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Abstract – An unknown interference suppression scheme
for advanced antenna systems has been proposed to
address critical challenges in enhancing wireless com-
munication networks. This scheme focuses on improving
beamforming capabilities and spectral efficiency while
minimizing the impact of unknown interference. The
ability to suppress unknown interference is achieved
through a fitness function that does not rely on prior
knowledge of interference characteristics. This function
is designed based on the assumption that the desired
signal is received through the main lobe, while interfer-
ence predominantly resides in the sidelobes. By incor-
porating a constraint handling technique, specifically the
static penalty method, the fitness function ensures that
total output power is minimized only when interference
power in the sidelobes is effectively reduced. Addition-
ally, the optimization process is streamlined by reduc-
ing the number of optimization variables, focusing on
uniform rectangular arrays with square element distri-
butions. Metaheuristic algorithms, including the Binary
Bat Algorithm, Binary Grey Wolf Optimization, and
Binary Whale Optimization Algorithm, are applied to
adaptively suppress unknown interference while reduc-
ing computational complexity. The proposed scheme sig-
nificantly enhances advanced antenna systems perfor-
mance by steering adaptive nulls toward unknown inter-
ference sources, ensuring robustness in dynamic wireless
environments.

Index Terms – Binary Grey Wolf Optimization, con-
straint handling techniques, static penalty method, uni-
form rectangular arrays, unknown interference suppres-
sion.

I. INTRODUCTION
Advanced antenna systems (AAS) are a key

component of modern wireless communication net-

works, including 5th Generation (5G), beyond 5G, and
emerging 6G technologies. These systems significantly
enhance capacity, coverage, and energy efficiency. A key
feature of AAS is their flexible beam control, enabled
by technologies such as massive MIMO, beamforming,
and adaptive antenna arrays [1]. These capabilities allow
for more efficient spectrum utilization, higher through-
put, and improved connectivity, all while minimizing
interference. In the context of next-generation networks,
AAS play a critical role in supporting ultra-reliable low-
latency communications, massive machine-type commu-
nications, and enhanced mobile broadband, which are
essential for deploying 5G, beyond 5G, and 6G [2].

One of the most important capabilities of AAS is
their ability to precisely control beam patterns, enabling
targeted signal transmission and reception. This capa-
bility enhances link quality, expands coverage, and sup-
ports higher user densities, especially in urban settings
or industrial IoT applications. Additionally, AAS can
dynamically adapt to changing network conditions, opti-
mizing radiation patterns in real time to avoid interfer-
ence and maximize system performance. However, as
the number of antennas in these systems increases, so
too does the number of optimization variables, compli-
cating the optimization process and making it more time
consuming. This presents a significant challenge, espe-
cially in real-time processing for 5G, beyond 5G, and 6G
networks. Additionally, AAS continues to face substan-
tial challenges in managing unknown interference from
external sources.

In practical wireless communication environments,
interference can arise from unintended sources such as
co-channel transmissions, multipath effects, and exter-
nal electronic devices. This interference is often unpre-
dictable and lacks prior statistical or spatial information,
making it “unknown interference”. This interference
is often unpredictable in both direction and intensity,
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leading to system degradation, reduced data rates,
and increased latency. Traditional suppression methods
assume prior knowledge of interference characteristics,
limiting their effectiveness in real-world scenarios where
unknown interference is common. As wireless environ-
ments grow more complex with the development of 5G,
beyond 5G, and 6G, developing robust schemes for man-
aging unknown interference is becoming increasingly
critical [2, 3].

Interference suppression is a critical challenge in
wireless communication, particularly in scenarios where
interference characteristics are unknown. Various meth-
ods have been explored in the literature to address this
issue. Known interference is typically addressed through
methods like beamforming or adaptive filtering, both
of which require prior knowledge of the interference
source [4, 5]. For unknown interference, traditional tech-
niques, such as blind source separation [6], have been
widely used for signal extraction. Deep learning-based
approaches have also gained significant attention for
their ability to learn interference patterns directly from
data, as discussed in [7, 8].

Recent advancements in interference suppression
further extend these approaches. For instance, SlickScat-
ter [9] introduces an interference-insensitive WiFi
backscatter system that retrieves backscatter signals
despite unknown ambient interference. Similarly, auto-
matic modulation recognition techniques [10] leverage
graph neural networks to classify unknown interfer-
ence signals. Additionally, interference source position-
ing methods based on near-field scanning [11] provide
effective localization of interference sources. In the con-
text of hardware-based solutions, a 2-D MIMO receiver
array [12] demonstrates autonomous spatial filtering to
suppress unknown interference. Bayesian methods [13]
have also been proposed to characterize unknown inter-
ference power in wireless networks, offering insights
for rate adaptation. Furthermore, adaptive beamforming
techniques [14] enhance robustness by iteratively placing
radiation pattern nulls to suppress sidelobes and mitigate
unexpected interference.

A promising scheme involves combining meta-
heuristic algorithms with constrained handling tech-
niques (CHTs). Metaheuristic algorithms like Binary
Bat Algorithm (BBA), Binary Grey Wolf Optimization
(BGWO), and Whale Optimization Algorithm (BWOA)
have shown promise in optimizing beamforming param-
eters, particularly in the presence of unknown interfer-
ence. BBA, inspired by the echolocation behavior of
bats, is known for its rapid exploration of the scheme
space, offering quick convergence during early optimiza-
tion stages [15, 16]. However, it can struggle to balance
exploration and exploitation in more complex environ-
ments [17]. BWOA, which mimics the hunting strate-

gies of humpback whales, excels in fine-tuning schemes
and thoroughly exploring the search space, although it
may take longer to fully converge [18]. BGWO, mod-
eled after the social behavior of grey wolves during
hunting, offers a balanced approach to exploration and
exploitation, making it well-suited for complex, multi-
dimensional optimization problems [19]. By leveraging
the strengths of BBA, BGWO, and BWOA, combined
with CHTs, a scheme can be achieved for beamforming,
minimizing sidelobe levels (SLL), placing nulls in inter-
ference directions, and optimal resource allocation in the
presence of both known and unknown interference [20].

This paper proposes a scheme for suppressing
unknown interference in AAS without requiring prior
knowledge of interference characteristics. The scheme
achieves this by constructing a fitness function that mini-
mizes total output power while ensuring that desired sig-
nals remain unaffected. This function is formulated using
a constraint handling technique, specifically the static
penalty method (SPM), which effectively suppresses
interference residing in the sidelobes. To enhance com-
putational efficiency, the scheme integrates metaheuristic
algorithms with CHTs, optimizing interference suppres-
sion while minimizing the number of optimization vari-
ables in uniform rectangular arrays (URA). This reduces
search time and complexity, making the approach par-
ticularly suitable for advanced communication networks,
including 5G, beyond 5G, and emerging 6G technolo-
gies.

II. CONSTRAINED HANDLING
TECHNIQUES AND CONSTRAINED

OPTIMIZATION PROBLEMS
A. Constrained handling techniques

CHTs are a set of methods designed to address
optimization problems where constraints must be satis-
fied while optimizing an objective function. CHTs play
a critical role in ensuring that schemes meet prede-
fined constraints, making them indispensable in solv-
ing constrained optimization problems. Their primary
advantage lies in their ability to guide the optimization
process towards feasible regions of the search space,
avoiding schemes that violate the constraints. By bal-
ancing the search space exploration with the adherence
to constraints, CHTs enhance the reliability and prac-
ticality of optimization outcomes, particularly in com-
plex, multi-dimensional problem domains. The signifi-
cance of CHTs is further amplified when dealing with
constrained optimization problems, where schemes must
not only maximize or minimize an objective function but
also stay within the defined boundaries of the problem.
These techniques are particularly useful in non-convex
or discontinuous scheme spaces, where finding feasi-
ble schemes is challenging. CHTs encompass a range of
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approaches, from simple penalty methods, which impose
costs for constraint violations, to more sophisticated
techniques, like stochastic ranking and adaptive penalty
methods, that dynamically adjust their behavior to meet
the problem’s constraints.

CHTs become even more crucial when applied to
AAS due to the unique challenges these systems face.
AAS requires precise control over beamforming patterns
and interference mitigation while adhering to strict phys-
ical and operational constraints, such as maintaining the
desired beam shape, minimizing SLLs, and steering nulls
towards interference sources. These requirements natu-
rally lead to constrained optimization problems where
the goal is to optimize beamforming parameters without
violating the system’s constraints.

To address these challenges in AAS, four of the most
commonly used CHTs in the literature are: (i) penalty
methods, (ii) feasibility rules, (iii) the ε-constrained
method, and (iv) stochastic ranking. Each of these tech-
niques offers a unique way of handling constraints during
the optimization process. Among these, objective func-
tion penalization stands out as the most traditional and
widely employed approach. This method transforms a
constrained problem into an unconstrained one by adding
penalty terms to the objective function. The idea is to
penalize schemes that violate constraints, making the
optimization algorithm less likely to explore infeasible
regions. Over time, various penalty-based methods have
evolved, including static, dynamic, adaptive, and death
penalty techniques, each tailored to handle different lev-
els of problem complexity and optimization goals [21].

In summary, CHTs provide a powerful frame-
work for solving the constrained optimization problems
encountered in AAS, ensuring that both performance
and constraint compliance are achieved. This makes
them essential for the effective design and operation of
advanced wireless communication networks, especially
as these networks evolve into 5G, 5G beyond, and 6G
systems.

B. Constrained optimization problems
A constrained optimization problem typically

involves finding an optimal scheme to an objective func-
tion subject to a set of constraints. The general form
of a constrained optimization problem can be expressed
as [22]:

minimize f (x) :
g j(x) ≤ 0, j = 1,2, ..., j

subject to hk(x) = 0, k = 1,2, ...,K, (1)

xl
i ≤ xi ≤ xu

i , i = 1,2, ...,n
where:

• f (x) : objective function concerning the vector vari-
able x

• g j(x) : inequality constraints
• hk(x) : equality constraints
• xl

i ,x
u
i represents the lower and upper limit values,

respectively, of component xi in x.

In this article, SPM is applied, and then the con-
strained optimization problem (1) is transformed into an
unconstrained optimization problem (2).

In the static penalty approach outlined by [23], the
penalty coefficient escalates as the level of violation
increases, as noted in [24]. Although the penalty func-
tions remain unchanged, a static penalty function is pro-
posed that adapts the static penalty parameter based on
the severity of violations, as discussed in [25]. In the
context of the static penalty function presented in [26],
a constrained problem defined in (1) is converted into a
non-constrained form:

Minimize { f (x)+ξ v(x)} , (2)
where ξ v(x) presents a penalty term.

Inspired by the optimization in (2), the fitness func-
tion of the optimization in this study is defined as:

F(x,ξ ) = f (x)+ξ v(x). (3)
In this context, each unmet constraint affects x by

imposing a penalty equal. These penalties are aggregated
and multiplied by ξ , the penalty parameter, which is then
balanced against f (x). Therefore, if the magnitude of
the penalty term is minor compared to that of f (x), it is
highly likely that minimizing F(x,ξ ) will not yield a fea-
sible x for the original problem. Conversely, if ξ is suffi-
ciently large, the penalty for any constraint violation will
be substantial enough that minimizing the fitness func-
tion will lead to a feasible scheme.

Metaheuristic algorithms, such as BBA, BGWO,
and BWOA, are particularly well-suited for solving com-
plex constrained optimization problems. These algo-
rithms efficiently explore the scheme space, making
them potential candidates for optimizing AAS where
multiple constraints need to be satisfied [22].

CHT transforms constrained optimization problems
into single-objective optimization problems. By integrat-
ing penalty terms into the fitness function, metaheuris-
tic algorithms can focus on optimizing a single crite-
rion, such as interference suppression, while ensuring
that the constraints are satisfied. This approach is par-
ticularly useful in AAS, where optimizing beamforming
requires balancing multiple conflicting objectives.

III. PROBLEM FORMULATION
This paper examines URA, a type of uniform planar

array of half-wavelength dipoles as shown in Fig. 1. The
antenna array pattern can be represented as:

P(θ ,φ) = EF (θ ,φ)AF (θ ,φ)

= EF (θ ,φ)
M−1

∑
m=0

N−1

∑
n=0

wm,ne j(mψz+nψy), (4)
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where:

• EF and AF are the element factor and the array fac-
tor of the dipole (θ ,φ), respectively.

Fig. 1. Uniform rectangular array with M×Nelements.

• EF (θ ,φ) =
cos( π

2 cos(θ))
sin(θ) ,

• ψz = κdz cos(θ) ;ψy = κdy sin(θ)sin(φ) ;κ =
2π/λ ;

• wm,n = am,ne jδm,n is the complex weight of the
(m,n)th element, where am,n and δm,n are the ampli-
tude and the phase, respectively.

The main lobe can be steered towards the direction
(θ0,φ0) by setting the phase shift of the (m,n)th antenna
element as:

δm,n =−κ (mdz cos(θ0)+ndy sin(θ0)sin(φ0)) . (5)
The array pattern for URAs can be expressed in the

matrix form as:
P(θ ,φ) = EF (θ ,φ)s(θ ,φ)w, (6)

where:

• steering vector is expressed as:

s(θ ,φ) =
[
ej(m0ψz+n0ψy), . . . ,ej(mM−1ψz+nN−1ψy)

]
,

(7)

• optimal weight vector is expressed as:
w = [w0,0, . . . ,wM−1,N−1]

T . (8)

To achieve the desired array pattern with K nulls
in the interference directions (θk,φk), the problem
with respect to w can be formulated as (variable w
corresponds to the variable x in section II):

max
w

P(w,θ0,φ0)

s.t. P(w,θk,φk) = 0 ∀k = 1, . . . ,K. (9)

IV. PROPOSED SCHEME
In this study, we propose an unknown interference

suppression scheme in AAS, specifically for URAs.
The scheme focuses on two main improvements. First,
we reduce the number of optimization variables, which
shortens the computational time, an important factor in
optimizing the efficiency of AAS. Second, we apply
CHT, specifically the SPM, to enforce constraints on
beam pattern shaping and null placement in interfer-
ence directions. This helps simplify the optimization
process, thereby improving the overall performance
of AAS.

Improvement 1: Minimize the number of variables that
need to be optimized (consider the array containing ele-
ments distributed in a square). This improvement focuses
on reducing the number of variables that need to be opti-
mized, specifically in arrays with square element distri-
butions. The goal is to simplify the optimization process,
which is crucial for improving computational efficiency
in AAS.

Algorithm 1: The algorithm determines the optimal
weights while reducing the number of phase variables
in the optimization search.

1: Input:

2: Number of antennas in z-axis M and y-axis N.
The array contains elements arranged in a square
configuration, so M = N

3: Binary schemes sbin from metaheuristics algo-
rithms

4: Resolution of phase shifters Nbits

5: Operation:

6: Determine the binary scheme of an individual in
metaheuristic algorithms. The number of binary
bits in the ith variable, sbin,i with i = 1, . . . ,M,
represents the number of phase shifts for an Nbits
phase shifter

sbin = [sbin,1, . . . ,sbin,M]T . (10)

7: Convert the binary scheme to a real number. In
this paper, the number of binary bits in the vari-
able sbin,i is set to 1, and Nbits is set to 5:

so = [s1, . . . ,sM]T =
bin2dec(sbin)

2Nbits −1
. (11)

8: Determine the phase of elements on the z-axis
and y-axis based on odd symmetry characteris-
tics:
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9: If M and N are even, then:
δy =

[
s1, . . . ,sM/2,−sM/2, . . . ,−s1

]T

δz =
[
sM/2+1, . . . ,sM ,−sM , . . . ,−sM/2+1

]T . (12)

10: If M and N are odd, then:
δy =

[
s1, . . . ,sM/2,0,−sM/2, . . . ,−s1

]T

δz =
[
sM/2+1, . . . ,sM ,0,−sM , . . . ,−sM/2+1

]T . (13)

11: Perform the outer sum operation to determine the
phase for all elements in the URAs:

δyz = vec(δy ⊕δz) , (14)
where:

• ⊕ the outer sum combines row and column
positions to calculate the phase for each
antenna in the URA.

12: The optimal phase based on the reference phase,
for example, the phase of the weights when steer-
ing the main beam, is determined as:

δo = δyz +δref. (15)

13: Optimal weights when reducing the number of
phase variables to be searched:

wo = aref ⊙ e jδref ⊙ e jδyz

= wref ⊙ e jδyz = aref ⊙ e jδo
, (16)

where:

• wo is optimal weight

• aref is the array response vector correspond-
ing to a specific reference direction. It rep-
resents the antenna array’s response to a sig-
nal arriving from that direction.

• ⊙ is the Hadamard product.

14: Output:

15: Optimal weight coefficients: wo.

Improvement 2: Using CHT, specifically the SPM, to
construct the fitness function in the optimization process.

If the main lobe is steered toward (φ0,θ0) ,
most of the high-magnitude sidelobes occur at
(φ = [−180◦ : 180◦] ,θ = θ0) and (φ = φ0,θ = [0◦ :
180◦]) . Nulls can be positioned freely in 3D space, but
interferences that occur in high-power sidelobes are the
most problematic. Therefore, this paper assumes that
interferences arise at (φ = [−90◦ : 90◦] ,θ = θ0) .

Therefore, the term f (w) utilized for maintaining
the desired main lobe is represented as:

f (w) =
φ0+φFNBW/2

∑
φ=φ0−φFNBW/2

|Po (w,θ0,φ)−Pref (w,θ0,φ)|2

+
θ0+θFNBW/2

∑
θ=θ0−θFNBW/2

|Po (w,θ ,φ0)−Pref (w,θ ,φ0)|2 , (17)

where:

• Pref (w,θ0,φ) and Po (w,θ0,φ) correspond to the
reference pattern and the optimized patterns using
metaheuristic algorithms, respectively.

• θFNBW and φFNBW correspond to the elevation and
azimuth angles at the first null beamwidth (FNBW).

Generally, both the desired signal and interference
sources reach the receiving arrays simultaneously. The
desired signal is assumed to enter through the main lobe,
whereas interference is distributed across the sidelobes.
To effectively suppress unknown interference without
requiring prior knowledge, we design the fitness function
based on total output power minimization. This func-
tion incorporates a CHT, specifically the SPM, which
ensures that only interference power is minimized while
maintaining the main lobe for the desired signal. The
term v(w) is formulated to impose nulls in interference
directions by leveraging the total received power across
all antenna elements. Since the interference resides in
the sidelobes, the algorithm adaptively adjusts weights
to minimize interference impact while preserving signal
integrity. This enables robust suppression of unknown
interference, making the scheme effective even in sce-
narios with unpredictable interference sources.

The term v(w), used to impose nulls in the directions
of interference, is defined by the total output power of
all received signals including both the desired signal and
interference. The output power is computed by summing
the product of signal weights and the magnitude of the
array pattern in the directions of the desired (θ0,φ0)and
interfering signals [27]:

v(w) =
1

∑ |w|

K

∑
k=1

|sigkPo (w,θk,φk)|2 , (18)

where:

• sigk: signal strength,

• Po (w,θk,φk) is the pattern for kth signal,

• K is the total number of incoming signals.

Thus, the fitness function for addressing the uncon-
strained problem can be expressed as:

F (w,ξ ) =
f (w)

ξ
+ v(w). (19)

The optimization algorithm used to illustrate the
proposed scheme is based on the BGWO algorithm.
The flowchart of the proposed scheme to improve
unknown interference suppression in AAS, particularly
for URAs, is shown in Fig. 2. This scheme combines two
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key improvements: minimizing optimization variables to
reduce computational complexity and integrating CHT,
specifically SPM, to improve interference rejection. The
stopping criteria for the BGWO algorithm are defined by
reaching the maximum number of iterations.

Fig. 2. Flowchart of the proposed scheme to improve
unknown interference suppression.

Below is a description of how to improve unknown
interference suppression in AAS, particularly for URAs.

Initialize:

• The initial setup involves defining input data such
as the number of array elements, the population
size, the penalty factor, assumed direction of arrival
of interferences, stopping condition (or maximum
number of iterations), and the radiation pattern of
the array elements.

• Define the objective function f (w) from (17) and
the term v(w), used to impose nulls in the directions
of interference, from (18), in which the array pattern
is computed according to (4).

• Mapping solutions (sets of weights) to locations of
wolves in the population during the optimization
process.

Find the weight vector with reduced phase variables:
After updating the positions of the Alpha, Beta, and

Delta wolves, Algorithm 1 is implemented as described
in Improvement 1.

Calculate fitness function by CHTs:
The fitness function, utilizing the SPM, is detailed

in Improvement 2.

Find the best solution based on BGWO:
The beamformer iteratively computes and explores

the current optimal solution using the BGWO. The pro-
cess persists until the termination criterion is satisfied.
Subsequently, the final optimal solution is acquired.

Construct of array element weights:
The beamformer establishes the corresponding

weights for each URAs element based on the opti-
mized solution. Pattern nulling is performed using these
weights.

V. NUMERICAL RESULTS AND
DISCUSSION

To assess the effectiveness of the proposed unknown
interference suppression scheme, three metaheuristic
algorithms were employed: BBA, BGWO, and BWOA.
Among these, BGWO was selected as the primary opti-
mization algorithm due to its well-balanced exploration
and exploitation capabilities in complex search spaces.
The simulations were conducted on three distinct sce-
narios to evaluate the unknown interference suppression
performance of the proposed scheme for AAS.

The parameter setup for the simulations is as fol-
lows. The population size is set to 50, with a maximum of
30 iterations. The URA has dimensions of M = N = 11,
with SLL constraint of −25 dB. The angle step size is
0.5 degrees. Additionally, the number of phase bits for
optimization is set to 5, and the penalty factor is 10.
The signal-to-interference ratio of the k-th interference
is −30 dB. The results across all scenarios represent the
average values of 100 independent simulations. These
simulation results are detailed in the following sections,
where each scenario is discussed along with the corre-
sponding parameters and findings.

A. Effect of penalty parameter
In this scenario, we evaluate the impact of the

penalty parameter on the performance of unknown inter-
ference suppression. The objective is to assess how dif-
ferent penalty values affect the suppression of interfer-
ence at the desired angle θ = 25◦, while also considering
related factors such as null depth level (NDL) and SLL.
Simulation results with the BGWO algorithm show:

Figure 3: The plot illustrates the NDL at 25◦ as a
function of the penalty parameter ξ for four signal-
to-interference ratios (SIR): 0 dB, −10 dB, −20 dB,
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and −30 dB using the BGWO algorithm. At 0 dB
SIR, the NDL stabilizes around −20 dB when the
penalty ξ reaches approximately 1e4, indicating con-
sistent nulling performance with minimal sensitivity to
the penalty parameter. In contrast, at −10 dB SIR, the
NDL initially remains high but drops significantly as
the penalty increases, reaching approximately −35 dB
when the penalty ξ reaches approximately 1e5, suggest-
ing enhanced nulling depth with increasing penalty val-
ues. For −20 dB SIR, the NDL follows a similar trend
but starts at a lower level, quickly decreasing to around
−45 dB when the penalty ξ reaches approximately 1e2,
demonstrating that higher penalties significantly improve
nulling performance under moderate interference. At the
most challenging SIR level of −30 dB, the NDL begins
near 0 dB and declines steeply as the penalty parameter
rises, reaching about −50 dB when the penalty ξ reaches
approximately 1e1. These results indicate that increas-
ing the penalty parameter enhances the interference sup-
pression capability of the system, especially under severe
interference conditions, with progressively deeper nulls
observed at lower SIR levels. Penalty plays a crucial
role in optimizing the trade-off between exploration and
exploitation, resulting in better interference suppression,
particularly under high interference conditions.

Figure 4: The graph illustrates the relationship between
the maximum SLL and the penalty ξ for different
SIR levels (0 dB, −10 dB, −20 dB, −30 dB) using
the BGWO algorithm. For SIR = 0 dB, SLL initially
increases but stabilizes around −19 dB when the penalty
ξ reaches approximately 1e4. For SIR = −10 dB and
−20 dB, SLL also initially rises but stabilizes near −20
dB, respectively, when the penalty ξ is around 1e3. For
SIR = −30 dB, SLL remains constant at −20 dB when
the penalty ξ is around 1e1. These results show that
the BGWO algorithm maintains stable control over the
SLL as penalty ξ increases, but there is no significant
improvement in reducing SLL as SIR decreases. SLL
tends to decrease as the penalty ξ increases under high
interference conditions, but it reaches a stable value after
a certain threshold. This suggests that an optimal penalty
ξ value is needed to balance between interference sup-
pression and SLL control.

While ξ has a noticeable positive effect on reducing
NDL and improving interference suppression, its effect
on SLL is more stable. The SLL only slightly changes
with increasing ξ and does not decrease much after
reaching its threshold. Therefore, increasing ξ tends to
improve interference suppression without significantly
impacting SLL. The results show a clear correlation
between penalty values and interference suppression per-
formance. Therefore, to achieve a balanced trade-off, a
penalty value of 10 will be selected for the remaining
scenarios.

Fig. 3. NDL at 25◦ with different ξ values.

Fig. 4. Maximum SLL with different ξ values.

B. Convergence characteristics
In this scenario, we evaluate the convergence speed

of the BGWO algorithm and compare it with other binary
metaheuristic algorithms by adaptively imposing nulls
when an interference emerges at θ = 25◦. The three
figures below provide insights into the performance of
the algorithms in suppressing unknown interference.

Figure 5: The convergence characteristics of the fit-
ness function over iterations for various population sizes
using the BGWO algorithm reveal distinct patterns. With
a population size of 10, the algorithm begins at a high ini-
tial fitness value, followed by a rapid decline and grad-
ual convergence around iteration 20. Increasing the pop-
ulation size to 30 results in faster convergence, with sta-
bility achieved by iteration 10, while a population of 50
follows a similar pattern, stabilizing shortly after itera-
tion 10. For a population size of 100, convergence occurs
slightly more slowly, yet it reaches the same fitness level
by iteration 5, as seen in larger populations.

The fitness value’s rapid decline with iteration count
highlights the BGWO algorithm’s ability to converge
swiftly towards an optimal scheme. Larger populations,
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specifically sizes 50 and 100, exhibit greater stabil-
ity during convergence, with minimal oscillation after
reaching a plateau. In contrast, smaller populations such
as 10 converge more gradually and show pronounced
oscillation in the early iterations, although they ulti-
mately attain comparable fitness levels to larger popu-
lations.

Beyond iteration 5, all population sizes converge
to similar fitness values, indicating that increasing the
population size beyond a certain threshold yields lim-
ited gains in solution quality. However, larger population
sizes contribute to faster and more stable early conver-
gence, underscoring their advantage in initial stabiliza-
tion.

Fig. 5. Convergence of fitness function with different
population sizes using BGWO.

Figure 6: Based on the provided graph, we can observe
a comparison between the BBA, BWOA, and BGWO
algorithms in terms of the convergence of the fitness
function over iterations.

• BBA: Starts with a higher fitness value compared
to the other two algorithms but decreases quickly in
the first few iterations and gradually converges to a
stable state around iteration 10.

• BWOA: Exhibits a faster initial decline than BBA
and reaches a stable state around iteration 10.

• BGWO: Similar to BWOA, BGWO drops rapidly
and reaches stability fairly early, around iteration 5.
BGWO seems to converge faster and achieves the
lowest fitness value among all the algorithms.

All algorithms show a sharp decline in fitness val-
ues during the initial iterations, but BGWO demonstrates
the fastest and most stable convergence compared to
BBA and BWOA. After around iteration 5 − 10, all
algorithms reach similar convergence levels; however,
BGWO shows an advantage in terms of both speed and
early stability. This suggests that BGWO could be the

Fig. 6. Comparison of SPM fitness functions based on
three different optimization algorithms.

more efficient algorithm for optimizing the fitness func-
tion with fewer iterations compared to BBA and BWOA.

Figure 7: The graph compares the convergence of the fit-
ness function between two versions of the BGWO algo-
rithm: with and without optimal variable number mini-
mization.

• BGWO with optimal variable number minimiza-
tion: convergence speed is faster, with the fitness
function rapidly decreasing from the first iterations
and reaching a stable value after approximately 3
iterations. The fitness function converges to a lower
and more stable level compared to the method with-
out variable number minimization.

• BGWO without optimal variable number min-
imization: convergence speed is slower, requiring
more iterations to achieve a lower fitness value. It
takes more than 10 iterations to approach conver-
gence, and the decrease in the fitness function is
more gradual compared to the method with variable
number minimization.

Fig. 7. Comparison of fitness function of SPM based on
BGWO with and without optimal variable number mini-
mization.

The comparison shows that the BGWO method with
optimal variable number minimization demonstrates bet-
ter performance in terms of convergence speed and opti-
mal scheme quality. This indicates that reducing the
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number of variables during optimization can enhance
the algorithm’s performance, achieving better results in
a shorter time.

C. Adaptive null-steering capability
This scenario illustrates the beamformer’s adaptive

null-steering capability through the use of BBA, BWOA,
and BGWO optimization algorithms based on the SPM.
The population size is configured to 50, and the maxi-
mum iteration limit is set to 3. Figure 8 illustrates the
optimized radiation patterns, assuming an interference
emerges within a broad null from φ = 30◦ to 41◦, while
steering the main lobe towards θ = 90◦ and φ = 5◦.
The optimized patterns generated by BBA, BWOA, and
BGWO based on SPM retain most of the characteris-
tics of the Chebyshev pattern, including a half-power
beamwidth of 6.4◦ and SLL of −25 dB, except for the
maximum SLL of −19.3 dB and a wide null range from
30◦ to 41◦. NDL reaches a minimum of approximately
−33 dB for the BGWO, BBA, and BWOA patterns.
The CDF (cumulative distribution function) plot of SLL
between the Chebyshev −25 dB method and BGWO in
Fig. 9 highlights these results, with the BGWO curve
showing lower SLL values compared to the Chebyshev
method for most SLL values. This indicates that BGWO
reduces the SLL comparable to the Chebyshev −25 dB
method in certain scenarios. From Fig. 9, it can be seen
that the BGWO method not only optimizes the SLL but
also reduces the interference levels to deeper negative
values.

Fig. 8. Adapted patterns with a broad null when steering
the main lobe.

To further evaluate the impact of SLL constraint
on beamforming performance, we generated optimized
radiation patterns with different SLL constraints, as
shown in Fig. 10. The results demonstrate that when the
SLL constraint is set to −25 dB, the proposed method
effectively suppresses unknown interference while main-
taining a narrow half-power beamwidth. When the con-
straint is further reduced to −30 dB, −32 dB, and −34
dB, suppression capability remains effective but the half-
power beamwidth increases accordingly. This trade-off

Fig. 9. CDFs of SLLs for cases of BGWO with SPM and
a broad null from φ = 30◦ to 41◦.

Fig. 10. Optimized radiation patterns with different SLL
constraints (−25 dB, −30 dB, −32 dB, and −34 dB).

occurs because a deeper SLL constraint forces the opti-
mization process to limit sidelobes more strictly, which
in turn affects main lobe shaping. Additionally, due to the
structural properties of Algorithm 1, the phase matrix in
the optimization process exhibits odd symmetry, leading
to a slight increase in SLL at the symmetric direction of
the interference source. However, this effect is minimal
and does not degrade the interference suppression capa-
bility of the proposed method.

Table 1 presents convergence times for the three
algorithms BGWO, BWOA, and BBA, measured over
1000 Monte Carlo runs on MATLAB Online using an
Intel(R) Xeon(R) CPU @ 2.20 GHz. Results show that

Table 1: Convergence time (F (w,ξ ) ≤ 220) and max-
imum iterations for BGWO, BWOA, and BBA algo-
rithms

Time (s) to Achieve BGWO BWOA BBA
F (w,ξ )≤ 220 0.0191 0.0127 0.0159

Maximum number of
iterations is reached

0.0642 0.0570 0.0558
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BWOA has the fastest convergence time to the target
value F (w,ξ ) ≤ 220, achieving it in 0.0127 seconds,
followed by BBA at 0.0159 seconds, and BGWO at
0.0191 seconds. Despite BGWO being slightly slower
in this instance, its convergence to the scheme is still
efficient. When the maximum number of iterations is
reached, BGWO takes the longest at 0.0642 seconds,
while BWOA and BBA perform similarly, taking 0.0570
seconds and 0.0558 seconds, respectively. This high-
lights the trade-off between speed and performance con-
sistency across different algorithms.

VI. CONCLUSION
This paper has proposed a scheme to address

unknown interference suppression in AAS. First, we
reduce the complexity by minimizing the number of
optimization variables, significantly shortening compu-
tational time, which is an essential factor for efficient
AAS deployment. Second, we integrate a CHT, specif-
ically the SPM, with metaheuristic algorithms, including
the BBA, BGWO, and BWOA, to improve interference
suppression in URAs. The effectiveness of the scheme
is validated through simulations, demonstrating strong
convergence and the ability to suppress interference in
sidelobe regions without prior knowledge of interfer-
ence direction. These results underscore the scheme’s
potential for unknown interference management in AAS.
Future research should explore alternative CHT meth-
ods, additional array configurations, and control over
multiple main lobes, as well as addressing interference in
the main lobe region. Expanding this approach to broader
challenges within AAS could further enhance its practi-
cal applications.
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and G. Jöngren, Advanced Antenna Systems for 5G
Network Deployments: Bridging the Gap Between
Theory and Practice. Cambridge, MA: Academic
Press, 2020.

[2] N. Trabelsi, L. C. Fourati, and C. S. Chen, “Interfer-
ence management in 5G and beyond networks: A
comprehensive survey,” Computer Networks, vol.
239, 2024.

[3] C. A. Balanis, Antenna Theory: Analysis and
Design, 4th ed. Oxford: John Wiley and Sons,
2016.

[4] L. T. Trang, N. V. Cuong, and T. V. Luyen, “Inter-
ference suppression approaches utilizing phase-
only control and metaheuristic algorithms: A com-
parative study,” Lecture Notes of the Institute

for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 558, 2024.

[5] T. V. Luyen and N. V. Cuong, “An adaptive beam-
former utilizing Binary Bat Algorithm for antenna
array pattern nulling,” Journal of Science and Tech-
nology, Hanoi University of Industry, vol. 57, pp.
52-57, 2021.

[6] J. Yin, Z. Liu, Y. Jin, D. Peng, and J. Kang, “Blind
source separation and identification for speech sig-
nals,” in 2017 International Conference on Sensing,
Diagnostics, Prognostics, and Control (SDPC),
Shanghai, China, pp. 398-402, 2017.

[7] T. Oyedare, V. K. Shah, D. J. Jakubisin, and
J. H. Reed, “Interference suppression using deep
learning: Current approaches and open challenges,”
IEEE Access, vol. 10, pp. 66238-66266, 2022.

[8] D. Chen, Y. Zhuang, J. Huai, X. Sun, X.
Yang, and M. Awais Javed, “Coexistence and
interference mitigation for WPANs and WLANs
from traditional approaches to deep learning: A
review,” IEEE Sensors J., vol. 21, no. 22, pp.
25561-25589, 2021.

[9] S. Wang, F. Han, Y. Yan, Y. Ding, P. Yang, and
X.-Y. Li, “SlickScatter: Retrieve WiFi backscat-
ter signal from unknown interference,” in 2024
IEEE/ACM 32nd International Symposium on
Quality of Service (IWQoS), pp. 1-10, 2024.

[10] Q. Zhang, H. Ji, L. Li, and Z. Zhu, “Automatic
modulation recognition of unknown interference
signals based on graph model,” IEEE Wireless
Communications Letters, vol. 13, no. 9, pp. 2317-
2321, 2024.

[11] Z. Xu, T. Song, and X. Wei, “Unknown interfer-
ence source positioning based on near-field scan-
ning,” in 2021 IEEE MTT-S International Wireless
Symposium (IWS), pp. 1-3, 2021.

[12] T.-Y. Huang, B. Lin, A. Ahmed, M.-Y. Huang,
and H. Wang, “A 23-37-GHz autonomous 2-D
MIMO receiver array with rapid full-FoV spa-
tial filtering for unknown interference suppres-
sion,” IEEE Transactions on Microwave Theory
and Techniques, vol. 71, no. 11, pp. 4841-4854,
2023.

[13] M. Zaher, E. Björnson, and M. Petrova, “A
Bayesian approach to characterize unknown inter-
ference power in wireless networks,” IEEE Wire-
less Communications Letters, vol. 12, no. 8, pp.
1374-1378, 2023.

[14] I. P. Gravas, Z. D. Zaharis, T. V. Yioultsis, P. I.
Lazaridis, and T. D. Xenos, “Adaptive beamform-
ing with sidelobe suppression by placing extra radi-
ation pattern nulls,” IEEE Transactions on Anten-
nas and Propagation, vol. 67, no. 6, pp. 3853-3862,
2019.



TRANG, CUONG, THAO, LUYEN: AN UNKNOWN INTERFERENCE SUPPRESSION SCHEME FOR ADVANCED ANTENNA SYSTEMS 202

[15] T. V. Luyen, H. M. Kha, N. V. Tuyen, and T. V. B.
Giang, “An efficient ULA pattern nulling approach
in the presence of unknown interference,” Journal
of Electromagnetic Waves and Applications, vol.
35, no. 1, pp. 1-18, 2021.

[16] T. Luyen and C. Nguyen, “An effective beamformer
for interference suppression without knowing the
direction,” International Journal of Electrical and
Computer Engineering (IJECE), vol. 13, no. 1, pp.
601-610, 2023.

[17] S. Mirjalili, S. M. Mirjalili, and X. S. Yang, “Binary
Bat Algorithm,” Neural Computing and Applica-
tions, vol. 25, no. 3-4, pp. 663-681, 2014.

[18] A. G. Hussien, A. E. Hassanien, E. H. Houssein,
S. Bhattacharyya, and M. Amin, “S-shaped binary
Whale Optimization Algorithm for feature selec-
tion,” Advances in Intelligent Systems and Comput-
ing, vol. 727, 2019.

[19] E. Emary, H. M. Zawbaa, and A. E. Hassanien,
“Binary Grey Wolf Optimization approaches for
feature selection,” Neurocomputing, vol. 172, pp.
371-381, 2016.

[20] A. Sharma, “Antenna array pattern synthesis using
metaheuristic algorithms: A review,” IETE Techni-
cal Review, pp. 1-26, Mar. 2022.

[21] N. D. Lagaros, M. Kournoutos, N. Ath. Kallioras,
and A. N. Nordas, “Constraint handling techniques
for metaheuristics: A state-of-the-art review and
new variants,” Optim. Eng., vol. 24, pp. 2251-2298,
2023.

[22] X.-S. Yang, Nature Inspired Optimization Algo-
rithms. Amsterdam: Elsevier, 2014.

[23] I. Rahimi, A. H. Gandomi, F. Chen, and E.
Mezura-Montes, “A review on constraint handling
techniques for population-based algorithms: From
single-objective to multi-objective optimization,”
Arch. Computat. Methods Eng., vol. 30, pp. 2181-
2209, 2023.

[24] A. R. Jordehi, “A review on constraint handling
strategies in particle swarm optimization,” Neural
Comput. & Applic., vol. 26, pp. 1265-1275, 2015.
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