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Abstract – Prediction of electromagnetic fields scat-
tered from objects is of great significance in vari-
ous fields. Traditional computational electromagnetic
solvers, which are mesh-based, are expensive and time-
consuming. The deep learning technique becomes an
alternative method of the prediction of scattered fields
with high efficiency. However, the data-driven deep
learning method requires a large data set and lacks
robustness. For complicated scattering problems, the
construction of a large training data set is a hard task. By
considering physics-constraints, physics-informed neu-
ral networks (PINNs) can solve the partial differential
equation (PDE) problem with a small data set and also
provide a physical explanation. In this paper, the PINNs
are employed to solve the scattering of a plane wave
by a three-dimensional object with Maxwell’s equations
being physical constraints. In the calculation, a sphere
and an ellipsoid are taken as examples, and the effects
of the network parameters (including the number of hid-
den layers, and the number of data sets) are mainly dis-
cussed. The results have practical applications in many
fields such as radar detection, biomedical imaging, and
satellite navigation.

Index Terms – electromagnetic scattering, Maxwell’s
equations, physics-informed neural network.

I. INTRODUCTION
Many practical applications in medicine, aerospace,

communication, and remote sensing [1–4] involve the
electromagnetic scattering by objects. The electromag-
netic scattering problem refers to the study of the elec-
tromagnetic response resulting from the incident elec-
tromagnetic waves given the target and environmen-
tal information. Numerical methods can accurately pre-
dict the scattered field distribution of an isolated object.
In the past developments, computational electromagnet-
ics have provided the basis for solving many practi-
cal problems without analytic counterparts, and have
become a popular mainstream approach for a wide range
of researchers. However, traditional computational elec-
tromagnetic solvers such as the finite difference time
domain (FDTD) [5, 6], the finite-element method (FEM)
[7], and the finite difference frequency domain (FDFD)
[8] are based on dividing the solution domain into a
network of differences, and replacing the continuous
solution domain with a finite number of mesh nodes.
This method requires discretization and is solved by
meshing the problem area. However, in many practi-
cal problems, the region is often not a regular and
easy-to-fractionalise geometric region, and it is difficult
to generate a mesh. Thus mesh-based methods cannot
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achieve good results and are very time-consuming and
computationally expensive [9].

Meanwhile, as artificial intelligence (AI) technol-
ogy explodes, researchers are trying to apply neural net-
works to computational electromagnetics as a replace-
ment method for predicting scattered fields. Deep learn-
ing (DL) methods such as convolutional neural networks
(CNN), recurrent neural networks (RNN), and gener-
ative adversarial networks (GANs) have led to amaz-
ing advances in the field of computational physics in
modeling physical learning agents [10]. Deep learning
techniques can identify the hidden rules of the ’action-
reaction’ behavior of the control system through a cer-
tain learning process [11], which is based on the prin-
ciple of establishing a functional mapping between the
input data and the output data. The optimization capa-
bilities and coded boundary conditions of deep learning
can improve the accuracy and efficiency of electromag-
netic simulations by capturing complex behaviors, pro-
viding implicit representations, enabling generalization,
reducing computational costs, and enabling efficient par-
allelization. Deep learning models are capable of cap-
turing the intricate nonlinear relationships in data. By
encoding boundary conditions that are critical in electro-
magnetic simulations, models can learn complex behav-
iors and interactions at the boundary more efficiently
than traditional interpolation techniques. This allows for
a more accurate representation of electromagnetic fields
and their propagation. At the same time, the deep learn-
ing model can generalize from limited training data to
unknown scenarios. Once trained on a different set of
boundary conditions, the model can accurately predict
the electromagnetic field for new boundary conditions
outside the training dataset. This generalization capabil-
ity greatly improves the accuracy of the simulation, espe-
cially when it is impractical or costly to obtain a large
number of training samples. In contrast, traditional func-
tion interpolation techniques typically require a dense
grid of points to accurately represent the electromag-
netic field, which can lead to costly simulation calcula-
tions. Various studies have shown that machine-learning-
based algorithms have promising applications in the field
of solving partial differential equations [5], which can
largely reduce the memory required for computation and
are simple and easy to implement and can well meet
the needs of electromagnetic properties for engineer-
ing applications. Traditional deep learning methods are
purely data-driven and require large datasets for train-
ing. However, for some complex scatterers, large train-
ing data sets are not available. Also, in many physics and
engineering fields, these training data often imply partial
a priori knowledge (e.g., electric field data satisfying the

Maxwell system of equations), but the pure data drive
ignores this partial knowledge.

The limitations of the above methods have largely
contributed to the emergence of physics-informed neural
networks (PINNs). Lagaris et al. [12] pioneered the sim-
ilarity between neural network training and solving par-
tial differential equations, and neural networks of physics
knowledge were proposed for solving Maxwell’s set of
equations for scattering problems. In this case, the net-
work constructs a mapping of spatial and temporal coor-
dinates to the corresponding electromagnetic field at that
point. At the same time, the gradient of the electric
field concerning the spatial coordinates can be calculated
quickly by using the automatic differentiation algorithm,
which speeds up the numerical calculation of the par-
tial differential equation. Compared with the standard
numerical methods in traditional computational electro-
magnetics, the computational efficiency is significantly
improved. In 2019, Raissi [13] classifies the model equa-
tion as a physical driver as a regularization term and
encodes it into the neural network by adding the loss of
the control equation and the loss of the boundary condi-
tions and initial conditions to the loss function. Under the
condition of the small dataset, we successfully learned
a model with stronger generalization ability. It not only
learns the distribution law of training data samples like
traditional neural networks, but also learns the physi-
cal laws described by mathematical equations, and can
learn more generalized models with fewer data samples,
which solves the difficulties of decision-making and pre-
diction caused by the unavailability of traditional deep
neural networks and the scarcity of data. In summary,
the PINNs have great advantages in the field of compu-
tational electromagnetics, and the development prospects
are very promising in saving memory, improving pre-
diction accuracy, and solving high-dimensional complex
problems.

In this contribution, we build a fully connected
neural network, encode physical information such as
Maxwell’s equations and boundary conditions as con-
straints into the neural network, and study the electro-
magnetic scattering from a three-dimensional object by
training the built network model with a sphere and an
ellipsoid as examples. We compare the prediction results
based on the PINNs method with the analytical solution
by Mie theory (for sphere ) or numerical results by FDFD
(for ellipsoid) to verify the feasibility and accuracy of our
work, and the effects of network parameters are mainly
discussed. The full paper is divided into four parts, and
in the second part, we introduce our proposed PINNs. In
the third part, we give the simulation results of PINNs
and discuss the effects of network structure and hyperpa-
rameters on the results. The fourth part is a summary of
the paper.
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II. METHODOLOGY AND FORMULATION
A. Deep learning framework

In this paper, we propose a deep learning method
for solving Maxwell’s equations, using the power-
ful optimization capability of deep learning to solve
the frequency-domain electromagnetic field. In this
approach, we encode the boundary conditions (BC),
and Maxwell’s equations as regularization terms of the
network so that it approximates the analytic solution
infinitely. According to the electromagnetism unique-
ness theorem [14], Maxwell’s equations can be solved
uniquely for known boundary conditions. Thus, we suc-
cessfully transformed an electromagnetic forward mod-
eling problem into an optimization process.

B. Details and implementation
Assuming a time dependence ejωt , the scattered

magnetic field satisfies the following vector wave equa-
tion:

∇
2Hscat +ω

2
µεHscat = ω

2 (µ0ε0 −µε)Hinc, (1)

where, ω is the angular frequency, µ is the magnetic per-
meability, ε is the electric permittivity, and µ0 and ε0
are the magnetic permeability and electric permittivity of
a vacuum, respectively. Hscat and Hinc are the scattered
and incidence magnetic fields, respectively.

Next, we will use the PINNs to solve the vector wave
equation (1). Figure 1 shows a schematic of the neu-
ral network layout. We first define a network NN with
parameters θ to represent the surrogate of the equation
solution.

Due to the frequency domain approach, in the
PINNs model shown in Fig. 1, the input to the net-
work is the spatial coordinates of the solution area with-
out temporal information, and the output is the real and
imaginary parts of the scattered magnetic field, which is
denoted by uNN in Fig. 1.

Therefore, the loss function can be divided into three
parts, which are Lossd , Lossb, and Lossm:

Losstotal = Lossd +Lossb +Lossm, (2)

Fig. 1. Representative diagram of the physics-informed
neural network model.

where: 

Lossd = 1
Nd

Nd
∑
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i |),
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1
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Nb
∑

i=1
(|HP

i |2),

Lossm = 1
Ns

Ns
∑

i=1
(|g1|2 + |g2|2 + |g3|2),

(3)

and Lossd corresponds to the data constraints. HP
i and

HT
i denote the predicted and true values, respectively.

Lossb corresponds to the boundary condition. Note that,
in our model, we only consider the boundary conditions
at the outer boundary of the perfectly matched layer
(PML), where the scattered magnetic fields vanish and
HP

i = 0. Lossm enforces the vector wave equations at a
certain set of points. Unlike traditional deep learning,
this loss function considers physical information con-
straints. Nd , Nb, and Ns denote the residual points for
Lossd , Lossb, and Lossm, respectively.

In this paper, we use Mean Absolute Error (MAE)
to assess model performance. MAE is a common metric
used in regression problems to assess the performance
of predictive models. It measures the average absolute
difference between the predicted and actual values in
the data set. The MAE does not cancel out positively or
negatively because the deviation is absolutised, thus, the
mean absolute error better reflects the actual situation of
the prediction value error.

To define the functions g1, g2, and g3 in equation
(3), the object is assumed to be surrounded by a PML to
prevent the wave from reflecting from the boundary and
re-entering the simulation domain.

In this paper we use the stretched-coordinate PML
(SC-PML), and g1, g2, and g3 can be defined as:

g1 = 1
sx

∂

∂x

(
1
sx

∂Hscat,x
∂x

)
+ 1

sy
∂

∂y

(
1
sy

∂Hscat,x
∂y

)
+ 1

sz
∂

∂ z

(
1
sz

∂Hscat,x
∂ z

)
+ω2µεHscat,x

−ω2 (µ0ε0 −µε)Hinc,x,

g2 = 1
sx

∂

∂x

(
1
sx

∂Hscat,y
∂x

)
+ 1

sy
∂

∂y

(
1
sy

∂Hscat,y
∂y

)
+ 1

sz
∂

∂ z

(
1
sz

∂Hscat,y
∂ z

)
+ω2µεHscat,y

−ω2 (µ0ε0 −µε)Hinc,y,

g3 = 1
sx

∂

∂x

(
1
sx

∂Hscat,z
∂x

)
+ 1

sy
∂

∂y

(
1
sy

∂Hscat,z
∂y

)
+ 1

sz
∂

∂ z

(
1
sz

∂Hscat,z
∂ z

)
+ω2µεHscat,z

−ω2 (µ0ε0 −µε)Hinc,z,

(4)

where sx, sy, and sz are parameters to define PML.
The partial derivative of equation (4) can be obtained
using automatic differentiation, which can be achieved
by using the function torch.autograd.grad.

Then the network NN is trained to find the best
NN parameters (θ ∗) by minimizing the total loss
defined by equation (2) via gradient optimizers, such
as Adam and L-BFGS, until the loss is smaller than a
threshold ε .
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In our simulation, a fully connected neural network
NN is selected, the input of the network is spatial coor-
dinates, and the output is the real and imaginary parts of
the magnetic field, i.e., in the case of a sphere, the net-
work input is three-dimensional (x,y,z) and the output
is six-dimensional (Re(Hi) and Im(Hi) with i = x,y,z).
The network has many hidden layers and each hidden
layer contains several neurons. Meanwhile, we use the L-
BFGS algorithm for optimization, and the spatial coordi-
nate points of each random sampling point are generated
by Latin hypercube sampling, which is a very practical
sampling method that can be achieved by calling func-
tion pyDOE, lhs.

III. NUMERICAL RESULTS AND
DISCUSSION

In this section, we use the neural network given
in Section II to simulate electromagnetic scattering by
three-dimensional objects. After the neural network is
first verified by the comparison of its results with the
analytical results calculated by Mie theory by taking a
sphere as the example of an object, the effects of the
number of labeled data and network structure are mainly
discussed.

Next, the method is used for the electromagnetic
scattering by an ellipsoid.

A. Validation
To validate the feasibility of our proposed net-

work, we choose a three-dimensional homogeneous

(a) Re(HP
z ) (b) Re(HT

z ) (c) |Re(HP
z )−Re(HT

z )|

(d) Im(HP
z ) (e) Im(HT

z ) (f) |Im(HP
z )− Im(HT

z )|

Fig. 2. Simulation results of the electromagnetic field in xoy plane.

sphere as an example to study the electromagnetic
response.

In the calculation, the radius and the refractive index
of the particle are a = 2λ with λ being the wavelength
and m1 = 1.51, respectively.

The incident wave is a transverse magnetic (TM)
polarized plane wave propagating along the x-axis, and
its wavelength is λ = 2π . We set Nb = 5000, Ns = 20000,
and Nd = 10000. The spatial coordinates of all ran-
domly sampled points are generated using Latin hyper-
cube sampling.

All labeled data are calculated using Mie theory. We
use a fully connected neural network, which contains
four hidden layers and has 250 neurons per layer. In sim-
ulation, we take the ratio of training set and test set as 9:1.

Figures 2–4 give the simulated magnetic fields in
xoy, xoz, and yoz planes, respectively.

In each figure, the black circle indicates the object
boundary.

Each figure includes six sub-figures, which are
divided into two rows and three columns. The upper row
gives the real part of Hz, and the lower row is the imagi-
nary part. The left column gives the results predicted by
PINNs (denoted by superscript P), the middle column
gives the ground true results by the Mie theory (denoted
by superscript T ), and the right column gives the
errors.

It can be observed from the first and second columns
of Fig. 2 that in the xoy plane the results predicted by
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Fig. 3. Simulation results of the electromagnetic field in xoz plane.
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Fig. 4. Simulation results of the electromagnetic field in yoz plane.

the PINNs are in good agreement with the ground true
values. From the right column of Fig. 2, we can see
that the maximum absolute errors for the real and imag-
inary parts of Hz are respectively about 0.16 and 0.15,

which correspond to the maximum relative errors about
2.5% and 1.5%. This indicates that the prediction accu-
racy of the network structure we built is high enough to
achieve the results we expected. From xoz (Fig. 3) and
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Fig. 5. Simulation results for the xoy plane electromagnetic field of an ellipsoid.

Fig. 6. Simulation results for the xoz plane electromagnetic field of an ellipsoid.

yoz (Fig. 4), we can also find the high accuracy of the
PINNs.

It can be seen from the third column of Fig. 3 that the
maximum absolute errors of the real and imaginary parts
of Hz in the xoz plane are about 0.18 and 0.19, which cor-
respond to the maximum relative errors 3% and 1.9%.
Similar analysis shows that in the yoz plane the maxi-
mum absolute errors of the real and imaginary parts of
Hz are about 0.1 and 0.04, which correspond to the max-
imum relative errors 5% and 2.5%.

B. Effect of labeled data
Theoretically, increasing the number of labeled data

can lead to a more improved approximation of the neu-

ral network during training. Therefore, we investigate the
effect of different amounts of labeled data on the predic-
tion results by PINNs. In the calculation, all other con-
ditions are consistent, and the number of labeled data
varies. All the labeled data are calculated using Mie
theory.

Table 1 gives the average absolute errors of results
by PINNs with respect to that by Mie theory. The table
has three columns. The first column is the number of
labeled data. The second and third columns give the
errors of the real and imaginary parts of Hz, respec-
tively. From Table 1, we can see that the prediction
accuracy gradually increases as the number of labeled
data increases. This says that by adding labeled data



109 ACES JOURNAL, Vol. 40, No. 02, February 2025

Table 1: Average absolute error versus labeled data
number

Data ErrorHzr ErrorHzi
5000 5.193×10−3 4.746×10−3

10000 4.249×10−3 4.055×10−3

20000 3.523×10−3 3.279×10−3

we can obtain predicted results with higher accuracy. A
reminder that in our calculation, the object is a sphere
and the ground true results can be easily obtained using
Mie theory. However, if the object is very compli-
cated, it is hard to obtain a large number of labeled
data.

C. Effect of network architecture
We also need to investigate the effect of param-

eter settings and the structure of neural networks on
prediction accuracy. We vary the number of hidden
layers (NL) and the number of neurons per layer (NN) to
observe the change in prediction accuracy and evaluate
the network training effect while keeping other param-
eters constant. The average absolute errors of Hz are
shown in Table 2. The table has four columns and four
rows. The first column gives the number of hidden lay-
ers NL, and the second to fourth columns gives the errors
for various number of neurons NN . The first row gives
the number of neurons NN , and the second to fourth
rows gives the errors for various number of hidden lay-
ers NL. Note that all cells except the first row and col-
umn have two numbers. The upper number is the error of
the real part of Hz, and the lower number is that for the
imaginary part. As we expected, the network prediction
accuracy improves as the number of layers and neurons
increases.

Table 2: Average absolute error versus number of hidden
layers (NL) and neurons in each layer (NN)

NL

NN 150 200 250

3 Layers
1.253×10−2 5.351×10−3 6.674×10−3

1.167×10−2 5.024×10−3 6.005×10−3

4 Layers
7.924×10−3 5.035×10−3 3.523×10−3

7.625×10−3 4.625×10−3 3.279×10−3

5 Layers
5.190×10−3 4.692×10−3 3.429×10−3

4.713×10−3 4.326×10−3 3.248×10−3

D. Further expansion
To explore the applicability of the proposed network

in different scenarios, we also briefly investigate the elec-
tromagnetic response of 3D ellipsoidal particles. In the
calculations, the major axis and minor axis of the ellip-
soidal particles are a = b = 3π and c = 4π , respectively,
and all other parameters are the same as those of the
spherical particles.

The simulated magnetic fields in the xoy and xoz
planes are given in Figs. 5 and 6, respectively. Unlike
the plot for the sphere, the middle column shows the true
result derived by the FDFD (denoted by superscript T ).

It can be seen that the predicted values of PINNs are
in better agreement with the true values in the xoy and
xoz planes.

From the right column of Fig. 5, we can see that
the maximum absolute errors for the real and imaginary
parts of Hz are respectively about 0.2 and 0.1, which cor-
respond to maximum relative errors of about 10% in both
cases.

From xoz (Fig. 6), we can see that the maximum
absolute errors for the real and imaginary parts of Hz are
respectively about 0.1 and 0.2, which correspond to the
maximum relative errors about 5% and 10%.

The errors are concentrated at the edge positions of
the ellipsoid, which we analyse to be due to the disconti-
nuity of the dielectric constant at the edge positions. The
PINN predictions match the true values at all positions
except the edge position.

This shows that the prediction accuracy of our con-
structed network structure can reach our expected results.

IV. CONCLUSION
The electromagnetic scattering by a three-

dimensional target is investigated using physics-
informed neural networks (PINNs). Under the physical
constraint of Maxwell’s equations, the total magnetic
fields of a TM plane wave scattering by a homogeneous
sphere is predicted with high accuracy. The effects of
the number of labeled data, and network structures on
the prediction results are mainly discussed.
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