
ACES JOURNAL, Vol. 40, No. 04, April 2025 268

Fast Direct LDL′ Solver for Method of Moments Electric Field Integral
Equation Solution

Yoginder Kumar Negi1, N. Balakrishnan1, and Sadasiva M. Rao2

1Supercomputer Education and Research Center
Indian Institute of Science, Bangalore 560012, India

yknegi@gmail.com, balki@iisc.ac.in

2Naval Research Laboratory
Washington DC 20375, USA

sadasiva.rao@nrl.navy.mil

Abstract – This paper proposes a new fast direct solver
using the block diagonalization method. In our proposed
method, the symmetric half single-level compressed
block matrix is factorized using the diagonalization
method into block diagonal and upper triangle block
LDL′ format where, due to symmetric property, L is a
transpose of L′. The far-field blocks in the upper triangle
row block are merged and compressed using Adaptive
Cross Approximation (ACA) and QR factorization. The
solution consists of solving the diagonal block matrix
and matrix-vector multiplication of the compressed row
blocks of the upper triangle matrices. Our results show
that the factorization cost and memory scales to O(N1.5)
and the solution process scales to O(N). The method
generates an efficient solution process for solving large-
scale electromagnetics problems.

Index Terms – Adaptive Cross Approximation (ACA),
Electric Field Integral Equation (EFIE), electromagnet-
ics scattering, fast direct solver, matrix compression,
Method of Moments (MoM).

I. INTRODUCTION
Method of Moments (MoM) is a well-known inte-

gral equation-based Computational Electromagnetics
(CEM) [1] method for solving complex electromagnetic
radiation and scattering problems numerically in the fre-
quency domain. Compared to differential equation-based
methods like Finite Element Method (FEM) [2] and
Finite Difference Time Domain (FDTD) [3] methods,
MoM is free from grid dispersion error and leads to a
smaller matrix size than FEM. The MoM application for
solving large-scale electromagnetics problems is limited
by dense matrix computation property with the matrix
computation and storage cost of O(N2) for N number of
unknowns. Solving the MoM dense matrix with a direct

solver leads to O(N3) computation cost and with iter-
ative solver leads to Nitr O(N2) cost for Nitr iteration
count with O(N2) matrix-vector product cost. The high
matrix computation, storage, and solution cost is miti-
gated by various matrix compression-based fast solver
algorithms proposed by various researchers. The matrix
compression for fast solvers may be of two categories:
analytical-based compression and algebraic matrix com-
pression. Examples of analytic-based compression meth-
ods are Multilevel Fast Multipole Algorithm (MLFMA)
[4], Adaptive Integral Method (AIM) [5], and pre-
corrected FFT [6]. Similarly, we have algebraic matrix
compressed methods like Adaptive Cross Approxima-
tion (ACA) [7, 8], IE-QR [9], and H-Matrix [10–12].
Analytical fast solvers are kernel-dependent, whereas
algebraic fast solvers are kernel-independent and easy
to implement. All the fast solvers work on reducing
matrix filling, solution, and storage time. Full wave
fast solver in CEM reduces matrix filling and storage
time to O(NlogN). However, the matrix solution time
depends on the method of solution and whether the algo-
rithm adopts an iterative approach or a direct approach.
For the iterative solution, the solution time scales as
Nitr O(NlogN) for O(NlogN) compressed matrix-vector
product cost. The solution of these methods relies on
the compressed matrix’s iterative solution. The iterative
solution process is a convergence-dependent method for
each matrix-vector product iteration. Furthermore, the
convergence for each iteration depends on the condition
number of the matrix computed. It is well-known that
the Electric Field Integral Equation (EFIE) [13] gives an
ill-conditioned MoM matrix. This ill-conditioning due
to the closed geometry structure can be overcome by
using a Magnetic Field Integral Equation (MFIE) [14]
and a Combined Field Integral Equation (CFIE) [15].
Also, the ill-conditioning may be due to structural geom-
etry or mesh quality. The ill-conditioning leads to a high
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iteration count when solved with an iterative solver. The
high iteration is mitigated by using various matrix pre-
conditioners [16–18]. The preconditioner computation
comes with the extra precondition computation cost and
precondition solution cost during the iterative solution
process.

Solving multiple right-hand side (RHS) electromag-
netics problems like in monostatic radar cross section
(RCS) computation or multiport microwave network sys-
tem analysis with a fast iterative solver may lead to high
solution time. The overall solution time will scale to
Nrhs Nitr O(NlogN) for Nrhs RHS. Also, for a multi-
RHS or single-RHS system, the number of unknowns
increases with the increase in simulation frequency or
geometry size. With the increase in the number of
unknowns, solving the linear system of equations with
an iterative, fast solver will lead to a further increase in
the number of iterations (Nitr) for the solution process.

The lacuna of the iterative solver for solving lin-
ear systems of equations is overcome by using direct
matrix solution methods. Direct solvers are the most
reliable method for solving any linear system of equa-
tions, with a guaranteed solution for the system. How-
ever, the high factorization and solution costs hinder the
application of direct solvers for significant electromag-
netic problems. In the past decade, there has been an
inclination among the fast solver research community
to develop direct solution-based fast solvers. MLFMA-
based analytical fast direct solvers proposed in [19, 20]
are kernel-dependent. Algebraic fast direct solvers built
upon extended matrix [21] and H2-Matrix [22] does
not scale well for significant problems. A power series-
based fast direct solver is proposed in [23, 24], where
the solution convergence depends on the matrix’s con-
dition number. Sherman-Morrison-Woodbury based fast
direct solvers [25, 26] have high factorization and solu-
tion time. A LU-based fast direct solver is proposed in
[27–29], and factorization is applied to a single-level
compressed MoM matrix. LU matrix factorization and
solutions are serial and difficult to parallelize.

This work proposes a new fast direct solver based on
the diagonalization applied on a symmetric half single-
level compressed block MoM matrix. The factorization
cost is reduced by applying low-rank block matrix opera-
tion, and the linear cost of the matrix solution is achieved
by merging the compressed far-field matrix blocks into
a single compressed matrix block. The solution process
consists of block diagonal matrix solution and matrix-
vector product of the row block compress matrices. The
paper is organized as follows: section II presents a brief
description of EFIE MoM with block matrix compres-
sion. In section III, we present the proposed block diag-
onalized fast direct solver. Section III also presents the
low-rank matrix operation performed on the compressed

matrices to reduce the factorization and solution time. In
section IV, the efficiency and accuracy of the proposed
fast direct solver is presented. Section V concludes the
paper.

II. BRIEF DESCRIPTION OF EFIE-MOM
The MoM matrix is computed for 3D surfaces using

EFIE, MFIE, or CFIE formulations. Selection of the
integral equation method is essential when solving the
matrix with a regular iterative solver. MFIE is only appli-
cable for closed-body geometries. CFIE is a combination
of EFIE and MFIE, which further increases matrix com-
putation time. For the sake of clarity, this work uses only
EFIE for MoM matrix computation to solve 3D Perfect
Electric Conductor (PEC) geometry and can be easily
extended to MFIE and CFIE. The governing equation for
EFIE is:

Etotal = Einc +Escatt , (1)
where Etotal is the total electric field equal to the sum of
the incident electric field (Einc ) and the scattered electric
field (Escatt ). Applying the boundary condition, expand-
ing current density (J(r′)) and charge density (ρ(r′))
for the electric field vector potential and scalar potential
with the RWG [30] basis functions ( fi), and performing
Galerkin testing, the elements of the MOM matrix are:

Z(i, j) =
jωµ

4π

∫∫
fi · f j

e− jk|r−r′|

r− r′
dsdt +

1
jω4πε

∫∫
∇

fi
e− jk|r−r′|

r− r′
∇ · f jdsdt. (2)

In the above equation, the MoM matrix element is
computed for the ith test jth source basis. In equation
(2), k is the wavenumber, r and r′ represent the observer
and source points, and µ and ε are the permeability and
permittivity of the background material. Integration is
performed over the RWG source and testing domains.
MoM matrix computation using equation (2) leads to a
linear system of equations. The system of equations can
be written as a combination of a near-field interaction
matrix ZN and a far-field interaction matrix ZF given by:

[ZN +ZF ]x = b. (3)
Solving equation (3) for x presents computation

time and memory limitations, which can be overcome
by applying various fast solver methods. These methods
work on the compressibility of the far-field matrix.

For the computation of a fast solver, the mesh of the
3D geometry is divided into small blocks using the mul-
tilevel binary-tree or oct-tree partition method [12]. The
fast solver is the single level when the far-field matrix
compression is carried out at the lowest level, and the
multilevel is when the matrix compression is done at all
levels. Single-level fast solver reduces matrix filling and
solution time to O(N1.5) whereas multilevel reduces the
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time complexity to O(NlogN). This work uses a single-
level compressed MoM block matrix fast solver to ease
block matrix operation. For the single-level fast solver
matrix construction, matrix compression is applied at the
lowest level of binary-tree-based 3D geometry decom-
position, and the interaction is computed for the mesh
block satisfying the admissibility condition [12]. At the
leaf level, the block interaction that does not satisfy the
admissibility condition is considered a near-field interac-
tion. Further, this work employs the re-compressed ACA
method [31] to compute a symmetric single-level com-
pressed block matrix. The compressed matrix is made
symmetric by averaging the upper diagonal and lower
diagonal values and replacing the upper diagonal and
lower diagonal values with the average value. Using
the symmetric property, we can reuse the upper diago-
nal value for matrix-vector product and matrix factoriza-
tion. Exploiting the symmetric property, we compute and
save the diagonal and upper diagonal matrix in the com-
pressed far-field and dense near-field blocks [12]. The
single-level symmetric half-compressed block matrix is
used for factorization and solution process. The formu-
lation for the new fast direct solver with reduced factor-
ization and solution time is discussed in the next section.

III. FAST DIRECT SOLVER
This section discusses the factorization and solution

process for developing a fast direct solver applied on a
single-level compressed block matrix. The matrix diago-
nalization process has previously been used to solve the
linear system of equations for sparse and dense matri-
ces [32–34]. However, these methods lead to a high
cost of factorization and solution. In our previous work
[18, 23, 24], the diagonalization of the near-field block
matrix is discussed in detail. There, the computation is
performed on the dense near-field block matrices. Due
to the dense nature of the near-field matrix, the cost of
computation and storage is kept low. Extending the diag-
onalization method to a fast solver-based full matrix is
limited by the far-field matrix blocks. In this work, we
diagonalize the full MoM compressed matrix. To under-
stand the complete implementation of the factorization
process, we will discuss the factorization process for
the whole matrix in detail. The far-field matrix opera-
tion cost is reduced by performing low-rank block matrix
operation. The method is applied to the MoM matrix to
factorize it to LDL′ format, where D is a diagonal block
matrix and L and L′ are lower and upper triangle block
matrices. The lower triangle block matrix L is the trans-
pose of the upper triangle block matrix, leading to com-
putation and memory savings. In the following subsec-
tion, details of the diagonalization process, along with
the ways to make it faster for set-up and solution matrix-
vector product, are presented.

A. Block matrix factorization
Gaussian Elimination is a well-known method for

diagonalizing dense or sparse block matrices. The
Gaussian Elimination is performed over the single-level
symmetric compressed block matrix. An asymmetric
compressed block matrix is computed for the mesh
geometry divided into mesh element clusters based on
the multilevel binary-tree division. The single-level com-
pressed block matrix near-field and far-field matrix inter-
action is computed for binary-tree mesh blocks at the
lowest level. The symmetric half-block matrix [Z] for
factorization is shown below:

[Z] =


Z11 Z12 Z13 Z14
0 Z22 Z23 Z24
0
0

0
0

Z33
0

Z34
Z44

 . (4)

The above block matrix consists of near- and far-
field matrix blocks. The factorization process consists of
diagonalizing the above matrix by multiplying it with
the right sparse block matrix. The right scaling matrix
nullifies the row blocks of the matrix, leaving a diago-
nal block matrix. Right scaling matrix [ααα111] for first row
blocks is given as:

[ααα1] =


I11
0
0
0

−Z−1
11 Z12
I22
0
0

−Z−1
11 Z13
0

I33
0

−Z−1
11 Z14
0
0

I44

 ,

(5)
where I11, I22 , I33 , and I44 are the identity block
matrices. Equations (4) and (5) are combined to scale the
first-row blocks of [Z] to diagonal blocks, and the system
of the equation is given as:

[Z̃
1
] =


Z11
0
0
0

Z12
Z22
0
0

Z13
Z23
Z33
0

Z14
Z24
Z34
Z44



×


I11
0
0
0

−Z−1
11 Z12
I22
0
0

−Z−1
11 Z13
0

I33
0

−Z−1
11 Z14
0
0

I44

 .

(6)
Equation (6) is represented as:

[Z̃
1
] = [Z] [ααα1]. (7)

Performing the block matrix and scaling matrix mul-
tiplication in the above equation, the first-row block diag-
onalized matrix block equation is written as:[

Z̃
1]

=
Z11
0
0
0

0
Z22−Z21Z−1

11 Z12
0
0

0
Z23−Z21Z−1

11 Z13
Z33−Z31Z−1

11 Z13
0

0
Z24−Z21Z−1

11 Z14
Z34−Z31Z−1

11 Z14
Z44−Z41Z−1

11 Z14

 .

(8)
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Equation (8) gives the diagonalization of the first-
row blocks. In the above equation, using the symme-
try property, the matrix blocks Z21, Z31, and Z41 are
obtained by computing the transpose of Z12, Z13, and
Z14. So Z21 = Z′

12, Z31 = Z′
13, and Z41 = Z′

14. Like-
wise, each row block is diagonalized by computing the
row scaling matrix block and multiplying it with the row
diagonalized matrix. The final diagonalization process is
given as:

[ZD] = [αααT
3 ][ααα

T
2 ][ααα

T
1 ][Z][ααα1][ααα2]][ααα3] . (9)

Equation (9) written in diagonal form is:

[ZD] =


Z11
0
0
0

0
Z̃22
0
0

0
0

Z̃33
0

0
0
0

Z̃44

 . (10)

In equation (10), [ZD] is the diagonal block matrix
D and [ααα1][ααα2]][ααα3] is the upper triangle block matrix U
of the LDU factorization. L is the transpose of U due to
the symmetric property of the matrix. The block diago-
nalized system of the equation is written as:

[ZD]]] [x̃] =
[
b̃
]
. (11)

Here, [b] and [x] is computed by:[
b̃
]
= [αααT

3 ][ααα
T
2 ][ααα

T
1 ][b], (12)

[x]P = [ααα1][ααα2][ααα3][x̃]. (13)
The final solution process consists of solving equa-

tion (11) and performing block matrix-vector products to
extract the solution vector in equations (12) and (13). The
matrix solution cost reduction will be discussed later.

The major cost of the above-discussed process is the
factorization process. The process includes the compu-
tation of the block scaling matrix in equation (5) and
performing block matrix operations given in equation
(8). The generalized matrix operation in equation (8) for
scaling kth row block operating on varying mth row and
nth column matrix blocks is written as:

Z̃mn= Zmn −ZmkZ−1
kk Zkn. (14)

In equation (14), for nullifying one row, there are
four major matrix operations to be performed on the
remaining matrix blocks. The matrix operations are:
matrix inversion of the diagonal block matrix [Z−1

kk ],
matrix solution for block matrix [Zkn], matrix multipli-
cation, and block matrix addition. To perform the above
operations in equation (8), matrix inversion needs to be
computed once; a matrix block solution is required for
the selected row block to be nullified. The major matrix
operations to be repeated for each block computation are
matrix multiplication and addition. When all the blocks
are dense, the operations are straightforward, but this will
lead to a high factorization cost, along with a high matrix
computation cost. In this work, we reduced the cost of
matrix computation and solution as follows.

The matrix consists of dense near-field matrix
blocks and low-rank compressed far-field matrix blocks,
as given in equation (3). The near-field dense matrix
operations are performed using equation (14). However,
to keep the computation cost low, we will perform a low-
rank block matrix operation [35] on the far-field com-
pressed form matrix. From equation (14), the low-rank
matrix operating will be required for block matrix solu-
tion for the computation of scaling matrix, block matrix
multiplication, and block matrix addition. The low-rank
matrix operations are discussed in further subsections.

1. Low-rank matrix solution
The low-rank matrix solution is computed in equa-

tion (14) for mth row and nth column block as [Z−1
kk ][Zkn],

where [Z−1
kk ] is LU factorized dense matrix and [Zkn] is a

low-rank compressed matrix of the form [U]kn[V]kn, and
[U]kn is of size u× r and [V]kn is of size r× v , for u row
size, v column size, and r rank of the block matrix such
that r′ min(m,n). Solving [Z−1

kk ] for [U]kn and multiplying
with [V]kn is equal to solving [Z−1

kk ] for [Zkn] as shown in
Fig. 1. The process saves the solution time by avoiding a
full matrix solution.

Fig. 1. Low-rank block matrix solution. The matrix oper-
ation inside the brackets is performed first to reduce the
computation cost.

2. Low-rank matrix multiplication
Low-rank matrix multiplication is computed in

equation (14) for mth row and nthcolumn block for [[[Zmk]
and [Z−1

kk Zkn]. The low-rank multiplication in this opera-
tion comes with two scenarios. First, [[[Zmk] is dense and
[Z−1

kk Zkn] is in compressed form and, second, both [[[Zmk]

and [Z−1
kk Zkn] are in compressed form.

In the first case, let us consider [[[Zmk] of size
u2 × u1 and [Z−1

kk Zkn] is in the compressed form of
[U1]u1×r1[V1]r1×v1 where u1 is row size, v1 is column
size, and r1 is the rank of the block matrix. Compressed
fast multiplication is carried out by multiplying [[[Zmk]
with [U1] and replacing it with [U1]. Multiplication cost
is reduced to u2×u1× r1. Similarly, compressed matrix
multiplication is performed when [[[Zmk] is in compressed
form and [Z−1

kk Zkn] is in dense form.
In the second case, when [[[Zmk] and [Z−1

kk Zkn] both
are in compressed form, fast matrix multiplication is
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carried out by multiplying compressed parts. Let [[[Zmk]
be the compressed form of [U1]u1×r1[V1]r1×v1 where u1
is row size, v1 is the column size, and r1 is the rank
of the matrix. Let [[[Zmk] be the compressed form of
[U2]u2×r2[V2]r2×v2 where u2 is row size, v2 is column
size, and r2 is the rank of the matrix block. Fast matrix
multiplication is carried out by multiplying [V1]r1×v1
with [U2]u2×r2 as shown in Fig. 2, leading to a block
matrix of the size r1× r2. The low-rank matrix is multi-
plied by row block [U1]u1×r1 or column block [V2]r2×v2
and replacing the row or column block.

Fig. 2. Low-rank block matrix multiplication operation.
Multiplication inside the brackets is performed first for
cost saving.

3. Low-rank matrix addition
Low-rank block matrix addition computation for

mth row is required for adding matrix blocks [Zmn]
and −[ZmkZ−1

kk Zkn] in equation (14). Converting the
compressed matrices in dense form and adding them
will lead to high cost, and adding only the respec-
tive compressed row and column blocks leads to an
incorrect reluctant matrix. Low-rank matrix operation
is performed by merging the respective column row
and column blocks and compressing them. Let [Zmn]
be of the form [U1]u1×r1[V1]r1×v1 and −[ZmkZ−1

kk Zkn]
of the form [U2]u1×r2[V2]r2×v1. Then [U1] and [U2]
is merged by column, and [V1] and [V2] is merged
by row as shown in Fig. 3. The merged matrices are
low-rank matrices and are further compressed and con-
verted into row and column blocks by following the
matrix multiplication operation discussed in the previous
step.

The low-rank matrix operation discussed above
reduces the factorization cost for the full single-level
compressed matrix. Factorization is carried out with a
row block-wise operation by replacing the existing com-
pressed and dense matrices. This process leads to mem-
ory savings with no extra storage requirements for matrix
storage. The single-level compressed and dense matrix is
replaced by a factorized compressed and dense matrix.
The solution time for the factorization can be further
reduced by merging the compressed factorized far-field
matrix blocks, which are discussed later.

Fig. 3. Low-rank block matrix row and column merging
are used to perform low-rank block matrix addition oper-
ations.

B. Fast matrix solution
The solution process includes solving the diagonal

block matrix in equation (11) and the matrix-vector prod-
uct in equations (12) and (13). The solution cost of the
diagonal block is O(N), as shown in [18], where it is
used as a preconditioner. The scaling row block matrices
[ααα1], [ααα1], and [ααα3] consist of dense near-field and com-
pressed far-field blocks and for the compressed far-field
and dense near-field matrix-vector product cost scales
to O(N1.5). The matrix-vector product cost is further
reduced by merging the far-field compressed blocks as
done in H2-Matrix computation. In the scaling matrix
block equation (6), let us suppose all matrix blocks
[−Z−1

11 Z12], [−Z−1
11 Z13], and [−Z−1

11 Z14] are in com-
pressed form and are represented as [U1]u1×r1[V1]r1×v1,
[U2]u2×r2[V2]r2×v2, and [U3]u3×r3[V3]r3×v3 of the same
row basis and size such that u1 = u2 = u3. For merging,
we follow the following steps:

1. Compute QR decomposition of the first column
block matrix. [U1]u1×r1 into [Q1]u1×r1[R1]r1×r1
where Q1 is an orthonormal matrix and R1 is an
upper triangle block matrix.

2. The first compressed row block matrix [V1]r1×v1 is
replaced with the new matrix product [R1]× [V1]

represented as
[
Ṽ1

]
r1×v1

.

3. The second matrix block [V2]r2×v2 is scaled to [Q1]

using transfer matrix computed as [Q1]
−1 [U2] . As

[Q1] is an orthonormal matrix, the solution process
will be [Q1]

′
[U2]. The transfer matrix will be of size

r1× r2 and is multiplied with [V2]r2×v2 represented

as
[
Ṽ2

]
r1×v2

.

Following the above steps, the third block compressed
row matrix [V3]r3×v3 is scaled to the first block using a

transfer matrix and is represented as
[
Ṽ3

]
r1×v3

.The con-

version process is pictorially represented in Fig. 4.
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Fig. 4. Conversion of multiple compressed far-field
blocks to a single compressed block to reduce matrix-
vector product cost.

The new scaling matrix requires storage of the col-
umn block matrix. [Q1] and row block matrices

[
Ṽ1

]
,[

Ṽ2

]
, and

[
Ṽ3

]
. The row block matrix is merged to

form a new matrix
[
Ṽnew

]
. The final compressed matrix

will be of the form [Q1]×
[
Ṽnew

]
. This reduces the

overall matrix storage and matrix-vector product cost.
Our results show the matrix-vector product cost scaled
to O(N).

C. Complexity analysis
Complexity analysis for the near field factorization

is discussed in [18]. In this section we will add the far-
field operation cost on the proposed method. The pro-
posed algorithm has two steps. First is the low rank com-
pressed single level matrix factorization using low rank
matrix operation and second is low rank matrix merg-
ing and solution using matrix-vector product. Let the low
rank matrix be of size of rank k with row and column size
n such that k << n.

Step 1. The factorization part consists of low rank matrix
solutions. The solution cost for the low rank matrix will
be reduced to kn, as the solution is carried out for com-
pressed column matrix. The solution is followed by low
rank matrix multiplication operation, where the matrix
is merged to form a matrix of size k2n which is further
compressed with complexity of k2(n+ n), retaining the
low cost of operation.

Step 2. The merging part includes transpose of the low
rank row block and multiplication. The transpose is of
O(1) complexity whereas multiplication cost is k2n. The
solution part is of low rank matrix-vector product costing
k2 (n+n).

Our experimental results for a hollow cylinder of
radius 0.25λ with varying lengths and unknowns show
that the factorization cost remains to be O(N1.5) com-

plexity and total solution time costs maintain O(N) com-
plexity. The complexity is shown in Fig. 5 for an increas-
ing number of unknowns. The cylinder is meshed with
tringles for λ /10 edge length. The binary tree division
for mesh is terminated for a block size of 10λ -15λ at the
lowest level.

Fig. 5. Block matrix factorization and upper triangle
block time using an increasing number of unknowns.

Figure 6 shows memory complexity for factoriza-
tion process with an increasing number of unknowns. It
is observed that the process gives O(N1.5) memory com-
plexity.

Fig. 6. Factorization memory with an increasing number
of unknowns.

IV. NUMERICAL RESULTS
This section demonstrates the accuracy and effi-

ciency of the proposed new fast direct solver method.
The fast direct solver is applied on a single-level sym-
metric half-compressed block matrix computed with
ACA compression tolerance of 1e-3 on 128 GB mem-
ory and an Intel (Xeon E5-2670) processor system. We
have shown the accuracy of bistatic and monostatic RCS.
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Efficiency is shown for the factorization and solution
time for different geometries compared with open source
fast direct solver code 3D EFIE ie3d code from Butter-
flyPACK [38] H-Matrix solver. All simulations were car-
ried out using a double-precision data type.

A. Bistatic RCS
The accuracy of the proposed fast direct solver is

shown for a 4λ sphere bistatic RCS. The bistatic RCS is
computed for the plane wave incident at angle θ = 0◦ and
φ = 0◦, with the observation angle varying from θ = 0◦

to 180◦ and φ = 0◦. The sphere meshes λ /10 edge length
with 82,515 unknowns. The bistatic RCS is computed
from the proposed fast direct solver ButterflyPACK and
is compared with the Mie Series analytical method.

It is observed from Fig. 7 that the bistatic RCS com-
puted from the fast direct solver matches well with the
Mie Series analytical method.

Fig. 7. Bistatic RCS for observation angle θ =
0◦ to 180◦ and φ = 0◦ with incident angle θ = 0◦ and
φ = 0◦.

Table 1 shows the factorization and solution time
and storage memory for the 4λ radius sphere from the
proposed fast direct solver and open-source Butterfly-
PACK. It can be observed that the proposed fast direct
solver is 1.3x faster than ButterflyPACK for 4λ sphere
RCS computation.

Table 1: Factorization and solution time for 4λ sphere
Fact.

Time (s)
Sol.

Time (s)
Total

Time (s)
Memory

(GB)
ButterflyPACK 26312.73 2.08 26314.81 21

Fast Direct
Solver

20129.40 2.65 20132.05 27

B. Monostatic RCS
In this sub-section, we show the accuracy and effi-

ciency of the proposed method for monostatic RCS com-

putation, a multi-RHS problem. The computations are
shown for an open and closed structure.

1. Square plate [36]
Monostatic RCS for 181 RHS is computed for the

square plate of size 3λ×3λ with plane wave incident
and observation angle varying from θ = −90◦ to 90◦

from φ = 270◦. The plate was meshed for λ /10 ele-
ment size for 6033 unknowns. The RCS is computed
using a ButterflyPACK solver and with the proposed fast
direct solver. It is observed from Fig. 8 that the proposed
method of RCS computation matches the open-source
fast direct solver, and the results are given in [36].

Fig. 8. Monostatic RCS of a square plate for a plane
wave incident and observation angle varying from θ =
−90◦ to 90◦ and φ = 270◦.

The factorization and solution time and storage
memory in Table 2 are shown for the ButterflyPACK
solver and the proposed fast direct solver for 181 RHS.

Table 2: Factorization and solution time for square plate
Fact.

Time (s)
Sol.

Time (s)
Total

Time (s)
Memory

(GB)
ButterflyPACK 26.53 9.49 36.02 0.18

Fast Direct
Solver

13.58 7.42 21.02 0.15

Table 2 shows the significant time saving for matrix
factorization time and total time with the proposed fast
direct solver. The proposed method is 1.7x faster than
ButterflyPACK.

2. NASA almond [37]
Monostatic RCS for 180 RHS is computed for the

NASA almond with the dimensions as in [35] at 7 GHz
with a VV polarized plane wave incident and observa-
tion angle varying from φ = 0◦ to 180◦ and θ ◦ = 90◦.
The CAD geometry is meshed for λ /10 element size for
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8761 unknowns. The RCS is computed using the Butter-
flyPACK solver and with the proposed fast direct solver.

Fig. 9. Monostatic RCS of NASA almond for a plane
wave incident and observation angle varying from φ =
0◦ to 180◦ and θ ◦ = 90◦.

It is observed that the proposed method of RCS com-
putation matched with the ButterflyPACK solver, and the
results are given in [37].

Table 3: Factorization and solution time for NASA
almond

Fact.
Time (s)

Sol.
Time (s)

Total
Time (s)

Memory
(GB)

ButterflyPACK 150.96 18.63 169.59 0.39
Fast Direct

Solver
47.32 18.14 65.46 0.44

Matrix factorization and solution time and storage
memory in Table 3 are shown for the ButterflyPACK
solver and proposed fast direct solver for 180 RHS. The
proposed fast direct solver is 2.5x faster than Butterfly-
PACK.

3. Ship
Monostatic RCS for 180 RHSs is computed for a

ship of size 113 m length, 14 m width, and 20 m max
height, and is computed at 80 MHz with a VV polar-
ized plane wave. The incident and observation angles
vary from φ = 0◦ to 180◦ and θ ◦ = 90◦. The geometry
is meshed for λ /10 element size for 128,028 unknowns.
RCS is computed using a multilevel ButterflyPACK
solver and with the proposed fast direct solver.

It is observed from Fig. 10 that the proposed method
of RCS computation matched with the ButterflyPACK
solver.

The factorization time, solution time, and storage
memory in Table 4 is shown for the ButterflyPACK
solver and proposed fast direct solver for 180 RHS. It

Fig. 10. Monostatic RCS of a ship-like object for a plane
wave incident and observation angle varying from φ =
0◦ to 180◦ and θ ◦ = 90◦.

Table 4: Factorization and solution time for the ship
Fact.

Time (s)
Sol.

Time (s)
Total

Time (s)
Memory

(GB)
ButterflyPACK 70694.09 772.30 71466.39 45

Fast Direct
Solver

52391.67 1024.91 53416.58 51

is observed from Table 4 that there is a significant time
saving for factorization time and total time with the pro-
posed fast direct solver, and it is 1.3x faster than the But-
terflyPACK solver.

V. CONCLUSION
The work proposed in this paper is a new fast direct

solver based on the diagonalization method with the
guaranteed solution for the MoM linear system of equa-
tions. The single-level symmetric half-compressed block
matrix is factorized into LDL′ where D is a diagonal
block matrix, and L′ is an upper triangle compressed
block matrix. The high cost of diagonalization is over-
come using a low-rank block matrix operation process.
Our results show the factorization cost scaled to O(N1.5).
The solution depends on the block diagonal matrix solu-
tion process and matrix-vector product of the upper tri-
angle D. The far-field compressed matrices in the upper
triangle blocks for each row block are merged further
to save matrix-vector product cost and storage memory.
Also, the solution process time for the proposed factor-
ization scales to O(N). In the current work, the matrix is
compressed for the error tolerance of 1e-3. The factor-
ization and solution cost can be reduced by compressing
the matrix for lower error tolerance 1e-2. The low cost
of the solution process, as demonstrated by illustrative
examples, makes it highly desirable for solving multi-
RHS problems like monostatic RCS computation or mul-
tiport network analysis. Unlike block LU factorization
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and solution process, which is highly serial in nature, in
the proposed method, the block operation can be done
independently, making the process amendable for effi-
cient parallelization for both factorization and solution.
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