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Abstract – The power transfer efficiency of electric vehi-
cle wireless power transmission (EV-WPT) systems is
susceptible to differences in the processing of coils and
circuit components as well as the driver’s operating level.
In order to quantify the uncertainty and save the com-
putational cost, this paper adopts the Gaussian process
regression (GPR) agent model to obtain predicted con-
fidence intervals and transmission efficiency probabil-
ity density function and calculates the response surface
based on the agent model, and finally analyzes the
degree of the influence of each variable on transmission
efficiency by using the Morris one-at-a-time (MOAT)
method. The computational time cost of the GPR agent-
based model uncertainty quantification method obtained
through simulation experiments is 9 hours and 21 min-
utes, which improves the computational time by 94.5%
compared to the Monte Carlo (MC) method. The predic-
tion error of the predicted values of the GPR agent model
is only 1.0294% of the measured values, and its variance
error is only 3.5587% of the measured values, so that
the GPR agent model is able to realize uncertainty quan-
tification (UQ) accurately and efficiently. Results show
that the offset between the coupling mechanism and the
diameter of the transmitting coil cross-section are the
main factors affecting transmission efficiency.

Index Terms – Gaussian process regression, power trans-
mission efficiency, uncertainty quantification, vehicle
engineering, wireless power transfer.

I. INTRODUCTION
As the problems of social environmental pollution,

energy crisis and global warming become more and
more prominent, the development and utilization of clean
energy has become an inevitable trend of today’s social
development [1-3]. At the same time, with the advance-
ment of related technologies in the field of new energy
electric vehicles (EVs), EVs have gained more and more
attention and recognition from automobile manufactur-
ers and consumers [4, 5]. Compared with fuel vehicles,

EVs can effectively reduce pollutant emissions, carbon
emissions and consumption of non-renewable resources,
and can realize high energy conversion efficiency [6, 7].
However, the rapid development of EVs still faces many
problems, such as long charging and queuing waiting
times, bulky batteries and insufficient effective range.
In addition, the rapid development of the EV industry
has put forward urgent requirements for improving EV
charging technology and accelerating the construction of
charging facilities [8].

EV charging methods can be mainly categorized
into cable charging and wireless charging. With the rapid
development of the new energy electric vehicle indus-
try, its charging method has improved on the traditional
cable charging method [9]. Wireless power transfer
(WPT) technology is the core development direction
of the intelligent transportation field, and safe and reli-
able WPT technology is a key step to promote all kinds
of intelligent mobile devices to realize the interconnec-
tion of everything [10]. When using wired charging to
charge vehicles, a person needs to manually connect
the charging gun to the EV charging port. The exposed
charging gun can develop problems caused by repeated
plugging and unplugging, and is difficult to use in open
air in wet environments such as rain and snow [11].
Since charging requires manual operation, it is gen-
erally installed in dedicated charging locations, such
as garages and parking lots, and cannot realize flexi-
ble charging. Unlike the wired charging method, wire-
less charging technology charges through non-physical
contact, which is conducive to improving the reliabil-
ity, flexibility, automation and intelligence of the system
[12]. WPT technology removes the mechanical inter-
face, improves safety, achieves charging in operation and
overcomes drawbacks of the traditional cable charging
method. The technology is gradually maturing [13], and
is expected to become typical of EV charging technol-
ogy in the future [14]. Unlike the wired charging method,
wireless charging is carried out through non-physical
contact, thus avoiding interaction between human and
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charging equipment, improving the reliability and safety
of the system, and completely eliminating the need for
manual operation, which is more conducive to the real-
ization of the intelligence and automation of the EV
charging process [15].

However, for the performance index of wireless
power transmission efficiency, due to the complexity of
the design and control of the transmission system and the
differences in the actual operation techniques, the rele-
vant factors in the design of the coil structure, transmis-
sion distance, coupling mechanism offset and compen-
sation topology parameters directly or indirectly affect
the transmission efficiency of the system [16]. Consid-
ering the uncertainty of the above relevant factors as
input parameters inevitably leads to uncertainty in the
transmission efficiency of electric vehicle wireless power
transmission (EV-WPT) systems, so accurately quantify-
ing the magnitude of uncertainty in the transmission effi-
ciency of EV-WPT systems is beneficial to the design of
engineering structures and decision-making.

Parameter uncertainty quantification (UQ) methods
include statistical and non-statistical methods, of which
the statistical methods are dominated by the Monte
Carlo (MC) method and its improvements, which usu-
ally require a large number of calculations to achieve
good accuracy. When the complexity and computational
cost of the test system are high, MC and its improved
methods are not applicable and are usually only used
to verify the accuracy of other UQ methods [17, 18].
The non-statistical type of method obtains an approxi-
mate alternative model by learning the real model, and
the subsequent calculation of UQ does not need to call
the original real model, which greatly reduces the com-
putational cost. When computational accuracy is con-
trolled within a reasonable range, it can usually replace
the MC method for UQ analysis, and has been widely
researched and applied [19–22]. Rossi et al. [21] com-
bined the theory of the generalized chaotic polynomi-
als approach (gPCE) with the radiative near-field in the
device-to-equipment, and constructed a UQ framework
for the power transfer efficiency of WPT systems, which
proved to be more flexible and efficient than the on-
the-fly configuration method based on a single gPCE
and the direct MC analysis [23]. The mapping solution
process of the PCE agent model brings the problem of
“dimensionality catastrophe”. With the development of
artificial intelligence, machine learning has been gradu-
ally applied to the field of WPT electromagnetic com-
patibility. Trinchero et al. [22] investigated the least-
squares support vector machine (LS-SVM) regression
and its optimization form to quantify the uncertainty
of WPT transmission efficiency and proved that LS-
SVM regression based on kernel technology can better

solve the high-dimensional spatial nonlinear UQ prob-
lem [24], but the selection of hyperparameters lacks a
priori knowledge and is not rigorous [25] and there is
no strict mathematical basis for obtaining them. Other
scholars have applied the Kriging agent model [25, 26]
and deep learning [27–29] to the simplified WPT system
UQ and optimization, and its uncertainty quantification
ability remains to be verified for the structurally com-
plex WPT simulation model. Gaussian process regres-
sion (GPR) based on Gaussian stochastic process, kernel
technique and Bayesian inference theory is a nonpara-
metric probabilistic model that can quantify the pre-
diction uncertainty and is not restricted by a specific
functional form, and the hyper-parameters follow a strict
mathematical derivation, with a strong ability to simulate
complex models [30].

In this paper, based on the effect of transceiver
coil mutual inductance on transmission efficiency, we
propose to adopt GPR as the UQ framework for
EV-WPT transmission efficiency with the following
contributions:

(1) The UQ framework of the GPR agent model
proposed in this paper can quantify the uncertainty
of the power transfer efficiency of EV-WPT systems
with a solution accuracy that is approximately consis-
tent with the MC method and a 94.5% computational
speedup.

(2) In this paper, based on the GPR proxy model, the
Morris one-at-a-time (MOAT) algorithm is used to filter
the importance of uncertainty input variables to provide
a new idea for sensitivity analysis.

(3) The MOAT mean and standard deviation are
solved based on the GPR agent model, which proves that
the offset between the transmitting and receiving coils
and the diameter of the transmitting coil cross-section
are the main factors affecting the transmission efficiency,
and this conclusion can be used to guide the optimal
design of the EV-WPT system in future work, so that it
can be realized with an optimal structure for the building
of the WPT system based on the degree of influence of
the uncertainty factors.

The main contents of this paper are as follows.
Section II describes the working principle and simula-
tion model parameters of the EV-WPT system. Section
III describes the implementation process of the quantita-
tive agent model for efficiency uncertainty of EV-WPT
system and its UQ based on GPR implementation, and
the MOAT screening method based on GPR implemen-
tation. Section IV describes the simulation experiment
validation session of this paper to realize the efficiency
UQ assessment and influencing factors screening of EV-
WPT system. Section V summarizes the work in this
paper.
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II. NUMERICAL SIMULATION MODEL OF
EV-WPT SYSTEM

In this paper, a simulation model of a magnetically
coupled resonant EV-WPT system is established based
on the principle of magnetic coupling resonance, which
utilizes the space alternating magnetic field to transfer
energy. The EV’s comprehensive model and its square
magnetic coupling mechanism are depicted in Fig. 1.

Drawing inspiration from a majority of family car
models available in the market, the design features a
body size of 4500×2000×1500 mm, primarily con-
structed from aluminum, with other non-electromagnetic
materials being disregarded. The magnetic coupling
mechanism houses the energy transmission coil group
on its inner side. The outer contour of this mecha-
nism measures 600×600 mm, while the inner contour
is sized at 300×300 mm. The vertical distance between
the transmitting and receiving coils, denoted as z, ranges
from 100 mm to 150 mm. Each side of the coil fea-
tures 11 turns of copper wire, with a conductor cross-
sectional diameter of dwire being 2 mm. To enhance cou-
pling coefficient and minimize magnetic field leakage,
thereby improving transmission efficiency, the coil group
is encased by a ferrite layer, which mirrors the outer con-
tour of the energy transfer coil and is 10 mm thick.

Offsets of the coupling mechanism along the hori-
zontal x and y axes are represented by ∆x and ∆y, respec-
tively. Given that WPT coils typically exhibit low cou-
pling coefficients, the S-S and P-S topological structures
are more appropriate for efficient WPT systems [17]. In
this paper, we employ an S-S type compensation circuit,
as illustrated in Fig. 2.

Fig. 1. Wireless charging of electric vehicles and the
magnetic coupling mechanism.

IS is the AC current source, RT is the equivalent
resistance of the loop at the transmitter end, RR is the

Fig. 2. EV-WPT system S-S compensation circuit.

equivalent resistance of the loop at the receiver end,
RL is the load resistance, such that RZ=RR+RL, CT and
CR are the compensating capacitance at the transmitter
end and the receiver end, respectively, LT and LR are
the equivalent inductance of the transmitter coil and the
receiver coil, respectively, and M is the mutual induc-
tance between the two coils.

When LT=LR=L and CT=CR=C, the resonant
angular frequency ω = 1√

LC
, the power is transmitted in

the system with an efficiency of:

η =
RL

RR +RL

ω2M2

ω2M2 +RT (RR +RL)
. (1)

In practice, the uncertainty in coil dimensions, cir-
cuit element parameters, the dislocation of the trans-
mitting and receiving coil packs due to the differences
in the level of coil and circuit element processing and
manufacturing, and the level of driver operation affects
the mutual inductance and mutual coupling coefficients,
which inevitably results in uncertainty in the transmis-
sion efficiency of the EV-WPT system. Therefore, the
usual deterministic studies are not representative and it
is necessary to carry out a UQ study of the transmission
efficiency of EV-WPT systems in the form of statisti-
cal characterization and to analyze the extent to which
a wide range of parameters affect the transmission effi-
ciency of WPT systems. In this paper, we focus on the
UQ of the transmission efficiency of the coupling mecha-
nism of EV-WPT systems with uncertainties in the offset,
physical dimensions and component parameters. In the
next section, a UQ framework for the transmission effi-
ciency of EV-WPT systems is developed based on GPR
machine learning.

III. UNCERTAINTY QUANTIFICATION OF
TRANSMISSION EFFICIENCY BASED ON

GPR MACHINE LEARNING
A. GPR transmission efficiency agent model

Agent modeling machine learning is widely used
for its simple uncertainty quantification principle. GPR
has excellent solving ability for nonlinear problems
due to its excellent global and local prediction perfor-
mance. GPR is a nonparametric model characterized by
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high flexibility and scalability, and is a parameter-free
stochastic process regression based on Gaussian distri-
bution, which gives probabilistic approximate predic-
tion of the quantity of interest and computes the input
parameter space at each predicted variance at the sam-
ple point. In this paper, we use GPR to train the WPT
system input parameters d-dimensional column vectors
xn×d with transmission efficiency ηηηn×1 to build a GPR
agent model, which gives the predicted mean and vari-
ance of the transmission efficiency.

First, based on the function space perspective, the
Gaussian process can be expressed as:

f (xxx)∼ GP(m(xxx),kθ (xxx,xxx′)), (2)
where θ denotes the hyperparameter of the covariance
function, and m(x) and kθ (x, x’) are the mean and covari-
ance functions of the stochastic process f (x), respec-
tively.

The GPR training process is shown in Fig. 3 [30].
The learning problem for GPR is:

ηηη= f (xxx)+ εεε. (3)
ε is the estimation noise of the GPR and ε∼N(0, σn

2), f
is regarded as a latent function, and f 1, f 2, . . . , f n satisfy
the joint Gaussian distribution.

To simplify the computation, let the prior form of η

constructed from n training sample points (xn×d , ηn×1)
be η∼N(0, K f f +σn

2I), and let the function constructed
from m test sample points be f ∗, then the joint prior dis-
tribution of η and f ∗ is:[

η

f ∗

]
∼ N

(
0,
[

Kff +σn
2I KT

ff∗
Kff∗ K∗∗

])
, (4)

where Kff , K∗∗, Kff ∗ are shorthand for training samples,
test samples and covariance matrix between training and
test samples, respectively. The specific expression is:
K f f = K(X ,X) =

k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

 , (5)

K f f∗= K(X∗,X)

=


k(x∗(1),x1) k(x∗(1),x2) · · · k(x∗(1),xn)
k(x∗(2),x1) k(x∗(2),x2) · · · k(x∗(2),xn)

...
...

. . .
...

k(x∗(m),x1) k(x∗(m),x2) · · · k(x∗(m),xn)

 ,

(6)

K∗∗ = K(X∗,X∗)

=


k(x∗(1),x∗(1)) k(x∗(1),x∗(2)) · · · k(x∗(1),x∗(m))

k(x∗(2),x∗(1)) k(x∗(2),x∗(2)) · · · k(x∗(2),x∗(m))
...

...
. . .

...
k(x∗(m),x∗(1)) k(x∗(m),x∗(2)) · · · k(x∗(m),x∗(m))

 .

(7)

Fig. 3. GPR prediction process for transmission effi-
ciency.

According to Bayesian theory, the mean f ∗ and vari-
ance σ∗

2 of the predictive distribution can be derived as:

fff ∗ = KKK f f ∗
(
KKK f f +σ

2
n I
)−1

ηηη , (8)

σ
2
∗ = KKK∗∗−KKK fff fff ∗

(
KKK fff fff +σ

2
n I
)−1

KKKT
fff fff ∗ (9)

where fff ∗ gives a probabilistic approximation of the pre-
dicted value of the transmission efficiency and it usually
ensures that the model achieves a small decision loss. σ∗

2

gives the uncertainty of the prediction and it can be used
to quantify the credibility of the predicted results.

The kernel function approach allows the model
not to care about the specific form of the mapping
function (group) and not to worry about the “dimen-
sionality catastrophe” and other issues, which not only
greatly facilitates the computation, but also improves
the model’s learning and prediction effect to a greater
extent, because the kernel function approach allows
the model to measure the data in the higher or even
infinite dimensional feature space similarity, and the
Bayesian theoretical framework ensures that its learn-
ing and prediction are reasonable in high-dimensional
or even infinite-dimensional space. The kernel function
method is based on the fact that when the kernel func-
tion satisfies the Mercer condition, the low-dimensional
points are mapped to the high-dimensional feature space
by vector inner product, which effectively avoids the
“dimensionality catastrophe” and the trouble of overfit-
ting. Commonly utilized kernel functions include:

• Squared kernel (SE covariance):

kSE(xxx,xxx′) = σ f
2 exp

(
− 1

2l2
∥∥xxx− xxx′

∥∥2
)
. (10)

• Matérn 3/2 core:

kv= 3
2

(
xxx,xxx′

)
= σ

2
f

1+

√
3∥xxx− xxx′∥2

lll


exp

−

√
3∥xxx− xxx′∥2

lll

 . (11)

In this paper, the Matérn 3/2 kernel is applied for
regression analysis according to the need of solving
accuracy.
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GPR, as a nonparametric Bayesian method, has a
variety of parameters with noise that can be varied in the
kernel function of GPR, which are collectively known
as hyperparameters and have an impact on the model
effect. By adjusting the parameters of the kernel func-
tion, the fit of the model to the data and the predictive
performance can be changed. In GPR, it is often assumed
that the observed data contain a certain amount of noise.
The hyperparameters of the noise term represent the vari-
ance of this noise, which reflects the uncertainty of the
observed data. By adjusting the hyperparameters of the
noise term, the degree of model fit to the data and the
uncertainty of prediction can be balanced. When adjust-
ing the hyperparameters, it is necessary to balance the
degree of fit of the model with its ability to generalize. A
model that is too complex may lead to overfitting, while
a model that is too simple may not adequately capture the
characteristics of the data. The log-likelihood function is
the logarithm of the probability density function of the
observed data for a given model parameter, and the opti-
mal hyperparameter values can be found by maximiz-
ing this function. The optimization algorithm is based
on gradient descent, and the optimal hyperparameters are
obtained by finding the maximum value of the log-edge
likelihood function (12) for the training samples:

log p(ηηη | xxx) =− 1
2

ηηη
T (KKK f f +σσσ

2
nIII
)−1

ηηη

− 1
2

log
∣∣KKK f f +σσσ

2
nIII
∣∣− n

2
log2π. (12)

B. GPR transmission efficiency UQ framework
In this paper, based on the above theoretical foun-

dation, we perform EV-WPT system transmission effi-
ciency uncertainty quantification based on GPR machine
learning, which is mainly divided into three stages, as
shown in Fig. 4.

Phase 1: Preparation of training data
Uncertainty input parameters follow specific dis-

tributions and, in conjunction with the practical situa-
tion, it is assumed that the spatial location uncertainty
input parameters follow a uniform distribution. The coil
structure, size and element uncertainty input parameters
follow a normal distribution, given the mean, variance
and fluctuation range of each parameter. Latin hyper-
cube sampling is used to prepare the training data (xn×d ,
ηn×1) to model the transmission efficiency GPR agent.

Phase 2: Constructing GPR agent model
Select equation (8) as the covariance function for

GPR training and obtain the optimal set of hyperparam-
eters.

Phase 3: Uncertainty quantification of transmission
efficiency of EV-WPT system

Calculate the probability density function of the pre-
dicted value of transmission efficiency and its mean and

Fig. 4. UQ flow chart of EV-WPT system transmission
efficiency.

variance. Based on the UQ results, gain insight into the
effect of uncertainty inputs on the power transfer effi-
ciency of the EV-WPT system.

IV. MOAT screening of uncertainty input
variables

The MOAT algorithm is a lightweight global screen-
ing method that provides a qualitative measure of the
importance of each input parameter [24]. The method is
purely sample-based and requires relatively little compu-
tational effort from the model. MOAT becomes an ideal
method when the number of input parameters is too large
for computationally expensive uncertainty quantification
studies.

MOAT first uses Morris sampling to obtain p tra-
jectories and generates l levels for each dimension θ i
(i=1,...,d) of the d-dimensional variable to generate l lev-
els. Then the sampled data points are θ i, j (j=1,...,p), and
the level of influence of the i input variable can be calcu-
lated as:

Pi, j =
f
(
θ1, j,θ2, j, . . . ,θi, j ±∆, . . . ,θd, j

)
∆
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−
f
(
θ1, j,θ2, j, . . . ,θi, j ±∆, . . . ,θd, j

)
∆

.

∆ =
l

2(l −1)
=

1
2
+

1
2(l −1)

(13)

The expression for mean value of MOAT for the i
input, based on the basic effect of the p replicates, is:

µi =
1
p

p

∑
j=1

|Pi, j| . (14)

The expression for standard deviation of MOAT for
the i input is:

σ i =

√√√√ 1
p

p

∑
j=1

(Pi, j−µi)2. (15)

The MOAT method calculates the MOAT mean and
standard deviation for each input parameter and dis-
plays them in a MOAT scatter plot. The ordering of the
MOAT mean and standard deviation gives the relative
importance of the input parameter. The higher the former
means that the parameter significantly affects the amount
of attention; the higher the latter means that the parame-
ter either has a strong interaction with other parameters,
a non-linear effect, or both. In this paper, based on the
results of MOAT calculations, we filter out the variables
that have a strong influence on the WPT efficiency of
EVs, so as to find the most important influencing factors.

V. SIMULATION ANALYSIS
Based on the WPT system model in section I, it can

be seen that EV-WPT transmission efficiency is subject
to strong uncertainties due to the coupling mechanism
offset, coil structure and circuit component parameter
uncertainties. For the prior condition of spatial location
distribution, in practical applications, the likelihood of
distance offsets is the same for all possibilities, which
conforms to a uniform distribution in engineering. For
the coil parameters in the processing of the error, all
kinds of enterprises in the development of test standards
commonly used normal distribution to ensure its scien-
tific and objective, so this paper also selected Gaussian
distribution.

According to the actual situation, 10 random vari-
ables and their distribution intervals that have an impact
on the transmission efficiency are considered in this
paper, as shown in Table 1, where ∆x is the horizontal
offset of the WPT system, ∆y is the vertical offset, z is
the coil spacing, dwire-T is the transmitting coil cross-
sectional diameter, dwire-R is the receiving coil cross-
sectional diameter, IS is the excitation current of the cur-
rent source, RT is the transmitting coil self-resistance, RZ
is the load resistance, CT is the transmitting-side com-
pensation capacitance and CR is the receiving-side com-
pensation capacitance. The above 10 uncertainty factors
are unavoidable errors in the WPT system itself or in the

Table 1: Parameter distribution of random variables
Input Distribution Unit

∆x U (-0.1,0.1) m
∆y U (-0.1,0.1) m
z U (0.15,0.2) m

dwire-T N (2e-3,1e-4) m
dwire-R N (2e-3,1e-4) m

IS N (100,5) A
RT N (0.2,0.01) Ω

RZ N (10,0.5) Ω

CT N (120,6) nF
CR N (130,6.5) nF

driver’s operation, mapped to the uncertainty effects con-
sidered in this paper.

According to the parameter distributions of random
variables in Table 1, 500 training samples are collected
using the Latin Hypercube Sampling (LHS) method to
establish the GPR agent model, and 10,000 MC experi-
ments are conducted based on the agent model. Mean-
while, 10,000 MC experiments of the real model are
conducted to verify the accuracy of the GPR method
based on experience and UQ stability. The simulation
model takes about 1 minute to extract each sample point,
and the computation time is given for a computer with
a 6-core/12-thread processor (Intel Core i5-10400, 2.90
GHz) and 16 GB RAM running Windows. The GPR
model predictions were compared with the true values,
as shown in Fig. 5, and the relevant statistical parame-
ters measuring the predictive power were calculated, as
shown in Table 2. The results show that the GPR agent
model is trained with high accuracy and can be used as
a basis for sample prediction for uncertainty quantifica-
tion.

Establishing the response surface based on the above
GPR agent model can save computational cost and
achieve good accuracy. The response surface of EV-WPT
system transmission efficiency based on GPR agent
model is shown in Fig. 6.

Based on the above experimental basis and the EV-
WPT model proposed in section II, this paper quantifies
the uncertainty of the transmission efficiency of the EV-
WPT system around GPR and MC, as shown in Fig. 7
and Table 3.

Establishing the response surface based on the above
GPR agent model can greatly save computational cost
and achieve good accuracy.

Table 2: Statistical parameters related to prediction
Method Mean Absolute

Percentage
Error

Root Mean
Squared

Error

Coefficient of
Determination

GPR 0.0005 0.0006 0.9989
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(a)

(b)

Fig. 5. GPR training process and prediction accuracy: (a)
uncertainty in GPR projection and (b) comparison of pre-
dicted and true values of GPR transmission efficiency.

Fig. 6. Response surface of transmission efficiency based
on GPR agent model.

From the above calculation results, it is obvious that
the UQ accuracy of the established GPR agent model

is basically the same as that of the MC method, but its
computational time cost is reduced by 94.5% compared
with the MC method, which greatly reduces the compu-
tational cost. In addition, it can be observed from Fig. 7
and Table 3 that, under the influence of uncertainty fac-
tors, the efficiency of the WPT system has large ups
and downs with large transformation intervals, which is
attributed to the fact that the coupling effect between the
two coils becomes weaker under the influence of uncer-
tainty factors, and the efficiency of the energy transfer
subsequently becomes lower. In addition, in the presence
of positional deviation, the leakage of electromagnetic
field is also one of the potential dangers. Thus, in order
to design a rational WPT system, it is necessary to screen
out the influential variables so as to make a targeted
strategy.

Fig. 7. Contrast of probability density function.

Table 3: Comparison of MC and GPR model with uncer-
tainty inputs

Mean Variance Relevant
Error

Elapsed
Time

MC 0.9229 0.0281 Mean Variance 7 days and 2
hours

GPR 0.9195 0.0291 0.3684% 3.5587% 9 hours and
21 minutes

To qualitatively assess the significance of the 10
input parameters and identify those exerting a more sub-
stantial influence on transmission efficiency, this study
employs the MOAT approach to address the GPR agent
model. The outcomes are illustrated in Fig. 8.

From the results, it can be seen that the variables that
have the greatest impact on the transmission efficiency
are the horizontal offset ∆x, ∆y, coil spacing z, and the
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Fig. 8. MOAT mean and standard deviation of the related
variables.

cross-section diameter of the transmitting coil dwire-T.
The standard deviation of their MOAT and the mean
are significantly higher than those of the other factors,
which is consistent with the performance of the WPT
efficiency in actual use [24] and, therefore, these factors
should be emphasized in the design of the actual WPT
system. In addition, the receiver side resistance RZ and
the receiver side coil cross-section diameter dwire-R also
have an impact on transmission efficiency, while other
input variables have less impact on the uncertainty of the
transmission efficiency.

The above results indicate that in order to make the
transmission efficiency as high as possible, in addition
to accurately designing the geometrical structure param-
eters of the WPT system as well as the parameters of
the compensation circuits, attention should be focused
on the offset between the transmitting and receiving
coils. Based on the conclusions obtained from the above
results, in the practical design method, the above types of
uncertainty factors with obvious effects should be con-
sidered in the optimization design of WPT and, since
uncertainty factors cannot be avoided, they should be
considered as the background of the design, so as to
achieve the system to maintain high efficiency under the
influence of uncertainty factors.

In order to verify the calculation accuracy of the
above GPR-based EV-WPT system transmission effi-
ciency proxy model, an experimental platform based on
an EV-WPT system with an operating frequency of 85
kHz and a power of 11 kW is constructed to carry out
an experimental validation of the GPR system transmis-
sion efficiency proxy model in this paper. The experi-
mental platform is shown in Fig. 9. Among them, the
displacement stage is able to realize the position offset
on the three-dimensional space of the EV-WPT system
and control its displacement through the computer termi-
nal. In the uncertainty quantification verification experi-

Fig. 9. Experimental setup.

ment, this paper adopts the discrete step form to real-
ize the value of uncertainty factors and, according to the
limiting range of uncertainty factors in Table 1, the prob-
ability density function (PDF) distribution of transmis-
sion efficiency of the experimentally verified EV-WPT
system is shown in Fig. 10.

Figure 10 shows that the uncertainty quantization
results of the GPR-based EV-WPT system transmis-
sion efficiency proxy model proposed in this paper are
basically consistent with the experimental results, indi-
cating that the GPR proxy model in this paper is accu-
rate. Therefore, the UQ method of the GPR-based EV-
WPT system transmission efficiency proxy model pro-
posed in this paper has significant practical applications
and provides theoretical guidance for the optimization
and design of practical EV-WPT systems.

Fig. 10. Contrast of probability density function.
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VI. CONCLUSION
In this paper, the GPR machine learning method is

used to build and establish the transmission efficiency
agent model of an EV-WPT system. Based on the GPR
agent model, it realizes solving the response surface of
the transmission efficiency and quantifying the uncer-
tainty of the transmission efficiency, so as to realize the
efficiency assessment under the uncertainty background.
Finally, the uncertainty input parameters affecting the
transmission efficiency are screened by MOAT to quan-
tify the degree of influence of different parameters and,
finally, the effectiveness of the GPR agent model in this
paper is verified by experiment, so as to provide theoret-
ical guidance on the optimization aspect of the system
efficiency of the WPT system.

ACKNOWLEDGMENT
This research is partially funded by the Jilin Sci-

entific and Technological Development Program under
Grant 20240101117JC, Grant 20230201122GX, and the
Key Laboratory for Comprehensive Energy Saving of
Cold Regions Architecture of Education, Jilin Jianzhu
University under Grant JLJZHDKF202203.

REFERENCES
[1] A. Triviño, J. M. González-González, and J. A.
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