is more com-
plex. Split the asymmetric matrices Tnew and Snew into
two parts as shown in (4), symmetric matrices T and S
are not relevant to PBC, while asymmetric matrices TPBC
and SPBC are:

Tnew = T+TPBC
Snew = S+SPBC.

(4)

Performing a generalized eigenvalue analysis on (3),
the matrix composed of the eigenvectors of unstable spa-
tial modes under a given large time step is denoted as Φh.
Combined with (4), the matrix equation of SMF-FETD
with PBC can be obtained:

Tnew
d2e
dt2 +

(
S(I−ΦhΦh

TT)+SPBC
)

e = j. (5)

The central-difference scheme with the explicit
solution is used to discrete time variables of (5), the time
marching of SMF-FETD with PBC is as follows:

Tnewen+1 = 2Tnewen −Tnewen−1 +∆t2jn

−∆t2 (SPBC −S(I−ΦhΦh
T)
)

en. (6)
Further through the LES [13], by replacing Φh in

(5) and (6) with Ψh, which is composed of the eigenvec-

tors of the unstable modes obtained from the local sys-
tem containing the fine edges and their coupling coarse
edges, the matrix equation and time marching of the
LES-SMF-FETD with PBC can be obtained.

III. NUMERICAL RESULTS
A. Transmission coefficient of an infinitely large
dielectric plate

The planar Gaussian pulse with the relevant parame-
ters τ = 6×10−9s and t0 = τ is incident vertically along
the y- direction on an infinitely large dielectric plate of
thickness 0.1 m and relative permittivity εr = 25. The
mesh distribution of different computational models and
boundary settings are shown in Fig. 3, the absorbing
boundary condition (ABC) is set in the y-direction while
the PBC is set in other directions. The mesh scale of

Fig. 3. Mesh distribution of computational domain.
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model A is 0.02 m×0.02 m×0.02 m resulting in 45144
unknowns, while the mesh scales of model B are 0.02
m×0.02 m×0.02 m and 0.02 m×0.1 m×0.02 m, result-
ing in 10044 unknowns. As shown in Fig. 4, the trans-
mission coefficients obtained from different methods are
in good agreement with the analytical solution, verifying
the correctness of introducing PBC into the SMF-FETD
with non-uniform mesh scheme.

Fig. 4. Transmission coefficient of infinite dielectric plate
obtained from different methods.

B. Transmission characteristics of the metallic grat-
ing with grooves

As shown in Fig. 5, a metallic grating is composed
of periodically arranged metal blocks with grooves. Its
geometric parameters are: Cx = 200 nm, Cy = 200 nm,
Cz = 80 nm, a = 80 nm, b = 80 nm, and T = 400 nm.
The computational domain is discretized by 2300 non-
uniform grids, where the scale of fine grid is 40 nm × 8
nm × 40 nm and the coarse grid is 40 nm × 40 nm ×
40 nm. The maximum frequency of the planar Gaussian
pulse is fmax = 750THz with relevant parameters τ =
1
/
(2 fmax) and t0 = 3τ .

The transmission spectrums of the periodic metal-
lic grating obtained from different methods are in good
agreement, as shown in Fig. 6. The computational statis-
tics of different methods are given in Table 1. SMF-
FETD effectively expands the time step and improves
the efficiency compared with FETD but requires high
time and memory for global eigenvalue solution since
the size of the system matrix is 8441×8441. LES-SMF-
FETD effectively improves the deficiency of SMF-FETD
through the LES method. The local system matrix of
size 3554×3554 contains the relationships between fine
edges and their coupled coarse edges, which reduces the
time and memory requirements for calculation. Thus,

Fig. 5. Schematic diagram of one period of the 3-D
metallic grating with an indentation.

Fig. 6. Transmission spectrums of the metallic grating
obtained from different methods.

LES-SMF-FETD takes advantage of the SMF method to
a greater extent.

The effect of the variation of geometric parameters
on the transmission spectrum of the metallic grating is
analyzed. As shown in Fig. 7 (a), when Cx = 200 nm,
Cy = 200 nm, and Cz = 160 nm, as T increases, the fre-
quency of the transmission peak becomes lower and the
peak value decreases. When T = 800 nm, Cy = 200 nm,
and Cz = 160 nm, as shown in Fig. 7 (b), as Cx increases,
the frequency of transmission peak becomes higher
but the peak value decreases. At the same time, when
Cx = 440 nm and Cx = 520 nm, parts of electromagnetic
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Table 1: Simulation parameters of different methods

Method Time Step
(fs)

Total Time/
Eigenvalue

Analysis Time (s)

Memory
(MB)

FETD 0.0100 425.42/— 34.78
SMF-FETD 0.0468 332.72/167.83 3538.30
LES-SMF-

FETD 0.0468 113.76/18.96 629.15

(a)

(b)

Fig. 7. (a) Effect of T on the transmission spectrum and
(b) effect of Cx on the transmission spectrum.

waves with wavelength ranges of 400 nm to 700 nm are
also transmitted.

IV. CONCLUSION
In this paper, the periodic boundary is introduced

into the 3-D SMF-FETD and LES-SMF-FETD method
with non-uniform meshes by the Floquet theorem. The
matrix asymmetry caused by PBC is solved by split-

ting the system matrix into two parts: PBC-independent
and PBC-related. Unstable spatial modes are filtered
out from the PBC-independent system through the SMF
method. The SMF-FETD and LES-SMF-FETD with
PBC are applied to the simulation analysis of the trans-
mission properties of 3-D periodic structures. The cor-
rectness of the SMF-FETD method with PBC is ver-
ified by calculating the transmission coefficient of an
infinite dielectric plate. The calculation of transmission
spectrums of the metallic grating with grooves illustrates
the efficiency and accuracy of the SMF-FETD and LES-
SMF-FETD methods with PBC for simulating 3-D peri-
odic structures.
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