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Abstract — Based on a hybrid method of finite-difference
time-domain (FDTD) and time-domain physical optics
(TDPO), this study employs a sparse sampling technique
in near-to-far-field calculations to improve the efficiency
of electrical large target computation. In the conventional
hybrid method, the transformation from the near-field of
the FDTD region to the far-field of the TDPO region
involves the largest amount of computation, which can
be reduced by applying the sparse sampling optimization
method jointly in spatial and time domain. Compared to
the conventional method, our proposed algorithm signif-
icantly reduces computation time while maintaining a
negligible increase in error. Several examples are pro-
vided to demonstrate the accuracy and efficiency of our
approach. In particular, a large parabolic antenna whose
aperture size is 100 wavelengths is computed. The com-
putation time is decreased by up to 91.52% of the con-
ventional method while the maximum relative error is -
21.56 dB. Compared with results of CST software, the
method proposed in this work has smaller errors and
excellent applicability.

Index Terms — Far-field, finite-difference time-domain,
hybrid method, parabolic antenna, sparse sampling,
time-domain physical optics.

L. INTRODUCTION

Benefiting from the rapid development of computer
technology and hardware, transient electromagnetic scat-
tering simulations of composite objects with diverse
sizes and material properties are widely applied in fields
such as aerospace [1], radar [2] and marine [3]. In prac-
tical scenarios, the electromagnetic challenges that need
to be addressed are often multiscale in nature [4, 5]. For
instance, a large reflector antenna is much larger than a
typical wavelength, while its feed structure is an electri-
cal fine structure with respect to a typical wavelength.
However, as the electrical scale of the target increases,
the demands in computational time and resource require-
ments by numerical methods become overwhelming.

With the aim of computing the transient electro-
magnetic scattering accurately and efficiently, hybrid
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methods have been proposed by researchers to address
challenges that cannot be remedied easily by a sin-
gle method [6-9]. A hybrid schema combining finite-
difference time-domain (FDTD) [10] and time-domain
physical optics (TDPO) [11], as a representative com-
putational method in time domain, demonstrates signif-
icant advantages in broadband calculations [12]. The
FDTD method enables accurate simulations across var-
ious electromagnetic problems, while the TDPO can
reduce memory requirements and enhance computa-
tional speed. Yang et al. [13] systematically investigated
the hybrid algorithm of FDTD and TDPO, conduct-
ing far-field scattering calculations for composite tar-
gets comprising dipole and perfect electric conductor
(PEC) plates. This method needs small amounts of com-
puter memory and achieves high efficiency compared
to a full wave solution. However, the examples in the
literature are too simple to demonstrate the efficiency.
The antenna models in practical engineering applica-
tions tend to be more complex and larger in scale. As
discussed in [14], the radiation fields of the large sin-
gle reflector calculated by a hybrid method parallelized-
FDTD and parallelized-TDPO, which demonstrated the
ability to simulate a large reflector with dimensions span-
ning hundreds of wavelengths, included cases where the
reflector’s feed is offset. Indeed, conventional hybrid
methods face significant limitations when addressing
multiscale problems, primarily due to excessive com-
putational demands. These challenges often render such
methods either impractical or prohibitively slow, espe-
cially when the antenna aperture exceeds several hun-
dred wavelengths or the feed structure becomes increas-
ingly complex, frequently necessitating the use of paral-
lel algorithms. Furthermore, there is currently a scarcity
of literature offering a comparative analysis of computa-
tion time for such hybrid algorithms.

This paper presents an optimization of the con-
ventional FDTD/TDPO hybrid algorithm by employing
a sparse sampling technique in both spatial and time
domains, which reduces computational workload and
enhances efficiency. Our proposed approach achieves the
computation of large parabolic antennas fed by various
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sources using a serial algorithm, a task previously lim-
ited to parallel algorithms as reported in [14]. Impor-
tantly, the computation time is significantly saved with-
out a substantial increase in errors compared to conven-
tional hybrid algorithms.

The rest of this paper is organized as follows. The
principle of the hybrid method including the formulation
of the coupling between the FDTD method and TDPO
method and the implementation process of organization
have been presented in detail in section II. Through pro-
viding several numerical examples, section III demon-
strates the accuracy and efficiency of the proposed hybrid
method for large composite targets transient electromag-
netic scattering. Finally, conclusions are presented in
section I'V.

I1. BASIC THEORY

When using the FDTD/TDPO hybrid method to
study complex composite objects, the computation
domain is first divided into sub-domains based on config-
uration: the FDTD region containing small-size objects
with fine structures, and the TDPO region containing
large electrical dimensions. Conducting far-field scat-
tering calculations is divided into primary scattering
and secondary scattering. The primary scattered field
involves direct far-field scattering by the FDTD and
TDPO regions, which can be calculated separately using
FDTD and TDPO methods. The secondary scattered
field is due to the mutual-coupling between the FDTD
and TDPO region. The scattered field from one region is
considered to be the incident field on the other region.

The key point of the hybrid algorithm lies in the cou-
pling between the two regions, which is also crucial for
optimization. Let us take the coupling from the FDTD
region to the TDPO region as an example. Firstly, the
magnetic fields on the FDTD extrapolation surface are
calculated using the FDTD method. Then, the magnetic
fields in the TDPO region are computed via near-to-far-
field extrapolation. Finally, the far-fields of TDPO region
are obtained using the TDPO method.

The near-to-far-field extrapolation technique is
based on Kirchhoff’s surface integral representation
(KSIR) [15]. A cubic surface S is selected as the extrapo-
lation surface. The surface S should be closed, enclosing
all sources, and as small as possible. Taking the magnetic
field along the x-axis as an example, assuming a point P
exists outside the surface S, the extrapolated magnetic
field Hy from the FDTD extrapolation surface to the
TDPO calculation domain surface element is:

Hi(rit+71)=

N { (#-R) [HXI(;;J) + Ly aag{m)} }ds/ )

4m Js 1 9Hy (' 1) ’

R Jz
where r is the position vector of the observation point P,

r/ is the position vector of any point on the closed surface
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S, R =r-r1, R = |R|, # is the outward-pointing normal
to the FDTD extrapolation surface, 7 is the retarded time
and c is the speed of light in free space.

At time step n+1, the partial derivatives with respect
to space and time are represented by second-order center
differences:

OHy| HM'(ijko+ 1) —HI'(ij ko~ 1)
dz ko 2Az7 )
(2)
JH, Hn+2(z Joko) —HI (i, j, ko) 3)
Jt t=n+1 2At

H} represents the value of H, at time step n, At is
time-step size, Az is the grid size in the z-direction. Sub-
stituting equations (2) and (3) into equation (1) yields:

Hx’k:Fl(n)+F2(n+l)+F3(n+2), @
where:
Fi(n) = ZA%AJZ’ICO)AU, (5)

ij
H"“(ljk(H»l) H"*l(zjk() 1)

Ac—=
FKn+1 Aii, 6
20+ = +BH,M(”k0) . ()
i, J, k())
Fyn+2) = ZAiz Uik, @)
A= —1/47cR, )
B=1/4nR>. )

Here, A;; is the area of Yee’s cell on the xy plane at
z = ko and R is the distance from each subsurface A;; to
the observation point.

To reduce memory usage and enhance compu-
tational speed, a sequential transfer method [13] is
employed. In this method, for each time step computed
by FDTD, the field values on the extrapolation surface
of the Yee cell are extrapolated to the surface trian-
gular patches of the TDPO region using KSIR. Then,
the contribution from each patch to the far-field obser-
vation point can be immediately computed using the
TDPO method. The far-field values are summed up based
on the time delay between cell-to-patch and patch-to-
observation point until the transient process is com-
pleted.

However, conventional hybrid algorithms face sig-
nificant challenges when dealing with large antenna
apertures and complex feed structures. Large-aperture
antennas are often electrically large, requiring a dense
grid to accurately model the electromagnetic behavior,
which leads to a high grid count. The complexity of the
feed structure further exacerbates this issue by demand-
ing smaller and denser grids to capture the fine details,
which results in an increased computational load. More-
over, the smaller time step required to maintain numeri-
cal stability in such cases can lead to a further increase in
computation time. Moreover, the extrapolation step is the



most time-consuming part of the entire calculation pro-
cess. In each time step, it is necessary to calculate extrap-
olated field values from each Yee cell on the extrapola-
tion surface of the FDTD region to each triangle on the
TDPO region.

Here, we propose two optimization strategies: spa-
tial sparse sampling to reduce grid count and temporal
sparse sampling to enable larger time step. These two
methods can be applied jointly to significantly enhance
computational efficiency.

A. Spatial sparse sampling method

Considering the impact of fine structures on the
accuracy, the grid size of the targets within the FDTD
region is typically set to be small. Consequently, the
number of grids on the extrapolation surfaces becomes
very large, resulting in a significant computational bur-
den and extremely long computation times during near-
field extrapolation. In general, the number of grids on the
extrapolation surfaces K, is in the order of 10* to 10°,
while the order of magnitude of cells in the TDPO region
Mg, 18 10% to 10*. Thus, the total extrapolation time will
be Kgym X My, reaching up to 100 times that of one sin-
gle extrapolation. Consequently, extrapolation becomes
a significant bottleneck in overall computation, partic-
ularly when addressing electromagnetic problems with
electrically small and intricate structures. As an exam-
ple, consider a composite target where Kj,,, is 10000
and My, is 1000. By applying sparse sampling to Ky,
where every two grid points are sampled once, Kj,,;, can
be reduced to 5000. This decreases the total number of
extrapolations from 107 to 5x10°, thereby significantly
reducing the computational cost.

When conducting near-field extrapolation, it is
unnecessary to substitute the value of each cell into equa-
tion (1). The spatial sparse sampling method involves
sampling on the extrapolation surface and then perform-
ing extrapolation. Due to the presence of fine structures
in the feed, the grids on the extrapolation surface will
be dense. However, these overly dense grids are required
because the grid partitioning must fit the structure and
shape of the target. Since the field variations in these
areas are not drastic, selectively extracting grids at inter-
vals on the extrapolation surface for extrapolation calcu-
lations does not affect the collection of field values on the
extrapolation surface outside the FDTD region and thus
does not significantly impact the final results. Therefore,
the extrapolation operation with interval sampling will
not affect the accuracy of the results significantly but can
effectively reduce the computational load.

Taking the xy-plane as an example, Fig. 1 depicts
a schematic diagram of the grid setting when the spa-
tial sampling is set to 3. The black grid lines represent
the original FDTD grid, while the red lines represent the

WANG, CHEN: FAST FDTD/TDPO HYBRID METHOD BASED ON SPATIOTEMPORAL SPARSE SAMPLING

Hij ko) H'(pg.40)

slioko)

B ’(pa qak())

() (b)

Fig. 1. Grid setting (a) without spatial sampling and (b)
with spatial sampling set to 3.

sampling grid. Let H,(i,j,ko) denote the magnetic field on
the original grid, H,’C(p,q,ko) denote the magnetic field on
the sampling grid, s(i,j,ko) denote the area of the original
grid, s/(p,q.ko) denote the area of the sampling grid, M
and N denotes the number of original grids in the x and
y directions, and Ms and Ns denotes the number of sam-
pling grids in the x and y directions, respectively. Then,
we have:

M.N Ms,Ns
Y, Hi(i,jko)s(ijko)~ ), Hi(p,q.ko)s'(p.q;ko)-

i=1,j=1 p=lg=1

(10)

In equation (10), H,’C(p,q,ko) can be approximated

using the average value method. If the number of inter-

vals in the spatial grid is G, then the magnetic field com-

ponents on the sampling grid can be approximated by the
average value method as follows:

| P+G-Lg+G-1

Hx(paQakO) =)

G Hy(i, j. ko). (11)

i=p,j=q
By substituting equations (5), (6) and (7) into equa-
tion (4), the equation can be expressed as:

HE (i, j ko +1) —HE (i, j.ko—1)

MN | Ac= 7A7
Hogy =Y, { +BHI(i, j, ko) Ajj.
Bj=1 | _ g 2 diko) —Hy (i ko)
2At

(12)
Substituting equation (11) into equation (12) gives:

A (pakot )= A (p.g ko—1)
2Az7

Ms,Ns 7 1
< | +BHY (p,q.ko)
Hygy = Z _A H2(p.g.ko)—H2 (p.q.ko) - (13)
Pg=1

t
p+G—1,g+G=1
X Zi:p-,j:q Apg

Here, Ms = INT((M-1)/G) and Ns = INT((N-1)/G).

By comparing equations (12) and (13), the abso-
lute error after sparsification of the spatial grid can be
derived:
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From equation (14), it can be seen that &y,
is mainly influenced by the difference H? (i, j, ko) —
H', (p,q,ko) and the product A,,. Therefore, the error is
likely to increase in two situations: first, where the field
components vary sharply and, second, where the original
FDTD grid is too coarse. Thus, in regions with signifi-
cant field variation, such as at apertures, material bound-
aries and interfaces between different media, the grid dis-
cretization should be appropriately increased to mitigate
the impact of spatial sparsity on the results.

B. Time sparse sampling method

In each time step of the current conventional algo-
rithm, the near-field values are computed first by FDTD,
then the magnetic field in the TDPO region is extrap-
olated using KSIR, and finally TDPO is used to cal-
culate the far-field. The FDTD algorithm must comply
with the Courant-Friedrichs-Lewy (CFL) condition [16]
to guarantee the stability of the solution, which means
that the time-step size of the FDTD algorithm is related
to the minimum grid size in the three spatial directions.
To reduce numerical dispersion caused by spatial dis-
cretization, the maximum grid size in the FDTD method
is typically less than one-tenth of the shortest wave-
length. When the object has fine structures, the minimum
grid size may be only one-hundredth of the wavelength
or even smaller. Therefore, the time step of the FDTD
method is much smaller than that of the TDPO method.
As the time step decreases, the number of time steps
that need to be calculated increases, resulting in a greater
computational load.

According to the time-domain sampling theorem, a
band-limited signal f(f) with a maximum frequency f,
can be uniquely represented by uniformly distributed
samples, provided the sampling interval does not exceed
1/2fnax. The time sparse sampling method optimizes
FDTD by storing the field values on the extrapola-
tion surface every N time steps. Subsequently, near-field
extrapolation is performed using the Kirchhoff surface
integral, and the far-field values for each time step are
computed using the TDPO method. According to the
Nyquist sampling theorem, the sampling interval only
needs to satisfy (N-1)At<1/(2f,4x), Which significantly
reduces the number of iterations required for the extrap-
olation steps. Here At is the time-step length of FDTD
and f;,4x denotes the maximum operating frequency.
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III. NUMERICAL RESULTS

To illustrate the efficiency, accuracy and applicabil-
ity of the proposed approach, we present two numerical
cases. In the first case, a basic composite entity com-
prising both small-scale and large-scale structures rela-
tive to the wavelength is given and simulated. Various
sets of sampling data are configured to assess the influ-
ence of the sampling number on result errors. A com-
parative analysis is conducted between the conventional
FDTD/TDPO approach and the proposed FDTD/TDPO
method, focusing on their efficiency and accuracy. In the
second case, the applicability of the proposed approach
to problems concerning a large parabolic antenna is
demonstrated. Additionally, the findings are corrobo-

rated through validation using the commercial software
CST.

A. Cube and plate

In the first example, we consider a PEC cube located
at a distance of 10A in front of a PEC plate. The metallic
cube has a side length of 1A, while the plate measures
1004 x 1004 x1A. A modulated-Gaussian pulse plane
wave with a frequency band 10~20 GHz is incident
along the z-axis, with the electric field polarized parallel
to x-axis. The result of the hybrid method is compared
with that of FDTD to confirm the accuracy of the hybrid
method. Figure 2 shows the transient far-field scattering
response calculated by the conventional FDTD/TDPO
hybrid method and the FDTD method.

It is evident that the two results are in good agree-
ment. Due to the significant difference of four orders of
magnitude in the field values between the FDTD region
and TDPO region, the results are segmented by time
intervals. Figure 3 (a) depicts the far-field for the time
interval of 0-0.8 ns, representing the primary scattering

20 T T T T
FDTD/TDPO
——FDTD

10 | g

rEV)

-20 I I I 1
0.0 05 1.0 15 20 25

time(ns)

Fig. 2. Far-field in time domain.
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Fig. 3. Far-field for the time interval of (a) 0-0.8 ns, (b) 1-2 ns and (¢) 1.5-2.5 ns.

from the small PEC cube. Figure 3 (b) illustrates the far-
field for the time interval of 1-2 ns, representing the sum
of the primary scattering from the plate and the coupled
field between the plate and the cube. Figure 3 (c) presents
the far-field values after 1.5 ns.

Overall, the backscattering fields of the combined
target computed by two methods match well, with dis-
crepancies emerging only after 1.5 ns. Such discrepan-
cies are mainly attributed to the TDPO method only con-
sidering the induced currents on the plate surface, with-
out considering the edge diffraction fields.

In the two algorithms, the FDTD algorithm took
16.23 hours while the FDTD/TDPO hybrid algorithm
required 144.49 hours, indicating the need for opti-
mization of the hybrid algorithm in terms of compu-
tation time. Therefore, we use spatial sparse sampling
and time sparse sampling methods for optimization, and
focus on analyzing the error in the coupling part of the
results.

First, we fix the time sample at 5. Five sets of data
with spatial sample of 1, 2, 4, 6 and 8 are selected for
comparison over 500 time steps. Figure 4 shows the com-
parison of far-field obtained with different spatial sam-
ples, which are in good agreement. The relative errors of
the far-field calculated with spatial sample of N =2, 4, 6
and 8 compared to the case of no sampling interval (i.e.,
N = 1) are displayed in Fig. 5. The error is defined as a
function of time by:

20log;o(|E(r) — Eg(1)] /max(|Eg(1)])),

where E é (¢) represents the electric field with spatial sam-
ple of N (N>1), and EQ(t) represents the electric field
with spatial sample of 1.

There are no relative error values in the earlier time
segments because the algorithms for computing the pri-
mary scattering are the same, resulting in a relative error
of 0. As can be seen in Fig. 4, the more sampling points
there are, the smaller the error. However, excessive sam-
pling leads to longer computation times, defeating the
purpose of optimizing the algorithm.
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Fig. 4. Comparison of far-fields by different spatial sam-
ples.

Before 1.2 ns, there are no numerical errors in the
earlier time segments because the algorithms for com-
puting the primary scattering are the same, resulting in
an infinitely small relative error. Taking a spatial sam-
pling interval of 2 as an example, as shown in Fig. 3,
a distinct time-domain waveform appears after 1.25 ns.
Correspondingly, in Fig. 5, the relative error undergoes
a rapid change between 1.25 ns and 1.4 ns, increasing to
-128.05 dB, and then stabilizes between -172 dB and -
113 dB. Figure 5 also shows that as the spatial sampling
interval increases, the error slightly increases, though not
significantly. Larger errors tend to occur when the elec-
tric field is near its peaks or troughs, leading to greater
relative error. Conversely, when the electric field is near
zero, the relative error is reduced. Therefore, the relative
error fluctuates rather than remaining constant.

Table 1 presents the computation time and the max-
imum relative error corresponding to different spatial
samples. As the spatial sample increases from 2 to 8§,
the maximum relative error increases from -112.21 dB
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Fig. 5. Relative error of different spatial samples.

Table 1: Computation time and maximum relative error
of different spatial samples

Spatial | Computation Time 1\-[&]&]]1-11]]11
Sample Time (h) Reduction Relative
Error (dB)
1 17.73
2 5.34 1/3.32 -112.21
4 134 1/13.23 -102.86
6 0.39 1/45.46 -88.55
8 0.26 1/68.19 -85.69

to -85.69 dB, while the computation time decreases from
1064.03 min to 15.76 min. When the spatial sample is
set to 10, the time is reduced to 1/67.51 of the origi-
nal, indicating a substantial reduction in time. Although
the increase in error with the larger spatial sample inter-
val is not significant, the substantial reduction in time
greatly enhances the computational capability of the
hybrid algorithm.

Subsequently, we analyze the time sparse sampling.
With spatial sample fixed at 4, five sets of data with time
sample of 1, 2, 4, 8 and 16 are selected for compari-
son over 500 time steps. Figure 6 illustrates the far-field
scattering results for different time samples, while Fig. 7
contrasts the relative errors corresponding to these time
samples.

One can see that as the time sample increases, the
sampling points become sparser, making it more likely
to miss peaks or troughs in the field values, thus leading
to larger errors. However, with the increase in the time
sample, the maximum relative error fluctuates slightly,
consistently remaining below -78 dB.

The time required is reduced to 1/21.63 of that when
the time sample is 1, as shown in Table 2. Consequently,
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Fig. 6. Comparison of far-fields by different time sam-
ples.

-50 T T T T T
—100 - E
~ 150 .
m
o
=1
£ 200 | .
o
o
&
=8 -250 i
o -
~ —=— Time sample=2
—e— Time sample=4
—300 ~ . —
—— Time sample=8
—+— Time sample=16
—350 —
1 1 1 1 1
0.0 0.5 1.0 1.5 20 2.5

time(ns)

Fig. 7. Relative error of different time samples.

Table 2: Computation time and maximum relative error
of different time samples

Time | Computation Time 1\[‘4]]{]]1}1]]]1
Sample Time (h) Reduction Relative
Error (dB)
1 8.13
2 3.12 1/2.61 -90.68
4 1.49 1/5.46 -87.87
8 0.73 1/11.14 -80.74
16 0.38 1/21.39 -78.60

although the increase in the time sample does not sig-
nificantly increase the error, there is a significant reduc-
tion in time consumption, thereby notably enhancing the
computational efficiency of the hybrid algorithm.



B. Parabolic antenna fed by horn

Here we consider an example of a composite target
consisting of a parabolic antenna and a horn antenna, as
depicted in Fig. 8.

Parabolic antenna

Feed
16.9¢,,
7.3cm lﬂ/ ¥
* > D
25¢em Tl |- kf’i ------------
I 11.9em ™Sy
12.2cm

| F
I I

Fig. 8. Parabolic antenna fed by horn.

The horn antenna is placed as the feed source at the
focus of the parabolic antenna. The operating frequency
is f = 6 GHz, the aperture diameter of the parabolic
antenna is D = 100A, and the focal-to-diameter ratio
is F/D = 0.685, where F denotes the focal length of
the parabolic antenna. The waveguide length in the horn
antenna is 7.3 cm, with a waveguide aperture size of
0.0508x0.0254 cm?. The axial projection length of the
horn is 12.2 cm and its aperture size is 16.9x11.9 cm?.
The horn antenna is excited by a coaxial feed with a
Gaussian pulse signal.

The horn antenna in the FDTD computation domain
is discretized using non-uniform hexahedral grids, com-
prising 71x31x75 cells. The minimum grid sizes in
the three directions are 0.4 mm, 0.8 mm and 0.3 mm,
respectively. The time step is set to 8.24x 1073 s. The
total number of grids on the extrapolation surface in the
FDTD region is 26560. Within the TDPO computation
domain, the parabolic antenna is partitioned into 2676
triangular patches. The FDTD/TDPO hybrid algorithm
is optimized using both spatial and time sparse sampling
methods.

Figure 9 illustrates the comparison of far-field elec-
tric field obtained with different spatial sampling when
the time sampling is set to 20. Figure 10 compares the
far-field electric field results obtained with different time
sampling when the spatial sampling is set to 4. It is evi-
dent that the results of the proposed hybrid algorithm
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Fig. 9. Comparison of far-fields by different spatial sam-
ples.
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Fig. 10. Comparison of far-fields by different time sam-
ples.

align well with those of the original FDTD/TDPO hybrid
algorithm.

The computation time and maximum relative error
for different spatial samples and time samples are pre-
sented in Table 3. With an increase in spatial sampling,
the maximum relative error remains relatively stable.
When the time sample is fixed and the spatial sample
is increased from 1 to 8, the computation time decreases
from 29.01 hours to 2.46 hours, a reduction of 91.52%.
Compared to the result at a spatial sampling of 1, the
result at a spatial sampling of 4 exhibits a maximum rel-
ative error of -21.56 dB. When the spatial sample is fixed
and the time sample is increased from 10 to 40, the com-
putation time decreases from 9.83 hours to 3.20 hours,
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Table 3: Computation time and maximum relative error of different spatial samples and time samples

:‘ l:];llt]l;l]l Time Sample Computation Time (h) Reduction Rate M““E: 1]'](:: (I:l;;l;ltlve
1 29.01
4 40 3.20 88.97% -39.37
8 2.46 91.52% -21.56
10 9.83
4 20 5.08 48.45% -18.31
40 3.20 67.43% -8.94

which is approximately 1/3.07 of the computation time
with a time sample of 10. The maximum relative error
is -8.94 dB in this case. This indicates that as the spatial
and time sample increases, the increase in error is mini-
mal, while there is a significant reduction in computation
time, effectively enhancing the computational efficiency
of the hybrid algorithm.

Figure 11 presents the corresponding results
obtained from commercial software CST. Compared to
the result obtained using the sparse sampling optimiza-
tion method with a spatial sample of 4 and a time sample
of 40, the two results are in good agreement. The CST
software computed this example with a total grid count
of 1.86x10°, utilizing GPU acceleration, and the entire
computation process took 35.8 hours. In contrast, the
proposed hybrid algorithm generates 906315 cells in the
FDTD computation region and 2616 triangular patches
in the TDPO region, achieving a total computation time
of 2.46 hours.

16 T T T T T

—=— The proposed FDTD/TDPO
12 - —— CST software 7
8L .
4| _
—
Z o
S
i
74 - -
78 = -
-12 |-
716 1 1 1 1 1
356 358 360 362 364
time(ns)

Fig. 11. Comparison of transient far-field computed by
CST and the proposed FDTD/TDPO.

The method proposed in this paper does not consider
the impact of hardware on computation speed and accu-
racy. Therefore, all methods in the paper were executed

on the same computer configuration, detailed as follows:
Windows 10 operating system, Intel(R) Xeon(R) 8360Y
CPU @ 2.40 GHz 3.50 GHz processor and 1.0 TB RAM.
If the size of the parabolic antenna continues to increase,
the CST software would be unable to perform transient
radiation simulation, whereas the proposed algorithm is
not subject to such limitations.

IV. CONCLUSION

This paper presents an optimization algorithm based
on the FDTD/TDPO hybrid method, which samples at
intervals in the spatial and time domains. The proposed
approach preserves the advantages of the hybrid algo-
rithm by segmenting computation regions for compos-
ite objects computation, while addressing the issue of
slow computation caused by excessive computation load.
Numerical validation demonstrates that this optimization
significantly enhances computational efficiency without
appreciably compromising accuracy, thereby highlight-
ing the reliability and efficiency of the algorithm.
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