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Abstract – Computational electromagnetics based on
surface integral equations provides accurate and effi-
cient solutions for three-dimensional electromagnetic
scattering problems in the frequency domain. In this
review paper, we first introduce a complete and detailed
theoretical analysis of the surface integral equation
method, including different properties of the correspond-
ing integral operators and equations. Using a pedagogi-
cal approach that should appeal to electrical engineers,
we provide a systematic and comprehensive derivation
of the different formulations found in the literature and
discuss their advantages and pitfalls. Additionally, we
provide a mathematical overview of the corresponding
function spaces that clarifies the importance of correctly
combining basis and testing functions and we exam-
ine the various aspects of discretization schemes, such
as the Green’s function singularity subtraction and the
application of different testing methods. Moreover, we
assess alternative formulations and discretization proce-
dures and draw particular conclusions about them, by
comparing numerous examples and results from previ-
ously published works. Finally, we provide a detailed
discussion on numerical solvers and approaches.

Index Terms – Basis function, Buffa-Christiansen
function, Calderon preconditioner, discretization,
electromagnetic scattering, fast solvers, formulation,
Green’s function, half-Rao-Wilton-Glisson function,
high-performance computing, integral equation, inte-
gral operator, low frequency breakdown, Method of
Moments, Rao-Wilton-Glisson function, singularity
subtraction, surface integral equation, testing function,
testing method, Trintinalia-Ling functions.

I. INTRODUCTION
For many decades, computational electromagnetics

has been playing a crucial role both in academia and in
industry, to investigate a plethora of phenomena [1–6].
Indeed, analytical expressions for electromagnetic scat-
tering problems exist only for objects with very specific

shapes. For scattering, Mie theory can be used only to
model analytically homogeneous, coated, or multilay-
ered spheres and infinite cylinders [7]. The treatment of
scatterers with more complex geometries requires the use
of accurate numerical techniques.

A very popular technique used for modeling scatter-
ing objects is the discrete dipole approximation (DDA),
which approximates the scatterer by a finite array of
polarizable point dipoles [8, 9], but presents enormous
computational costs for large objects [10]. Numeri-
cal techniques that are based on differential formula-
tions like the finite element method (FEM) [11–13] and
the finite-difference time-domain (FDTD) [14–16] have
sparse matrices in the final linear system, which is a sig-
nificant advantage since they can use efficient storage
and solver algorithms with better performances. Nev-
ertheless, the discretization of the whole computational
domain (including the surrounding medium) and the
existence of spurious modes represent some major con-
cerns for these approaches [17].

Volume integral equations (VIEs) use the integral
form of Maxwell’s equations [18]. Contrary to differen-
tial techniques, only the discretization of the scatterer’s
domain is needed [19]. The surrounding is not discretized
since its effect is intrinsically included in the formula-
tion. Also, VIEs can be used to model inhomogeneous
materials. However, an important disadvantage of VIEs
is that they involve densely populated matrices [20].

Surface integral equations (SIEs), are very efficient
because they only require the discretization of the scat-
terer’s surface, thus presenting a significantly smaller
number of unknowns compared to VIEs [21]. How-
ever, they are limited to piecewise homogeneous mate-
rials since they use the Green’s function of a homoge-
neous region. The SIE method is a widely used numer-
ical approach for analyzing electromagnetic scattering
in metallic, dielectric, and composite metallic-dielectric
structures [22]. SIEs can be formulated in many differ-
ent ways for the same electromagnetic problem. Thus,
one may wonder what is the best formulation to use?
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Some of the most popular SIE formulations for impen-
etrable scatterers are the electric field integral equa-
tion (EFIE), magnetic field integral equation (MFIE)
and combined-field integral equation (CFIE) [23]. For
penetrable objects the most used formulations are the
Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)
[24] and Müller [25]. In the 1970s and 1980s many
numerical approaches were introduced for solving the
aforementioned equations, initially for rotationally sym-
metric objects [23, 26, 27], and subsequently for arbi-
trarily shaped three-dimensional (3D) objects [28–30].
SIEs can be categorized into the Fredholm integral equa-
tions of the first and the second kinds [31]. EFIE and
PMCHWT equations are both of the first kind. MFIE
and Müller equations belong to the second kind. The
first kind of surface integral equations present a supe-
rior numerical accuracy compared to the second kind,
while the latter show better performance regarding iter-
ative solutions and convergence [32]. Hence, identify-
ing a specific formulation as the most optimal is not
straightforward. The main reason behind this trade-off
between accuracy and iterative solution convergence has
been proven to originate from the improper testing of the
second kind of formulations [33, 34]. Hence, in every
problem, the discretization scheme (selection of basis
and testing functions) and the SIE formulation must
be selected carefully, since the numerical accuracy and
efficiency of the solution are heavily affected by this
formulation-discretization combination.

In this review, we present the theoretical analysis
of a general electromagnetic problem that leads to dif-
ferent SIE formulations. We discuss the integral oper-
ators, the integral equations and the different formula-
tions. Moreover, we delve into the various components
of a discretization scheme, such as the singularity sub-
traction and the utilization of different basis and testing
functions, by providing also a mathematical overview of
function spaces to explain the significance of combining
basis and testing functions properly. Furthermore, we go
through several results from various published works, in
order to compare different formulations and discretiza-
tion procedures, so that we can draw specific conclu-
sions about them alone and also about their combination.
Finally, we provide a detailed discussion on numerical
solvers and approaches.

II. THEORETICAL FRAMEWORK
A. Scattering problems

Consider Fig. 1, where a scatterer is placed in a
homogeneous background. The scatterer is of arbitrary
shape and consists of piecewise homogeneous media.
Every region is a domain Ωi with a constant electric
permittivity εi and magnetic permeability µi. The time
dependence e− jωt is used throughout.

Fig. 1. Scatterer in a homogeneous background Ω1.

For each domain,

∇×∇×Ei(r)− k2
i Ei(r) = jωµiJi(r) , (1)

where ki = ω
√

εiµi. The Dyadic Green’s function
Gi (r,r′) solves the equation [35]

∇×∇×Gi
(
r,r′

)
− k2

i Gi
(
r,r′

)
= 1δ

(
r− r′

)
. (2)

The multiplication of (1) with Gi (r,r′) from the
right and (2) with Ei (r) from the left gives

∇×∇×Ei(r) ·Gi
(
r,r′

)
−

Ei(r) ·∇×∇×Gi
(
r,r′

)
=

jωµiJi(r) ·Gi
(
r,r′

)
−Ei(r)δ

(
r− r′

)
. (3)

Integrating (3) over Ωi and using the following rela-
tion [36]

∇ ·
(
[∇×E(r)]×G

(
r,r′

)
+

E(r)×
[
∇×G

(
r,r′

)])
= (4)

∇×∇×E(r) ·G
(
r,r′

)
−E(r) ·∇×∇×G

(
r,r′

)
,

gives ∫
Ωi

dV ∇ ·
(
[∇×Ei(r)]×Gi

(
r,r′

)
+

Ei(r)×
[
∇×Gi

(
r,r′

)])
=

Einc
i

(
r′
)
−

 Ei (r′) , r′ ∈ Ωi
κ (r′)Ei (r′) , r′ ∈ ∂Ωi
0, r′ /∈ Ωi

, (5)

where

Einc
i

(
r′
)
= jωµi

∫
Ωi

dV Ji(r) ·Gi
(
r,r′

)
= jωµi

∫
Ωi

dV Gi
(
r′,r

)
·Ji(r) , (6)

is the incident electric field intensity generated by the
current density Ji(r) inside Ωi. Regarding the transpo-
sition of the Dyadic Green’s function [37], Gi (r,r′)T =
Gi (r′,r). Next, by using Gauss’ theorem, the following
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surface integral emerges∫
∂Ωi

dSn̂i ·
(
[∇×Ei(r)]×Gi

(
r,r′

)
+

Ei(r)×
[
∇×Gi

(
r,r′

)])
=

Einc
i

(
r′
)
−

 Ei (r′) , r′ ∈ Ωi
κ (r′)Ei (r′) , r′ ∈ ∂Ωi
0, r′ /∈ Ωi

, (7)

where n̂i is the unit normal vector on ∂Ωi with direc-
tion from the inside to the outside of Ωi. By using the
time-harmonic nature of the different field quantities, the
kernel of the integral becomes [37]

n̂i(r) · [∇×Ei(r)]×Gi
(
r,r′

)
=

n̂i(r)× [∇×Ei(r)] ·Gi
(
r,r′

)
=

jωµiGi
(
r′,r

)
· [n̂i(r)×Hi(r)] , (8)

and with the use of[
∇×Gi

(
r,r′

)]T
=−∇×Gi

(
r′,r

)
, (9)

the second kernel term becomes

n̂i(r) ·Ei(r)×
[
∇×Gi

(
r,r′

)]
=

[n̂i(r)×Ei(r)] ·
[
∇×Gi

(
r,r′

)]
=

−
[
∇×Gi

(
r′,r

)]
· [n̂i(r)×Ei(r)] . (10)

Finally, by introducing the surface electric and mag-
netic current densities

Js,i(r) = n̂i(r)×Hi(r) (11)
Ms,i(r) =−n̂i(r)×Ei(r) , (12)

where n̂i(r) is the unit normal vector of ∂Ωi towards the
outer side of Ωi. Equation (7) becomes [18]

ηi

[
jki

∫
∂Ωi

dS′Gi
(
r,r′

)
·Js,i

(
r′
)]

+∫
∂Ωi

dS′
[
∇
′×Gi

(
r,r′

)]
·Ms,i

(
r′
)
=

Einc
i (r)−

 Ei (r) , r ∈ Ωi
κ (r)Ei (r) , r ∈ ∂Ωi
0, r /∈ Ωi

, (13)

where r and r′ have been swapped. Also, κ (r) = 1 −
Ω(r)/4π , where Ω(r) is the solid angle subtended by
the observation point r [18]. For locally smooth surfaces
Ω(r) = 2π , thus κ (r) = 1/2.

A similar analysis can be applied to the case of the
magnetic field [38]. Starting from the following equation

∇×∇×Hi(r)− k2
i Hi(r) = ∇×Ji(r) . (14)

By identifying the incident magnetic field intensity
as

Hinc
i

(
r′
)
=

∫
Ωi

dV Ji(r) ·
[
∇
′×Gi

(
r,r′

)]
=

∫
Ωi

dV Gi
(
r′,r

)
· [∇×Ji(r)] , (15)

an analogous equation is derived

η
−1
i

[
jki

∫
∂Ωi

dS′Gi
(
r,r′

)
·Ms,i

(
r′
)]

−∫
∂Ωi

dS′
[
∇
′×Gi

(
r,r′

)]
·Js,i

(
r′
)
=

Hinc
i (r)−

 Hi (r) , r ∈ Ωi
κ (r)Hi (r) , r ∈ ∂Ωi
0, r /∈ Ωi

. (16)

After the solution of the above integral equations,
the currents can be used to calculate the fields at any
position r ∈ Ωi, as follows

Ei (r) = Einc
i (r)−

ηi

[
jki

∫
∂Ωi

dS′Gi
(
r,r′

)
·Js,i

(
r′
)]

−∫
∂Ωi

dS′
[
∇
′×Gi

(
r,r′

)]
·Ms,i

(
r′
)
, (17)

Hi (r) = Hinc
i (r)−

η
−1
i

[
jki

∫
∂Ωi

dS′Gi
(
r,r′

)
·Ms,i

(
r′
)]

+∫
∂Ωi

dS′
[
∇
′×Gi

(
r,r′

)]
·Js,i

(
r′
)
. (18)

B. Boundary conditions
As illustrated in Fig. 2, we assume the existence

of two domains Ω1 and Ω2 with different media, and
a boundary ∂Ω = ∂Ω1 ∩ ∂Ω2. Maxwell’s equations
require that the tangential components of the electric and
magnetic fields are continuous across the boundary ∂Ω,
as depicted in the following equations, where r ∈ ∂Ω:

n̂(r)×H1 (r) =−n̂(r)×H2 (r) , (19)
−n̂(r)×E1 (r) = n̂(r)×E2 (r) , (20)

where n̂(r) = n̂1(r) is the the unit normal vector of ∂Ω

pointing towards Ω2 and n̂2(r) = −n̂(r), as shown in
Fig. 2. Thus, when it comes to the surface electric and
magnetic current densities on ∂Ω1 and ∂Ω2, the relation
between them for r ∈ ∂Ω is

Js,1 (r) =−Js,2 (r) , (21)
Ms,1 (r) =−Ms,2 (r) . (22)

The above relations between surface current densi-
ties play a key role not only for the theoretical formula-
tion, but also for its discretization.

Fig. 2. Boundary between the domains Ω1, Ω2, and defi-
nition of the normal n̂(r).
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III. SURFACE INTEGRAL FORMULATIONS
A. Integral operators

Formally, a linear integral equation can be written
L {s}= R , (23)

where L is the integral (linear) operator, s is the
unknown quantity (the electric and magnetic surface cur-
rent densities) and R is the known quantity (the excita-
tion). The surface integral operator

L {s}(r) =
∫

∂Ω

dS′K
(
r,r′

)
s
(
r′
)

(24)

includes a kernel K (r,r′) and the integral runs over a
boundary ∂Ω of the geometry.

The linear integral operator can be categorized
according to its singularity. If the singularity order is less
than the integral’s dimension, then the operator is weakly
singular [39]. An example of such an operator is the fol-
lowing

Lw {s}(r) =
∫

∂Ω

dS′
1

|r− r′|
s
(
r′
)
. (25)

In this case, as |r− r′| → 0, the kernel becomes sin-
gular. Its singularity dimension is equal to 1. However,
since we are integrating over the 2D surface ∂Ω, the
integral’s dimension is equal to 2. Thus, this is a weak
(or mild) singularity, and the integral remains finite.
Additionally, a weakly singular integral operator Lw is
bounded and maps a function to a smoother one, because
its range space is reduced by one order relative to its
original domain [40]. Furthermore, the spectrum of a
bounded operator accumulates to a constant and, in the
special case that it accumulates to zero, the integral oper-
ator is said to be compact [41]. Regarding the previously
presented example, the integral operator Lw is compact,
meaning its eigenvalues (in spectral terms) accumulate to
zero, and the operator tends to smooth the function it acts
upon. If the singularity order is equal to or larger than
the integral’s dimension, then the operator is singular
or hyper-singular, respectively. A typical hyper-singular
example arises from increasing the power of the kernel’s
denominator, as follows

Lh {s}(r) =
∫

∂Ω

dS′
1

|r− r′|3
s
(
r′
)
. (26)

In this scenario, as |r− r′| → 0, the kernel becomes
singular. However, its singularity dimension is equal to 3
and it is larger than the integral’s dimension. Operators
with (hyper-)singular kernels can lead to the appearance
of an unbounded operator, with a spectrum that tends to
go to infinity [42]. In the following sections we identify
the integral operators that appear in (13) and (16) of the
aforementioned analysis.

1. D operator
In (13) and (16) there is the linear integral operator

Di {X }(r) = jki

∫
∂Ωi

dS′Gi
(
r,r′

)
·X

(
r′
)
, (27)

where X (r) can be the surface electric current density
Js,i (r) or the surface magnetic current density Ms,i (r).
By taking into consideration that

Gi
(
r,r′

)
=

(
1+

∇∇

k2
i

)
e jki|r−r′|

4π |r− r′|

=

(
1+

∇∇

k2
i

)
Gi

(
r,r′

)
, (28)

equation (27) can lead to the following calculations

Di {X }(r) = jki

∫
∂Ωi

dS′Gi
(
r,r′

)
·X

(
r′
)

= jki

∫
∂Ωi

dS′Gi
(
r,r′

)
X

(
r′
)
− (29)

1
jki

∇

∫
∂Ωi

dS′Gi
(
r,r′

)
∇
′
s ·X

(
r′
)
.

2. K operator
In (13) and (16) we can also identify the linear inte-

gral operator

Ki {X }(r) =
∫

∂Ωi

dS′
[
∇
′×Gi

(
r,r′

)]
·X

(
r′
)
, (30)

which, with the use of equation ∇′ × Gi (r,r′) =
∇′Gi (r,r′)×1, can be further written as follows

Ki {X }(r) =
∫

∂Ωi

dS′
[
∇
′×Gi

(
r,r′

)]
·X

(
r′
)

=
∫

∂Ωi

dS′
[
∇
′Gi

(
r,r′

)]
×X

(
r′
)
. (31)

B. Integral equations
As mentioned in section I, two different kinds of

integral equations exist. The integral equations of the
first kind,

L1 {s}= R , (32)

and those of the second kind,

(L2 +I ){s}= R , (33)

where I {s} is the identity operator [41]. An integral
equation of the first kind has a unique solution if the lin-
ear integral operator is coercive and one-to-one [43]. For
an integral equation of the second kind, a unique solution
exists when the operator L2 +I is one-to-one and the
integral operator L2 is compact [43]. In general, an inte-
gral equation with an operator of the form L +K has a
unique solution if L +K is one-to-one, L is compact,
and K is a bounded operator with a bounded inverse
[42–44]. Hence, in order to have unique solutions, in (32)
the linear integral operator should not be compact, and in
(33) it should not be unbounded [42].

According to the calculations of the previous
sections, (13) and (16) can be rewritten on a (locally)
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smooth surface ∂Ωi as follows
ηiDi {Js,i}(r)+Ki {Ms,i}(r) =

Einc
i (r)− 1

2
Ei (r) , r ∈ ∂Ωi , (34)

−Ki {Js,i}(r)+η
−1
i Di {Ms,i}(r) =

Hinc
i (r)− 1

2
Hi (r) , r ∈ ∂Ωi . (35)

The electric and magnetic fields can then be split
into components parallel and perpendicular to the bound-
ary ∂Ωi:

Ei (r) = [Ei (r)× n̂i (r)]× n̂i (r)+
[n̂i (r) ·Ei (r)] n̂i (r) , (36)

Hi (r) = [Hi (r)× n̂i (r)]× n̂i (r)+
[n̂i (r) ·Hi (r)] n̂i (r) . (37)

Using the boundary conditions and the continuity
equations leads to the following expressions for (34) and
(35):

ηiD {Js,i}(r)+K {Ms,i}(r)−
1
2

n̂i (r)×Ms,i (r)

+ j
ηi

2ki
[∇s ·Js,i (r)] n̂i (r) = Einc

i (r) , r ∈ ∂Ωi , (38)

−K {Js,i}(r)+η
−1
i D {Ms,i}(r)+

1
2

n̂i (r)×Js,i (r)

+ j
1

2ηiki
[∇s ·Ms,i (r)] n̂i (r) = Hinc

i (r) , r ∈ ∂Ωi . (39)

Equation (38) is the electric field integral equation
(EFIE) and (39) the magnetic field integral equation
(MFIE).

Formulations that use either the EFIE or the MFIE
for the solution of a scattering problem often lead to
internal resonances, which produce inaccurate results,
especially at a resonance frequency of the scatterer [45].
To avoid this major problem, different combinations of
the EFIE and MFIE have been proposed. Surface integral
equation formulations, which are free of internal reso-
nances, can thus be obtained by summing, with appro-
priate coefficients, the EFIEs and the MFIEs for all com-
putational domains, which leads to a final matrix system
of combined integral equations that are solved simulta-
neously [46]. A conventional approach to derive SIE for-
mulations involves the tangential traces of the EFIE and
MFIE representations, along with the boundary condi-
tions. Thus, two categories of SIE formulations are pro-
duced. The N-Formulations are produced by combining
the following tangential components

(N−EFIE)i : [n̂(r)× (EFIE)]
∂Ωi

, (40)

(N−MFIE)i : [n̂(r)× (MFIE)]
∂Ωi

, (41)
and the T-Formulations consist of

(T−EFIE) : [−n̂(r)× n̂(r)× (EFIE)]
∂Ωi

, (42)

(T−MFIE) : [−n̂(r)× n̂(r)× (MFIE)]
∂Ωi

, (43)

where n̂(r) is the outward unit normal vector on the
closed surface ∂Ωi.

C. N-Formulations
Consider a boundary ∂Ω between two adjacent

domains Ωℓ and Ωm. The selection n̂(r)= n̂ℓ (r) is made,
where n̂ℓ (r) is the normal unit vector of ∂Ω towards Ωm.
Then, N-EFIE and N-MFIE take the following forms in
the domains Ωℓ and Ωm:
(N−EFIE)ℓ:

+ηℓD
n
ℓ

{
Js,ℓ

}
(r)+

(
K n

ℓ +
I

2

){
Ms,ℓ

}
(r) =

n̂(r)×Einc
ℓ (r) , (44)

(N−EFIE)m:

−ηmDn
m
{

Js,ℓ
}
(r)−

(
K n

m − I

2

){
Ms,ℓ

}
(r) =

n̂(r)×Einc
m (r) , (45)

(N−MFIE)ℓ:

−
(

K n
ℓ +

I

2

){
Js,ℓ

}
(r)+η

−1
ℓ Dn

ℓ

{
Ms,ℓ

}
(r) =

n̂(r)×Hinc
ℓ (r) , (46)

(N−MFIE)m:

+

(
K n

m − I

2

){
Js,ℓ

}
(r)−η

−1
m Dn

m
{

Ms,ℓ
}
(r) =

n̂(r)×Hinc
m (r) , (47)

where I is the identity operator and
Dn

i {X }(r) = n̂(r)×Di {X }(r) , (48)
K n

i {X }(r) = n̂(r)×Ki {X }(r) . (49)
Different N-Formulations can then be obtained by

combining the previous equations with different coeffi-
cients, as shown below

mN
ℓ (N−MFIE)ℓ+mN

m(N−MFIE)m , (50)

eN
ℓ (N−EFIE)ℓ+ eN

m(N−EFIE)m . (51)
The most popular formulation of this kind is mN-

Müller [47] with coefficients

mN
ℓ =

µℓ

µm +µℓ
, mN

m =
µm

µm +µℓ
, (52)

and
eN
ℓ =

εℓ

εm + εℓ
, eN

m =
εm

εm + εℓ
. (53)

The N-Müller (with coefficients: mN
ℓ = µℓ, mN

m = µm,
eN
ℓ = εℓ, eN

m = εm) [25] and mN-Müller [47] formulations
have very fast rates of convergence when iterative solvers
are used [48]. This happens because of the identity oper-
ator that appears on the diagonal of the system matrix.
Thus, these formulations present a low condition number
and fast convergence [48]. However, there are losses in
terms of accuracy with the use of divergence-conforming
basis functions of the lowest order, which will be dis-
cussed in section IVB.
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D. T-Formulations
T-Formulations are a linear combination of the T-

EFIE (42) and the T-MFIE (43). Again, consider a
boundary ∂Ω between two adjacent domains Ωℓ and Ωm.
The selection n̂(r) = n̂ℓ (r) is made, where n̂ℓ (r) is the
normal unit vector of ∂Ω towards Ωm. Then, T-EFIE and
T-MFIE take the following forms in the domains Ωℓ and
Ωm:
(T−EFIE)ℓ:

+ηℓD
t
ℓ

{
Js,ℓ

}
(r)+

(
K t

ℓ − In

2

){
Ms,ℓ

}
(r) =

− n̂(r)× n̂(r)×Einc
ℓ (r) , (54)

(T−EFIE)m:

−ηmD t
m
{

Js,ℓ
}
(r)−

(
K t

m +
In

2

){
Ms,ℓ

}
(r) =

− n̂(r)× n̂(r)×Einc
m (r) , (55)

(T−MFIE)ℓ:

−
(

K t
ℓ − In

2

){
Js,ℓ

}
(r)+η

−1
ℓ D t

ℓ

{
Ms,ℓ

}
(r) =

− n̂(r)× n̂(r)×Hinc
ℓ (r) , (56)

(T−MFIE)m:

+

(
K t

m +
In

2

){
Js,ℓ

}
(r)−η

−1
m D t

m
{

Ms,ℓ
}
(r) =

− n̂(r)× n̂(r)×Hinc
m (r) , (57)

where
D t

i {X }(r) =−n̂(r)× n̂(r)×Di {X }(r) , (58)
K t

i {X }(r) =−n̂(r)× n̂(r)×Ki {X }(r) , (59)
In = n̂×I . (60)

Different T-Formulations can then be obtained by
combining the previous equations with different coeffi-
cients, as shown below

eT
ℓ (T−EFIE)ℓ+ eT

m(T−EFIE)m , (61)

mT
ℓ (T−MFIE)ℓ+mT

m(T−MFIE)m . (62)
The most popular formulation of this kind is T-

PMCHWT [49] with coefficients
mT
ℓ =−mT

m = eT
ℓ =−eT

m = 1 . (63)
The T-PMCHWT [49], which is a Fredholm equa-

tion of the first kind, includes weakly singular inte-
gral operators. Hence, it presents very slow convergence
compared to other N- and T-Formulations, because of the
weak diagonal contributions in the system matrix [50].
However, its convergence can be improved by applying a
preconditioning technique. The Calderon multiplicative
preconditioner (CMP) has proved to be very effective in
that context [51, 52].

E. Combined Field Integral Equations (CFIE)
The CFIE formulations are obtained by a linear

combination of T-EFIE, N-EFIE, T-MFIE, and N-MFIE
equations, in the adjacent regions:

eN
mη

−1
m (N−EFIE)m + eT

mη
−1
m (T−EFIE)m+

mN
m(N−MFIE)m +mT

m(T−MFIE)m , (64)

eN
ℓ (N−EFIE)ℓ+ eT

ℓ (T−EFIE)ℓ+

mN
ℓ ηℓ(N−MFIE)ℓ+mT

ℓ ηℓ(T−MFIE)ℓ . (65)
However, every CFIE formulation does not lead to

accurate solutions. Setting to zero one of the coeffi-
cients in the previous equations [45] gives the follow-
ing four categories of formulations: TENE-TM (mN =
0), TE-THNH (eN = 0), TENE-NH (mT = 0), and NE-
THNH (eT = 0). For every possible combination of
mN ,mT ,eN ,eT ∈{−1,1} it has been shown that the CFIE
formulations are free of resonances and present accu-
rate solutions [53]. A different kind of CFIE formulation
is JMCFIE [54], which consists of the following set of
equations:

(JCFIE): −η
−1
m (T−EFIE)m +η

−1
ℓ (T−EFIE)ℓ+

(N−MFIE)m +(N−MFIE)ℓ , (66)
(MCFIE): −ηm(T−MFIE)m +ηℓ(T−MFIE)ℓ+

(N−EFIE)m +(N−EFIE)ℓ . (67)
This formulation has been shown to be very robust,

with fast convergence for iterative solvers, accurate far-
field representation [48], and high efficiency for the sim-
ulation of composite objects with junctions [54].

IV. DISCRETIZATION
The discretization of the surface(s) of the scat-

terer(s) is an essential step to numerically solve an elec-
tromagnetic scattering problem with the various formu-
lations presented above. Consider the simple problem of
a single scattering body that lies in a homogeneous back-
ground medium. In this case, the first step is to discretize
the body’s surface by implementing a surface triangula-
tion which will generate a mesh M with Ne edges.

To use the Method of Moments (MoM), both the
surface electric and magnetic current densities must be
expanded with basis functions to calculate them numer-
ically on each edge of M in terms of their expansion
coefficients:

Js,i =
Ne

∑
n=1

αnfn (r) , (68)

Ms,i =
Ne

∑
n=1

βnfn (r) , (69)

where fn (r) are the basis functions. Also, a testing pro-
cedure with a testing function is required, to convert the
integral equation into a matrix equation. The approach
where the same function is used as basis and for testing
is the well known Galerkin method [55]. The choice of
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the proper basis and testing functions is essential for the
implementation of the MoM, to obtain a final system that
leads to accurate solutions. Hence, a mathematical anal-
ysis regarding function spaces and integral operators is
needed to properly select the testing and basis functions.

A. Function spaces
Let us look at a scalar boundary value problem

with a solution Ψ. Sobolev considered that inside any
bounded medium, the energy should be finite, which
leads to the requirement that both Ψ and ∇Ψ should be
square integrable in a bounded domain Ω [56]. For inte-
rior problems this space is presented as H1(Ω). Thus, the
space of square integrable scalar functions in a bounded
domain Ω is defined as H0(Ω) = L2(Ω). If the domain
Ω is unbounded, then there is a local definition of the
square integrable feature in every bounded subset of Ω

[56].
We are concerned about the boundary values on

∂Ω, since the surface electric and magnetic current den-
sities are on the boundary. With the help of the trace
theorem it has been shown that the set of all bound-
ary values in H1(Ω) form the Hilbert space H1/2(∂Ω)
[57], which is smaller than L2(∂Ω). Moreover, if ∇2Ψ is
also square integrable, all the normal derivatives of func-
tions in H1(Ω) form the space H−1/2(∂Ω), which is the
dual of H1/2(∂Ω). Regarding the electromagnetic vector
fields, they belong to H1(Ω) given that every field com-
ponent is in this space.

A curl Sobolev space is defined as a space in which
functions and their curls are square integrable [58]

H(curl,Ω) =
{

f : f ∈ L2(Ω),∇× f ∈ L2(Ω)
}
. (70)

Poynting’s theorem implies that energy is bounded if
both the electric and magnetic field intensities are square
integrable over any bounded subdomain of Ω. By consid-
ering Maxwell’s equations, the energy is bounded if E,
H, ∇×E, ∇×H are square integrable in bounded sub-
domains, which means that both E, H ∈ H(curl,Ω). The
analogous divergence Sobolev space is [58]

H(div,Ω) =
{

f : f ∈ L2(Ω),∇ · f ∈ L2(Ω)
}
, (71)

which includes both the electric and magnetic flux densi-
ties: D, B ∈ H(div,Ω). In order to analyse SIEs, we need
the trace spaces that are presented below, which illustrate
the effect of applying the trace operators (−n̂× n̂×) and
(n̂×) to a function f ∈ H(curl,Ω):

−n̂× n̂× f : H(curl,Ω)−→ H−1/2(curl,∂Ω) , (72)

n̂× f : H(curl,Ω)−→ H−1/2(div,∂Ω) , (73)

where ∂Ω is the boundary of domain Ω and

H−1/2(curl,∂Ω) =

{
f :f ∈ H−1/2(∂Ω), n̂ ·∇s × f ∈ H−1/2(∂Ω)

}
, (74)

H−1/2(div,∂Ω) ={
f :f ∈ H−1/2(∂Ω),∇s · f ∈ H−1/2(∂Ω)

}
, (75)

where ∇s is the surface gradient on the boundary. The
space H−1/2(div,∂Ω), which includes both the surface
electric current density (J = n̂×H) and the surface mag-
netic current density (M = −n̂ × E), is the L2 dual of
H−1/2(curl,∂Ω) [59].

B. Basis functions
In general, the continuity equations for both the sur-

face electric and magnetic current densities impose a
physical requirement on the basis function, which should
be able to represent properly the quantities ∇s · Js and
∇s ·Ms, that are related to the surface electric (ρe,s) and
magnetic (ρm,s) charge densities (multiplied with the fac-
tor jω). Thus, a good representation of both current
densities requires the use of a divergence-conforming
basis function. The mathematical approach of the previ-
ous section showed that the electric and magnetic current
densities belong to H−1/2(div,∂Ω), which confirms that
basis functions have to be divergence-conforming. The
two most popular functions of this category are the Rao-
Wilton-Glisson (RWG) and the quasi-curl-conforming
Buffa-Christiansen (BC) functions that will be described
next.

1. Rao-Wilton-Glisson (RWG)
The most common basis function is the RWG [60],

which is the lowest order divergence-conforming func-
tion. Consider a triangular mesh M on a surface; a RWG
function fn (r) is defined in Fig. 3 for every pair of adja-
cent triangles T+ and T− with a common edge ℓn. The
analytical expression for RWG is given by

fn (r) =


+

ℓn

2A+
(r−p+) , r ∈ T+

−
ℓn

2A− (r−p−) , r ∈ T−

0, otherwise

, (76)

where p+ and p− are the vertices of the two triangles T+

and T−, opposed to their common edge ℓn. Also, ℓn is
the length of the common edge and A+ and A− are the
areas of T+ and T−.

A main feature of RWG is that there is no normal
component of the surface current density along the sur-
rounding line boundary of the pair T+, T−, which means
that line charges do not exist on it. Also, the component
of the surface current density that is normal to the com-
mon edge ℓn is constant and continuous across ℓn. Fur-
thermore, the surface charge density is constant in each
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triangular element, since

∇s · fn (r) =


+

ℓn

A+
, r ∈ T+

−
ℓn

A−, r ∈ T−

0, otherwise

, (77)

with the total charge on each pair accumulating to zero.

Fig. 3. RWG function on a pair of adjacent triangles.

2. Half-RWG
The half-RWG basis function is a modified version

of its original counterpart and is defined only in a sin-
gle triangle of mesh M [61], as shown in Fig. 4. Every
edge ℓn ∈M has an arbitrarily generated direction. How-
ever, this direction is fixed, so the edge vector ℓℓℓn of each
edge is constant. Also, the reference normal unit vector
n̂re f points towards the direction that is the result of the
counterclockwise rotation of the triangle’s vertices (their
order is initially defined once for each triangle). The half-
RWG function associated with an edge ℓn of a mesh tri-
angle T with area A is defined as

hn (r) =

 ± ℓn

2A
(r−p) , r ∈ T

0, otherwise
, (78)

where p is the vertex of T across ℓn. The sign of hn (r) in
each of the problem’s domains Ωi is different for oppo-
site sides of the boundary between two adjacent domains.
Hence, if Ωℓ and Ωm have a common boundary, then
hn,ℓ (r)=−hn,m (r). This means that the boundary condi-
tions regarding the surface electric and magnetic current
densities are satisfied by half-RWG, when using the same
expansion coefficients. As a result, some signs in the
formulations that were previously presented will change
with the use of this function. By employing the continu-
ity of the original RWG-functions, the cumulative RWG
function is defined as

fn (r) = ∑
{k:ℓk=ℓn}

hk (r) , (79)

where fn (r) refers to an edge ℓn and hk (r) refers to a
half-RWG basis function that borders ℓn.

Fig. 4. Half-RWG function defined on a single mesh tri-
angle.

3. Buffa-Christiansen (BC)
Another divergence-conforming and quasi-curl-

conforming basis function is the BC function, which is
defined on a barycentric refinement Mb of the original
triangular mesh M [62]. Essentially, it is a linear com-
bination of a set of RWG functions which are defined on
Mb. However, a BC function is associated with an edge
of the original mesh M .

Consider a reference edge ℓn on the original mesh
M . The barycentric refinement Mb is presented in Fig.
5. Around the right and left vertices of the reference edge
there are Nc = 4 and N∗

c = 5 triangles, respectively, that
belong to M . In Fig. 5 the plus (+) and minus (−) signs
show the appropriate direction of the numbered RWG
functions (or half-RWG for open surfaces) on the new
edges of Mb. The linear combination of these functions,
with appropriate signs and coefficients, synthesizes the
BC basis function of the reference edge. The aforemen-
tioned coefficients are defined as follows [51],

ci =


1

2l0
, i = 0

Nc − i
2liNc

, i = 1, ...,2Nc −1
, (80)
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Fig. 5. Barycentically refined mesh Mb.
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ci∗ =


−

1
2l0∗

, i∗ = 0

−
N∗

c − i∗

2li∗N∗
c
, i∗ = 1∗, ...,2N∗

c −1 .
(81)

The form of the BC for the reference edge ℓn is shown in
Fig. 6.

Fig. 6. Buffa-Christiansen basis function.

The BC functions present however a significant
drawback regarding the representation of the surface
charge density since they model the surface charge den-
sity as a constant function around the vertices of the orig-
inal mesh M [42]. The RWG functions present constant
surface charge density inside the triangular elements, as
mentioned in the previous section. Hence, the latter are
more appropriate for modeling discontinuous and singu-
lar surface charge density near sharp corners [63].

4. Trintinalia-Ling (TL)
The TL basis function [64], also called linear-linear

(LL) basis function [65], can be perceived as a decom-
position of the RWG basis function. Indeed, consider
a triangular mesh M on a surface; the first and the
second kind of LL functions are defined for every pair

fLL,1
n (r) =



ℓn

4(A+)2 (r− r1) · [(r4 − r1)× n̂(r)] (r3 − r1) , r ∈ T+

ℓn

4(A−)2 (r− r2) · [(r4 − r2)× n̂(r)] (r3 − r2) , r ∈ T−

0, otherwise

(82)

fLL,2
n (r) =



ℓn

4(A+)2 (r1 − r) · [(r3 − r1)× n̂(r)] (r4 − r1) , r ∈ T+

ℓn

4(A−)2 (r2 − r) · [(r3 − r2)× n̂(r)] (r4 − r2) , r ∈ T−

0, otherwise

(83)

of adjacent triangles T+ and T− with a common edge
ℓn, as shown below. Figures 7 and 8 show the form of
both kinds of LL basis functions. The grayscale gradient
inside the triangles illustrates the magnitude of the basis
function. The analytical formulas of the first and second
kinds of LL basis functions are given by (82) and (83),
where ℓn is the length of the common edge and A+ and
A− are the areas of T+ and T−.

For both kinds of LL functions, the spatial distribu-
tion is parallel to the surrounding edges where the mag-
nitude of the basis function is nonzero (non-white color

Fig. 7. First kind of LL basis function.

Fig. 8. Second kind of LL basis function.
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in Figs. 7 and 8). Also, it varies linearly along those
edges (maximum at the intersection with the reference
edge ℓn). What is more, it is zero next to the surrounding
edges where the magnitude of the basis function is zero
(white color). Lastly, it exhibits a linear variation on the
reference edge ℓn for both perpendicular and tangential
directions.

As mentioned at the beginning of this section, LL
functions are the decomposition of the RWG function,
more specifically,

fRWG
n (r) = fLL,1

n (r)+ fLL,2
n (r) . (84)

The surface divergence of these functions, which is pro-
portional to the charge surface density, is expressed by

∇s · fLL,1
n (r) = ∇s · fLL,2

n (r) =


+

ℓn

2A+
, r ∈ T+

−
ℓn

2A−, r ∈ T−

0, otherwise

,

(85)
which is constant and the half of the surface divergence
of the RWG function. From the last equation, we can see
that the divergence of the LL functions is finite and com-
prehend that they are divergence-conforming.

C. Testing functions
As mentioned previously, a testing procedure with a

function is required to convert the surface integral equa-
tion into a matrix equation. In this sense, the proper
testing functions have to be selected for the MoM imple-
mentation, such that the final system leads to accurate
solutions. In order to understand this, the mapping prop-
erties of surface integral operators have to be examined.
Consider the following finite element spaces:

RM =
{

RWG j
}Ne

j=1 , (86)

Rn
M =

{
n̂×RWG j

}Ne
j=1 , (87)

BM =
{

BC j
}Ne

j=1 , (88)

Bn
M =

{
n̂×BC j

}Ne
j=1 , (89)

where M is the original mesh and Ne is the number of
edges in M . Regarding the previously presented formu-
lations, the mapping properties of the discretized integral
operators for RWG functions are [34]

Dn : RM −→ BM , (90)
D t : RM −→ Bn

M , (91)(
K n ± I

2

)
: RM −→ RM , (92)(

K t ± In

2

)
: RM −→ Rn

M . (93)

As far as BC functions are concerned, the analogous
mapping properties are the following [66]

Dn : BM −→ RM , (94)
D t : BM −→ Rn

M , (95)(
K n ± I

2

)
: BM −→ BM , (96)(

K t ± In

2

)
: BM −→ Bn

M . (97)

Regarding the above spaces, the n̂×RWG function space
is not an L2 dual of the RWG space, but the n̂ × BC
function space is [34]. The same goes for the n̂×RWG
and BC function spaces. In each formulation, the integral
operators that provide the main contributions to the final
matrix system (elements around the diagonal) have to be
well tested. It has been shown that testing the surface
integral operators with the dual of their range space leads
to the most accurate results [66]. Thus, the basis func-
tion that is used to expand the main contributing integral
operators will determine the choice of the testing func-
tion, as will be presented in section VB.

D. Singularity subtraction
The use of SIEs with the MoM produces singular

integrals with weakly- or hyper-singular surface integral
operators. These singularities appear when the basis and
testing functions belong to the same triangular element
or to adjacent triangles that share an edge or a vertex.
The reason for these singularities is the denominator of
Green’s function, that goes to zero as R = |r− r′| = 0,
when r= r′. The solution to this problem can be given by
the application of a singularity subtraction method [67].

In order to implement the method, the Green’s func-
tion in a domain Ωi has to be expanded in a Taylor series,
as follows,

Gi
(
r,r′

)
=

1
4π

(
1
R
+ jki −

k2
i R
2

+
jk2

i R2

6
− ...

)
, (98)

where the odd terms are the singular ones (q =
−1,1,3, ...). In this sense, Green’s function can be
divided into a free of singularities smooth part and a sin-
gular part, hence

Gi
(
r,r′

)
= Gs

i
(
r,r′

)
+Ti

(
r,r′

)
, (99)

where

Gs
i
(
r,r′

)
=

e jkiR

4πR
− 1

4πR
+

k2
i R

8π
, (100)

Ti
(
r,r′

)
=

1
4πR

− k2
i R

8π
. (101)

Thus, the smooth part Gs
i (r,r′) can be accurately inte-

grated numerically and the singular part Ti (r,r′) can
be integrated semi-analytically with the help of closed-
form relations. In Fig. 9 we present the normalized val-
ues of the real part of the scalar Green’s function, the
real part of the smoothed term Gs

i (r,r′) and the singular
term Ti (r,r′) as a function of the electrical distance kiR.
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The subtraction of the first odd term would be enough
for making the smooth part non-singular, but in this case
Green’s function would have a discontinuous derivative
at R= 0. Also, the term kiR is small for the case of singu-
larities so the first and the second odd terms are enough
for the definition of Gs

i (r,r′), since odd terms of higher
orders diminish rapidly for small values of kiR [68].

0 5 10 15 20
-0.5

0

0.5

Fig. 9. Graphical representation of singularity subtrac-
tion.

The integrals that occur from the implementation of
the singularity subtraction method are the following

Iq
1 =

∫
∂Ωi

dS [∇ · fm (r)]
∫

∂Ωi

dS′Rq
∇
′ · fn

(
r′
)
, (102)

Iq
2 =

∫
∂Ωi

dSfm (r) ·
∫

∂Ωi

dS′Rqfn
(
r′
)
, (103)

Iq
3 =

∫
∂Ωi

dSfm (r) ·
∫

∂Ωi

dS′
(
∇
′Rq)× fn

(
r′
)
, (104)

where fm (r) is the testing function, fn (r) is the basis
function and q = −1,1. The aforementioned integrals
are solved semi-analytically, which means that the inner
integrals are solved analytically for arbitrary r, with
closed-form expressions, and the outer integrals are
solved numerically. The closed-form relations for the
inner integrals can be found in [68].

V. FORMULATION AND DISCRETIZATION
COMPARISONS

The previous considerations highlight the need to
discuss in the following sections many different aspects
of SIE methods, including the comparison between dif-
ferent formulations, as well as different basis and testing
functions.

A. Comparison of different formulations
In this section, we compare the different SIE formu-

lations – namely mN-Müller, T-PMCHWT and JMCFIE
– for the case of a spherical gold nanostructure with a

radius r = 100 nm in an air background, which presents
the advantage that the analytical Mie solution can be con-
sidered as reference. A detailed discussion of the results
for this case, as well as for some more general shape scat-
terers, can be found in [70]. We assume that the incident
plane wave is propagating along the z-axis and has lin-
ear polarization towards the x-axis. The wavelength is
λ = 550 nm (monochromatic results, such as the bistatic
scattering cross section in Fig. 10) and the following
figures were obtained with RWG basis functions and the
Galerkin method.

Fig. 10. Bistatic scattering cross section of a gold sphere
(r = 100 nm) for three mesh densities with (a) Ne = 228,
(b) Ne = 888, (c) Ne = 2700 number of edges and (d)
extinction Cext spectrum obtained by the T-PMCHWT
for the three meshes compared to the Mie solution.
Adapted with permission from [70] © Optica Publish-
ing Group.

It is expected that, as the number of unknowns
increases, the different formulations tend to approximate
better the Mie solution. However, T-PMCHWT seems
to be closer to the Mie solution than other formulations
for a smaller number of unknowns, see Fig. 10 (a). The
very good matching of this formulation with the analyt-
ical solution is explained in Fig. 10 (d), where the spec-
trum of the sphere’s extinction cross section Cext , which
is extracted via T-PMCHWT, is compared to the Mie the-
ory solution.

As shown in Fig. 11 (b), all three formulations
present the same level of accuracy in the near-field zone,
where the tangential component of the scattered electric
field intensity (on the sphere) is considered for the error
extraction. However, in the far-zone, where Cext is taken
into account for error calculations, JMCFIE performs
the best, followed by T-PMCHWT. The mN-Müller
presents the highest error of the three, see Fig. 11 (a).
In [73] the strong material dependencies of conventional
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Table 1: Comparison of different formulations
Set of Formulations Test Function Basis Function Reference

T-PMCHWT, CTF, ICTF RWG RWG [69]
T-PMCHWT, mN-Müller, JMCFIE, NFM, DDA RWG RWG [70]

T-PMCHWT, N-Müller, CTF, CNF, JMCFIE RWG RWG [71]
T-PMCHWT, CTF, CNF, N-Müller, mN-Müller, JMCFIE RWG RWG [48]
T-PMCHWT, CTF, CNF, N-Müller, mN-Müller, JMCFIE TL TL [48]

T-PMCHWT, N-Müller, T-Müller RWG RWG [47]
T-PMCHWT, CTF, CNF, N-Müller, T-PMCHWT (CMP) RWG RWG [72]

formulations, such as the normal and scaled forms of T-
PMCHWT, CTF, JMCFIE and others, are examined and
their performances for different plasmonic nanostructure
problems are presented. In Table 1 we present some of
the papers that examine and compare different formula-
tions of the SIE method, including some that were not
discussed before; the combined tangential formulation
(CTF), the improved combined tangential formulation
(ICTF), the null field method (NFM) and the combined
normal formulation (CNF), while CMP in the last row of
Table 1 stands for Calderon multiplicative preconditioner
[51, 52].

Fig. 11. Error in (a) the far zone ξ f and (b) the near
zone ξn of a gold sphere (r = 100 nm) obtained with the
mN-Müller, T-PMCHWT, and JMCFIE formulations as
a function of the number of mesh edges Ne. Adapted with
permission from [70] © Optica Publishing Group.

B. Basis and testing functions comparisons
As mentioned in section IVC, the use of the dual

of the range of integral operators for testing leads to
more accurate results. For the integral equations of the
first kind, like EFIE and T-PMCHWT, this is identi-
cal with Galerkin’s method, but for the integral equa-
tions of the second kind, like MFIE and mN-Müller, this
leads the use of the Petrov–Galerkin method with appro-
priate curl-conforming testing functions. Moreover, the
use of hybrid meshes introduces additional complex-
ity and intriguing capabilities, while it also affects the
condition number of the final system and the total
simulation time, as shown in [74]. In [66] there is
a very detailed examination of many different formu-
lations, discretization schemes and problems, but we

Fig. 12. RMS error of the bistatic RCS in the E-plane
computed with the T-PMCHWT formulation. Dielectric
sphere with k0a = 1 and εr = 4, µr = 1. Adapted with
permission from [66] © John Wiley & Sons.

Table 2: T-PMCHWT test & basis function pairs
Method J M EFIE MFIE

Dual (RR) RWG RWG RWG RWG
Dual (BB) BC BC BC BC
Dual (RB) RWG BC RWG BC
Dual (BR) BC RWG BC RWG

will focus mostly on the cases of T-PMCHWT and
N-Müller.

In Fig. 12, the fact that the dual of the range of inte-
gral operators is better for testing in terms of accuracy is
confirmed, while Table 2 presents all the different cases
of dual testing for the T-PMCHWT formulation. Figure
12 shows that, for the T-PMCHWT formulation, when
both RWG and BC are used as basis functions in a mixed
discretization scheme (i.e. the cases Dual (RB) and Dual
(BR) in the last two rows of Table 2), the results are
worse than the Galerkin method with RWG functions as
both testing and basis functions.

For the mN-Müller formulation, the reference Table
3 presents all the different cases of dual testing. Figure 13
presents similar results, but for the case of a mN-Müller
formulation. In the case of the sphere, which is a smooth
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Table 3: mN-Müller test & basis function pairs
Method J M MFIE EFIE

Dual (RR) RWG RWG n×BC n×BC
Dual (BB) BC BC n×RWG n×RWG
Dual (RB) RWG BC n×BC n×RWG
Dual (BR) BC RWG n×RWG n×BC

Fig. 13. RMS error of the bistatic RCS in the E-plane
computed with the mN-Müller formulation. Dielectric
sphere with k0a = 1 and εr = 4, µr = 1. Adapted with
permission from [66] © John Wiley & Sons.

object, the mN-Müller gives a more accurate solution,
compared to the results of the T-PMCHWT formulation,
when the Dual(RB) mixed discretization scheme is used.
However, for objects that are not smooth, such as cubes
and prisms, the T-PMCHWT formulation is more accu-
rate than the mN-Müller formulation. Lastly, a compre-
hensive comparison of different discretization schemes,

Table 4: Comparison of different discretization schemes
Formulations Test & Basis Functions Pairs References

MFIE (RWG, RWG) and (n̂×RWG, n̂×RWG) [75]
MFIE (RWG, RWG), (n̂×RWG, n̂×RWG), and [76, 77]

(monopolar RWG, monopolar RWG)
MFIE (LL, LL) and (RWG, RWG) [65, 78]

PMCHWT (n̂×RWG, RWG) [41]
Müller (RWG, RWG) and (n̂×BC, RWG) [41]

N-Müller (RWG, RWG) and (n̂×BC, RWG) [32]
EFIE (RWG, RWG) and (BC, BC) [66]
MFIE (n̂×BC, RWG) and (n̂×RWG, BC) [66]

PMCHWT (RWG, RWG), (BC, BC), (Mixed RWG-BC, Mixed RWG-BC), and [66]
(Mixed BC-RWG, Mixed BC-RWG)

mN-Müller (n̂×BC, RWG), (Mixed n̂×BC-n̂×RWG, Mixed RWG-BC), [66]
(n̂×RWG, BC), and (Mixed n̂×RWG-n̂×BC, Mixed BC-RWG)

MFIE, CFIE Higher order test & basis functions [79]
mN-Müller, JMCFIE Higher order test & basis functions [79]

including the various test and basis function pairings
used in common formulations, is presented in Table 4.

VI. NUMERICAL SOLVERS AND
APPROACHES

As mentioned in previous sections, integral equa-
tions are converted into the final linear system with the
aid of a set of testing and basis functions. However, a sig-
nificant challenge in SIE methods has been the appear-
ance of large dense matrices after the discretization of
complex real-life electromagnetic scattering problems.
In the 1980s, the capabilities of MoM solvers were illus-
trated in [80], which highlighted that the largest prob-
lem solvable via direct lower–upper (LU) factorization
within an hour was still relatively modest in size. The
general consensus at the time was that MoM would not
be a viable approach for real-world scattering scenarios
due to its high computational cost and limited scalabil-
ity, since it scaled as O(N2) in terms of memory con-
sumption while having a complexity of O(N3) for direct
solvers. In terms of iterative solvers, the dense matrix
equations involving O(N) unknowns can be addressed
via a Krylov-subspace algorithm, such as the general-
ized minimum residual (GMRES), conjugate gradient
(CG), and bi-conjugate stabilized (BiCGStab) [81], but
the aforementioned bottlenecks make their application
to large-scale models impractical. Another key challenge
of the SIE method is that some formulations (e.g. the
EFIE and PMCHWT) belong to the first kind of inte-
gral equations. As a result, the final linear systems tend
to be ill-conditioned, prompting the need for additional
techniques, such as regularization or specialized pre-
conditioning, to ensure that the resulting matrices are
well-conditioned and can be solved efficiently. Also,
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an ill-conditioned final matrix system can occur when
SIEs are used for low frequency simulations. However,
the advancement of the Calderon preconditioner, along
with the development of various numerical approaches
for both direct [82] and iterative solvers [83, 84], and par-
ticularly the implementation of fast solvers, have helped
mitigate these difficulties.

A. Low frequency breakdown
When the SIE method is used for electrically small

yet complex geometries or with very dense discretiza-
tions, a recurring challenge known as the low frequency
breakdown problem arises. This issue has been exten-
sively analyzed in [85, 86]. One common strategy for
handling the low-frequency regime, while preserving the
correct physical behavior, is to employ loop-tree or loop-
star basis functions combined with a suitable frequency
normalization approach. Nevertheless, fast methods like
the multi-level fast multipole algorithm (MLFMA) typi-
cally fail when the frequency is very low [87].

Even with loop-tree or loop-star basis functions,
iterative solvers may still experience high iteration
counts. The root cause is linked to the divergence prop-
erties of the RWG basis, which are not ideal for accu-
rately representing charges at low frequencies [88]. To
address this, a basis-rearrangement scheme was intro-
duced in [88, 89]. Reshaping the way the basis func-
tions are assembled substantially enhances the eigen-
value spectrum of the final system matrix and reduces
notably the iteration count.

B. Calderon preconditioner
Calderon preconditioning is a regularization tech-

nique for SIEs [40, 51, 52, 90]. This approach utilizes the
self-regularization property of the electric-field integral
operator (EFIO), commonly referred to as the Calderon
integral identity [56], which can be written as:

(Dn)2 =−
1
4
I +(K n)2 , (105)

where the notation of the previous sections is followed
for the integral operators. The subscript i is missing,
since for the final system to be formed, a summation
over all domains has been executed. This identity demon-
strates that when the EFIO (Dn) is multiplied by itself,
the resulting operator is better conditioned, particularly
on sufficiently smooth surfaces where it approximates
the summation of a compact and an identity operator.
When the CMP (which was called Calderon multiplica-
tive preconditioner in previous sections) is applied with
the RWG and Buffa-Christiansen functions, it not only
mitigates the ill-conditioning of the EFIO, but also main-
tains the solution accuracy [51].

Mathematically, the operator (Dn)2 establishes the
mapping:

(Dn)2 : H−1/2(div,∂Ω)→ H−1/2(div,∂Ω) , (106)

hence the application of the Calderon multiplicative pre-
conditioner on the EFIE (CMP-EFIE) leads to a range
space that is identical with that of the MFIE. This equiv-
alence allows them to be effectively combined into a
CFIE, which is inherently better conditioned than its
non-preconditioned counterpart. However, the resulting
CFIE system is not a resonance-free formulation, as the
CMP-EFIE and the MFIE share the same resonances
[91]. Lastly, Calderon preconditioning has also been
extended for the PMCHWT formulation in the case of
homogeneous isotropic [92] and chiral objects [93].

C. Iterative fast solvers
Iterative solutions require matrix-vector multiplica-

tions (MVMs), thus the development of a fast algo-
rithm to solve the MoM equation requires the combi-
nation of an iterative method with a fast approach to
compute the MVMs. Over the last few decades, a vari-
ety of fast solvers have been developed to overcome
the high computational and memory costs traditionally
associated with the MoM solution of SIEs. In general,
fast algorithms broadly fall into two categories: kernel-
dependent, which are influenced by the specific prop-
erties of the underlying Green’s function, and kernel-
independent, which leverage low-rank representations of
system sub-blocks without requiring explicit knowledge
of the integral operator’s closed-form expansions.

One of the most impactful kernel-dependent solvers
is the multilevel fast multipole method (MLFMM) [4,
94], which is an extension of the fast multipole method
(FMM) [95, 96]. As presented in [97], in order to
implement the MLFMM, the entire scatterer is initially
enclosed within a large auxiliary cubic box, which is
then divided into eight smaller cubes. This domain sub-
division process continues recursively until the small-
est cubes have an edge length that is comparable to
the wavelength (≈ λ/2). Each cube at every level of
this process is assigned an index. At the finest level,
the cube containing each basis function is identified
by comparing the coordinates of the basis function’s
center with the cube’s center. Additionally, nonempty
cubes are identified through a sorting process, and only
these cubes are stored using a tree-structured data for-
mat [97]. Hence, the method organizes the interac-
tions of basis-testing functions into a tree structure with
multiple levels of hierarchically defined groups (clus-
tering) of varying fineness, by utilizing the analytical
expansion of Green’s function and addition theorem
[98]. Short-range (near-field) interactions are calculated
directly and stored in memory, while long-range (far-
field) interactions are performed efficiently using the fac-
torization/diagonalization of the Green’s function, thus
reducing both the memory requirement and computa-
tional time complexity (MVM speed) to approximately
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O(N logN) for 3D electromagnetic scattering problems
[98]. The introduction of this method marked a signif-
icant shift in computational electromagnetics, allowing
MoM to tackle very large problems in terms of electrical
size, while retaining its accuracy. The approach is widely
parallelized in practice [99–101], making it one of the
leading techniques for real-world large-scale modeling.

Another group of kernel-dependent solvers con-
sists of the grid- or fast Fourier transform (FFT)-based
techniques. The latter leverage the translation invari-
ance of the kernel function, which can reduce the mem-
ory requirement and central processing unit (CPU) time
complexity of 3D problems. Two of the most popular
methods of this group are the pre-corrected FFT (p-
FFT) and adaptive integral method (AIM), which typi-
cally achieve O(N1.5) for storage and O(N1.5 logN) for
MVM. More specifically, both methods rely on an equiv-
alent source approximation. As described in [102], the
acceleration of computations with the application of FFT
requires the entire scatterer to be enclosed within an
auxiliary rectangular domain. Afterwards, this auxiliary
domain is recursively divided into a uniform Cartesian
grid, ensuring that each small cube contains at most a
few discretization elements. To perform the MVM with
FFT, the original basis functions are mapped onto the
Cartesian grid, which is achieved through basis trans-
formation. Additionally, a fast high-order algorithm for
solving surface scattering problems, utilizing a two-face
equivalent source approximation, is presented in [103].
This method achieves computational complexities rang-
ing from O(N6/5 logN) to O(N4/3 logN), by strategi-
cally positioning equivalent sources solely on the faces
of cubic cells. In [104], the Sparse-Matrix/Canonical-
Grid (SM/CG) technique is presented. Unlike the pre-
viously discussed approaches, it does not make use of
equivalent sources; instead, it applies a Taylor series
expansion of the Green’s function on a regularly spaced
canonical grid. The system matrix is then handled via
an FFT-driven iterative scheme, where the number of
Taylor expansion terms dictates the procedure. How-
ever, the SM/CG method demands detailed knowledge
of the integral kernel, while its memory complexity
scales as O(N1.5). In [105], the Quadrature Sampled Pre-
Corrected Fast-Fourier Transform (QS-PCFFT) method
was introduced. This approach projects the unknown
currents onto a uniform grid and computes the discrete
Fourier transform of the current directly by means of a
discontinuous FFT, employing quadrature sampling for
the currents. As a result, it achieves adjustable accuracy
and exponential convergence. Furthermore, the Green’s
function interpolation combined with the FFT algorithm
(GIFFT) [106] was developed to handle arrays of arbi-
trary shape. In GIFFT, an array mask function identifies
array boundaries and determines where the Green’s func-

tion should be interpolated. The MVMs in the iterative
solver are then accelerated via FFT, reducing both stor-
age requirements and overall solution time. Nonetheless,
for SIEs, none of the aforementioned FFT-based tech-
niques achieves asymptotically better performance than
MLFMM. Finally, most iterative methods are sensitive
to the condition number of matrix systems, and the num-
ber of iterations needed to reach the desired accuracy
varies depending on the problem. Even though precon-
ditioning techniques and domain decomposition meth-
ods have been developed to address many of these chal-
lenges, convergence remains not entirely predictable.

D. Direct fast solvers
In parallel, direct fast solvers utilizing hierarchi-

cal matrices (H-matrices) and matrix compression tech-
niques have introduced kernel-independent algebraic
methods. The latter rely on the observation that well-
separated sub-blocks of the dense system matrix exhibit
numerical rank deficiency. Algorithms such as the adap-
tive cross approximation (ACA) [107] compress these
sub-blocks without requiring explicit expansions of the
integral kernel.

The research of fast direct solvers for SIEs seek to
address the drawbacks highlighted earlier. There are a
number of fundamental studies that have laid the ground-
work for direct solution techniques [108–111], many of
which have since influenced advances in computational
electromagnetics.

As presented in [82], early investigations include the
IES3 algorithm [112], direct treatments for 2D slender
scatterers [113], and a compressed block decomposition
(CBD) algorithm for capacitance extraction that com-
bines matrix decomposition with singular value decom-
position (SVD) [114]. Furthermore, an application of a
multilevel nonuniform grid (MLNG) approach for direct
inversion of the EFIE was presented some years ago in
[115].

Meanwhile, the concept of H-matrices [116, 117],
which systematically apply low-rank compression to
well-separated matrix subgroups, has become a recog-
nized framework for hierarchical direct solvers. Since
this approach relies on certain smoothness criteria for
the integral kernel, it typically applies to mid- and low-
frequency regimes in electromagnetics, where the oscil-
latory nature of the kernel is less pronounced [118].
However, numerous implementations have adopted vari-
ous H-matrix techniques [119–121]. Additional compar-
isons between multilevel block inversion and multilevel
LU decomposition have also been made [122]. Another
line of research incorporates the butterfly algorithm with
randomized compression, achieving O(N log2 N) scaling
and supporting large-scale 3D SIE simulations for PEC
[123]. For penetrable scatterers, a quasi-block-Cholesky
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(QBC) approach that investigates the checkerboard sym-
metry pattern in the PMCHWT system matrix was pro-
posed in [124], while a butterfly-based multilevel matrix
decomposition algorithm (MLMDA) for homogeneous
penetrable objects was presented in [125]. Finally, in
[82] a more detailed discussion on works that are based
on the following matrix structures is provided: hierar-
chical off-diagonal low-rank (HODLR), hierarchically
semiseparable (HSS), and H2 matrices.

E. Higher order methods
Another development in integral equation methods

has been the use of higher order isoparametric elements
[126, 127]. Recently, it was shown that hybrid discretiza-
tion schemes can affect the condition number of the final
matrix system and the efficiency of the solution pro-
cedure [74]. This insight further reinforces the idea of
using higher order techniques to improve the numeri-
cal behavior of SIEs. In many electromagnetic radiation
and scattering problems, the primary source of numerical
error often arises from inaccuracies in geometric model-
ing [87]. The use of these elements not only mitigates
the aforementioned error, but also enables exponential
error convergence in regions where the numerical solu-
tions remain smooth [87].

There are two main approaches to employ higher
order isoparametric elements in solving SIEs, namely
the Galerkin [126, 127] and Nystrom methods [92, 105].
Both approaches have demonstrated higher order con-
vergence rates for electromagnetic problems character-
ized by smooth solutions. A very detailed and compre-
hensive review of the higher order computational elec-
tromagnetics for antenna, wireless, and microwave engi-
neering applications is presented in [128].

F. Parallelization and high-performance computing
High-performance computing (HPC) resources have

been widely and effectively employed by researchers and
engineers in the area of computational electromagnet-
ics. Over time, developments in computing hardware and
software have created extraordinary possibilities (and
new challenges) for expanding the modeling techniques
used for scattering problems. Crucially, these advances
have taken place in parallel with progress in electro-
magnetic formulations and numerical algorithms. The
research community has been especially resourceful in
capitalizing on every available advance in hardware and
technology.

Traditionally, two primary parallel programming
paradigms, open multiprocessing (OpenMP) and the
message passing interface (MPI), have dominated the
landscape. These frameworks can facilitate massively
parallel MLFMM simulations involving billions of
unknowns [100, 129].

Table 5: Speed-up of bistatic radar cross section calcula-
tion of an aerocraft with CFIE at 1.5 GHz. Adapted with
permission from [99] © IEEE.

CPU (sec.) GPU (sec.) Speed-up
Vs and V f 52 19 2.8

T 44 1 44.0
Znear 3735 30 124.5

BiCGStab 1911 653 2.9
Total time 5742 705 8.1

A historical perspective highlights the scale of these
achievements. In 1988, Miller illustrated how the largest
feasible problem within a one-hour time frame advanced
from only around 100 unknowns in the early 1950s
to approximately 6,000 unknowns (roughly a factor of
60) by the mid-1980s [80]. However, over the next few
decades, this capability surged to approximately 10.5 bil-
lion unknowns within about 6.25 hours [100], yielding
an increase on the order of 1.75 million. Thus, while
the first half-century of computational electromagnet-
ics and SIEs may have appeared to progress relatively
slowly, the subsequent 30 years saw an explosive expan-
sion of modeling capacity. Additionally, graphics pro-
cessing units (GPUs), which were originally designed
for computer graphics, evolved into indispensable hard-
ware accelerators that can be used with the SIE method.
As shown in Table 5, the utilization of GPUs can signif-
icantly enhance the efficiency of the SIE method [99].
More specifically, Table 5 includes time data regarding
the calculation of radiation patterns of the basis func-
tions Vs, receiving patterns of the testing functions V f ,
the translator factor T, and the assembly of the near-field
system matrix Znear. Additional details about these quan-
tities can be found in [99].

VII. CONCLUSION AND OUTLOOK
The motivation for this review article was to col-

lect and present a complete and comprehensive overview
of the SIE method theory, formulations, discretization
schemes, and final matrix system considerations. This
frequency domain computational electromagnetic tech-
nique, with its surface meshing approach, significantly
decreases the number of unknowns for a given scatter-
ing problem and improves the analysis accuracy and effi-
ciency. Firstly, by focusing on SIE’s theoretical aspects,
this paper provides a unified and systematic presenta-
tion of the electromagnetic analysis and the derivation
of different popular formulations. Furthermore, a math-
ematical overview of function spaces is included, in
order to highlight the importance of correctly combining
basis and testing functions. Moreover, this work exam-
ines different aspects of a discretization scheme, such
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as subtracting the Green’s function singularity, which
is essential for near-field representations, and applying
different testing methods, in order to investigate proce-
dures that are different from the Galerkin method. Hence,
by delving into all the aforementioned parts of a com-
plete SIE computational implementation, we emphasize
that a surface integral equation formulation and the dis-
cretization process must lead to a unique solution and
a conforming discretization procedure, i.e. the integral
operators that are the main contributors regarding the
off-diagonal elements of the final system matrix should
be tested with the dual of their range space, since this
leads to the most accurate results. In this manner, we
review some of the most used SIE methods and illus-
trate whether they meet these conditions and how they
perform compared to each other in terms of accuracy.
Also, different discretization techniques using different
basis and testing functions are investigated in terms
of performance. Finally, we discuss the various chal-
lenges encountered in solving the final matrix equations,
along with numerical strategies designed to mitigate their
adverse computational impact. These strategies include
the utilization of the Calderon preconditioner, the inte-
gration of advanced numerical and computational tech-
niques for both direct and iterative solvers, the imple-
mentation of fast solvers, the application of higher order
methods, and the effective utilization of HPC resources.

Despite all the significant work that has been done
over the last decades, the method still faces some chal-
lenges, e.g. the dense mesh breakdown, the low fre-
quency breakdown, the simulation of composite metallic
and dielectric structures with junctions or objects of high
conductivity that are modeled with impedance boundary
conditions (IBCs).

Finally, we highlight some interesting research
directions for the future in electromagnetic SIE meth-
ods, such as hybrid meshes [74] (e.g. the combination
of triangular and quadrilateral elements), higher order
and conformal elements, generalized MoM approaches
[130], discontinuous Galerkin SIE methods [131], and
source formulations [132]. Furthermore, one of the most
significant challenges regarding the SIE method is to
leverage hybrid parallelization paradigms and method-
ologies (e.g. combining MPI, OpenMP, and CUDA) to
fully exploit the ever-growing variety and capability of
modern HPC hardware [101]. In this context, the path
to a general and fully optimized solution for SIE prob-
lems likely lies in combining multiple key elements –
such as robust preconditioners, advanced fast and direct
solvers, higher order conformal discretizations, and effi-
cient parallelization strategies – into a synergistic frame-
work that will be able to span across the entirety of the
frequency and material spectra. By uniting these con-
cepts, researchers and practitioners stand poised to over-

come long-standing challenges and further advance the
scope and efficiency of SIE-based electromagnetic sim-
ulations.

ACKNOWLEDGMENT
This work was supported by the Swiss National Sci-

ence Foundation (SNSF) under project 200021 212758.

REFERENCES
[1] M. I. Sancer, R. L. McClary, and K. J. Glover,

“Electromagnetic computation using parametric
geometry,” Electromagnetics, vol. 10, no. 1-2, pp.
85-103, Jan. 1990.

[2] E. Newman, P. Alexandropoulos, and E. Walton,
“Polygonal plate modeling of realistic structures,”
IEEE Trans. Antennas Propag., vol. 32, no. 7, pp.
742-747, July 1984.

[3] K. Yee, “Numerical solution of initial boundary
value problems involving Maxwell’s equations in
isotropic media,” IEEE Trans. Antennas Propag.,
vol. 14, no. 3, pp. 302-307, May 1966.

[4] W. C. Chew, E. Michielssen, J. M. Song, and J. M.
Jin, Fast and Efficient Algorithms in Computa-
tional Electromagnetics. Norwood, MA: Artech
House, 2001.

[5] W. C. Chew, M. S. Tong, and B. Hu, Integral
Equation Methods for Electromagnetic and Elas-
tic Waves. San Rafael, CA: Morgan & Claypool,
2008.

[6] K. Ntokos, P. Mavrikakis, A. C. Iossifides, and
T. V. Yioultsis, “A systematic approach for recon-
figurable reflecting metasurface synthesis: From
periodic analysis to far-field scattering,” Int. J.
Electron. Commun., vol. 170, no. 154780, p.
154780, Oct. 2023.

[7] C. F. Bohren and D. R. Huffman, Absorption and
Scattering of Light by Small Particles. Hoboken,
NJ: John Wiley & Sons, Apr. 1998.

[8] E. M. Purcell and C. R. Pennypacker, “Scattering
and absorption of light by nonspherical dielectric
grains,” Astrophys. J., vol. 186, p. 705, Dec. 1973.

[9] B. T. Draine, “The discrete-dipole approximation
and its application to interstellar graphite grains,”
Astrophys. J., vol. 333, p. 848, Oct. 1988.

[10] O. J. F. Martin and N. B. Piller, “Electromagnetic
scattering in polarizable backgrounds,” Phys. Rev.
E, vol. 58, no. 3, pp. 3909-3915, Sep. 1998.

[11] J.-M. Jin, J. L. Volakis, and J. D. Collins, “A finite-
element-boundary-integral method for scattering
and radiation by two- and three-dimensional
structures,” IEEE Antennas Propag. Mag., vol. 33,
no. 3, pp. 22-32, June 1991.

[12] J.-M. Jin, The Finite Element Method in Elec-
tromagnetics. Hoboken, NJ: John Wiley & Sons,
1993.



MAVRIKAKIS, MARTIN: SURFACE INTEGRAL EQUATIONS IN COMPUTATIONAL ELECTROMAGNETICS: A COMPREHENSIVE OVERVIEW 296

[13] P. P. Silvester and R. L. Ferrari, Finite Ele-
ments for Electrical Engineers, 3rd ed. Cam-
bridge: Cambridge University Press, 2012.

[14] S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A
subgridding method for the time-domain finite-
difference method to solve Maxwell’s equations,”
IEEE Trans. Microw. Theory Tech., vol. 39, no. 3,
pp. 471-479, Mar. 1991.

[15] K. S. Kunz and R. J. Luebbers, The Finite Differ-
ence Time Domain Method for Electromagnetics.
Boca Raton, FL: CRC Press, May 2018.

[16] A. Taflove, Computational Electrodynamics: The
Finite-Difference Time-Domain Method. Nor-
wood, MA: Artech House, 1995.

[17] K. S. Yee and J. S. Chen, “The finite-
difference time-domain (FDTD) and the finite-
volume time-domain (FVTD) methods in solv-
ing Maxwell’s equations,” IEEE Trans. Antennas
Propag., vol. 45, no. 3, pp. 354-363, Mar. 1997.

[18] J. L. Volakis and K. Sertel, Integral Equa-
tion Methods for Electromagnetics. Raleigh, NC:
SciTech Publishing, Jan. 2012.

[19] J. P. Kottmann and O. J. F. Martin, “Accurate
solution of the volume integral equation for high-
permittivity scatterers,” IEEE Trans. Antennas
Propag., vol. 48, no. 11, pp. 1719-1726, Nov.
2000.

[20] L. Dal Negro, G. Miano, G. Rubinacci, A. Tam-
burrino, and S. Ventre, “A fast computation
method for the analysis of an array of metallic
nanoparticles,” IEEE Trans. Magn., vol. 45, no. 3,
pp. 1618-1621, Mar. 2009.

[21] B. Gallinet, J. Butet, and O. J. F. Martin, “Numer-
ical methods for nanophotonics: Standard prob-
lems and future challenges,” Laser Photon. Rev.,
vol. 9, no. 6, pp. 577-603, Nov. 2015.

[22] B. M. Kolundzija, “Electromagnetic modeling
of composite metallic and dielectric structures,”
IEEE Trans. Microw. Theory Tech., vol. 47, no. 7,
pp. 1021-1032, July 1999.

[23] J. R. Mautz and R. F. Harrington, “H-field, E-field,
and combined-field solutions for conducting bod-
ies of revolution,” Archiv Elektronik und Ueber-
tragungstechnik, vol. 32, pp. 157-164, Apr. 1978.

[24] A. J. Poggio and E. K. Miller, “Chapter 4 - Integral
equation solutions of three-dimensional scattering
problems,” in R. Mittra, editor, Computer Tech-
niques for Electromagnetics, pp. 159-264, Perga-
mon, 1973.

[25] C. Müller, Foundations of the Mathematical
Theory of Electromagnetic Waves. Heidelberg:
Springer-Verlag, 1969.

[26] L. Medgyesi-Mitschang and J. Putnam, “Integral
equation formulations for imperfectly conduct-

ing scatterers,” IEEE Trans. Antennas Propag.,
vol. 33, no. 2, pp. 206-214, Feb. 1985.

[27] A. Kishk and L. Shafai, “Different formulations
for numerical solution of single or multibodies
of revolution with mixed boundary conditions,”
IEEE Trans. Antennas Propag., vol. 34, no. 5, pp.
666-673, May 1986.

[28] K. Umashankar, A. Taflove, and S. Rao,
“Electromagnetic scattering by arbitrary shaped
three-dimensional homogeneous lossy dielectric
objects,” IEEE Trans. Antennas Propag., vol. 34,
no. 6, pp. 758-766, June 1986.

[29] A. W. Glisson, “Electromagnetic scattering
by arbitrarily shaped surfaces with impedance
boundary conditions,” Radio Sci., vol. 27, no. 6,
pp. 935-943, Nov. 1992.

[30] L. N. Medgyesi-Mitschang, J. M. Putnam, and
M. B. Gedera, “Generalized method of moments
for three-dimensional penetrable scatterers,” J.
Opt. Soc. Am. A, vol. 11, no. 4, p. 1383, Apr. 1994.

[31] I. Fredholm, “Sur une classe d’équations fonc-
tionnelles,” Acta Math., vol. 27, pp. 365-390,
1903.

[32] S. Yan, J.-M. Jin, and Z. Nie, “Improving the
accuracy of the second-kind Fredholm integral
equations by using the Buffa-Christiansen func-
tions,” IEEE Trans. Antennas Propag., vol. 59,
no. 4, pp. 1299-1310, Apr. 2011.

[33] K. Cools, F. P. Andriulli, F. Olyslager, and
E. Michielssen, “Improving the MFIE’s accuracy
by using a mixed discretization,” in 2009 IEEE
Antennas and Propagation Society International
Symposium, North Charleston, SC, June 2009.

[34] K. Cools, F. P. Andriulli, D. De Zutter, and
E. Michielssen, “Accurate and conforming mixed
discretization of the MFIE,” IEEE Antennas Wirel.
Propag. Lett., vol. 10, pp. 528-531, 2011.

[35] A. M. Kern and O. J. F. Martin, “Modeling
near-field properties of plasmonic nanoparticles:
A surface integral approach,” in Plasmonics:
Nanoimaging, Nanofabrication, and their Appli-
cations V, San Diego, CA, Aug. 2009.

[36] C.-T. Tai, Dyadic Green Functions in Electromag-
netic Theory. New York, NY: IEEE Press, 1994.

[37] W. C. Chew, “Integral equations,” in Waves and
Fields in Inhomogenous Media, pp. 429-509,
Wiley-IEEE Press, New York, NY, 1995.

[38] B. Gallinet, A. M. Kern, and O. J. F. Martin,
“Accurate and versatile modeling of electromag-
netic scattering on periodic nanostructures with
a surface integral approach,” J. Opt. Soc. Am. A,
vol. 27, no. 10, pp. 2261-2271, Oct. 2010.

[39] A. G. Polimeridis and T. V. Yioultsis, “On the
direct evaluation of weakly singular integrals in



297 ACES JOURNAL, Vol. 40, No. 04, April 2025

Galerkin mixed potential integral equation formu-
lations,” IEEE Trans. Antennas Propag., vol. 56,
no. 9, pp. 3011-3019, Sep. 2008.

[40] R. J. Adams, “Physical and analytical properties
of a stabilized electric field integral equation,”
IEEE Trans. Antennas Propag., vol. 52, no. 2, pp.
362-372, Feb. 2004.

[41] S. Yan, J.-M. Jin, and Z. Nie, “Accuracy improve-
ment of the second-kind integral equations for
generally shaped objects,” IEEE Trans. Antennas
Propag., vol. 61, no. 2, pp. 788-797, Feb. 2013.
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