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Abstract – An alternative method of moments discretiza-
tion of the magnetic field integral equation (MFIE) uses
testing functions inside the target and in a plane nor-
mal to the target surface. This approach is adapted to
targets modeled with flat-faceted patches. A compari-
son with traditional numerical solutions of the MFIE that
use testing functions on the target surface shows that the
normally-integrated MFIE formulation produce far fields
that are more accurate than those obtained from the tra-
ditional MFIE. The alternate approach can be made free
from internal resonances and that approach is often more
accurate than the combined field integral equation.

Index Terms – Electromagnetic scattering, method of
moments, numerical techniques, radar cross section,
scattering cross section.

I. INTRODUCTION
Integral equations such as the electric-field equa-

tion (EFIE) and magnetic field integral equation (MFIE)
are the foundation for many numerical solution tech-
niques in electromagnetics, especially open-region prob-
lems such as radiation and scattering applications involv-
ing perfectly conducting materials. The most common
discretization procedure used with the EFIE involves
Rao-Wilton-Glisson (RWG) basis and testing functions
[1], which converts the “strong” form of the EFIE into a
“weak” equation where the degree of the operator deriva-
tive has been reduced by the testing function. A similar
discretization of the MFIE does not produce a “weak”
equation since one of the MFIE derivatives is normal to
the surface being discretized and not affected by the tan-
gential testing function. The MFIE has other restrictions:
it is not applicable to open targets and may fail under cer-
tain conditions for multiply connected targets [2]. Both
equations many fail at internal resonance frequencies [3].
In addition, the MFIE is thought to be more sensitive to
discontinuities, such as those introduced by flat-faceted
models of curved surfaces [4].

The accuracy of the far fields (and scattering cross
section) produced by traditional MFIE discretizations is
substantially worse than that produced by the EFIE [5–

6]. When the EFIE and MFIE are combined together
to form the combined field integral equation (CFIE) to
avoid internal resonance failures, the accuracy of the
CFIE is degraded by the underlying MFIE accuracy and
seldom equals that of the EFIE away from resonances.

In [7–8], an alternative discretization was intro-
duced for the MFIE, involving testing functions that
are inside the target and in a plane normal to the sur-
face. These functions can absorb both derivatives aris-
ing from the curl operator. The approach, labeled the
normally-integrated MFIE or NIMFIE, produces a true
“weak” equation different from that of the traditional
tangentially-tested MFIE. In [7–9], the NIMFIE was
demonstrated for several smooth targets, using high
order basis functions and perfect models of the curved
target surfaces. In order to employ the NIMFIE for more
complex targets modeled with flat patch models, a new
discretization is proposed with RWG basis functions rep-
resenting the current and testing functions with support
that may be divided into two non-overlapping domains
inside the target. Results from the new approach will be
compared with those produced by a conventional MFIE
discretization (also using RWG basis functions but with
RWG testing functions located on the target surface). In
addition, [8] demonstrated that, by including an expo-
nential phase in the testing functions, the original NIM-
FIE equations could be made free of internal resonances.
Consequently, we use the “resonant free” approach in the
following and also compare the results to those of the
CFIE. Preliminary results from this study were presented
in [10–11].

II. NIMFIE FORMULATION
The NIMFIE formulation is based on the condition

that the total magnetic field vanishes inside a perfectly
conducting target. Therefore, the incident and scattered
magnetic fields satisfy:

T̄ • H̄ inc + T̄ • H̄s = 0, (1)
where the incident field is that of the primary source in
the absence of the target, and the scattered field is the
field of the equivalent current density J̄ on the target sur-
face, also computed in the absence of the target. The test-
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ing function T̄ occupies a plane normal to the surface of
the target and is a vector perpendicular to that plane. The
scattered field is obtained from:

H̄s = ∇× Ā, (2)
where Ā is the magnetic vector potential function:

Ā(r̄) =
∫∫

J̄(s′, t ′)
e− jkR

4πR
ds′dt ′. (3)

The integral in (3) is over the target surface, k =
ω
√

µ0ε0 is the wavenumber of the background medium,
ω is the radian frequency, and µ0 and ε0 are the perme-
ability and permittivity of the background medium. The
parameter R is the distance from the point of integration
to the point where the field is computed.

For targets represented by flat-faceted triangular
patches, the basis functions representing the current den-
sity are chosen to be RWG functions that straddle pairs
of patches and interpolate to the current density flow-
ing across edges of the model [1]. For convenience each
testing function will also be associated with an edge. The
test function domain associated with two patches strad-
dling an edge p is inside the target, beginning below the
centroid of one patch (A) and terminating beneath the
centroid of an adjacent patch (B), as depicted in Fig. 1.
For patch pairs that are bent to represent curved or non-
planar parts of surfaces, the testing domain in the present
work is separated into two non-overlapping rectangular
regions as depicted in the side view shown in Fig. 1 (b).
Let (s, t, n) denote a local right-handed coordinate system
associated with a patch, with variables s and t tangential
to the patch and n in the outward normal direction. In the
“internal resonance free” NIMFIE formulation, the part
of the test function below one of the two patches is:

T̄ = ŝ p(t; t1, t2) e− jϕ(n2−n)p(n;n1,n2), (4)
where p(t;t1,t2) denotes a windowing function:

p(t; t1, t2) =
{

1 t1 < t < t2
0 otherwise , (5)

and the rectangular domain is the region t1<t<t2,
n1<n<n2. The phase factor:

ϕ =
π

2
1

n2−n1
, (6)

provides a 90-degree phase progression across the test
function domain, to suppress internal resonances in a
manner similar to that of the dual surface integral equa-
tions [12].

The NIMFIE equation associated with the complete
contribution from the basis function associated with edge
q and the two parts of the test function associated with
edge p can be obtained by inserting (4) and its comple-
ment into the relation:

−
∫∫

T̄ • H̄ inc =
∫∫

T̄ •∇× Ā, (7)

where the integrations are over the test domain inside
the target. By carrying out any integrations that cancel

Fig. 1. (a) Top and (b) side views of a patch pair showing
the two parts of the domain of the testing function when
the patches are non-planar.

derivatives arising from the curl operation, we obtain the
resulting equation:

−
∫ n2A

n1A

∫ t2A

t1A
e− jϕ(n2A−n) ŝpA • H̄ inc

−
∫ n2B

n1B

∫ t2B

t1B
e− jϕ(n2B−n) ŝpB • H̄ inc

=
∫ n2A

n1A
e− jϕ(n2A−n)n̂pA • Ā

∣∣∣t2A

t1A

+
∫ n2B

n1B
e− jϕ(n2B−n)n̂pB • Ā

∣∣∣t2B

t1B

−
∫ t2A

t1A

(
e− jϕ(n2A−n)t̂pA • Ā

)∣∣∣n2A

n1A

−
∫ t2B

t1B

(
e− jϕ(n2B−n)t̂pB • Ā

)∣∣∣n2B

n1B

+ jϕA

∫ n2A

n1A

∫ t2A

t1A
e− jϕ(n2A−n) t̂pA • Ā

+ jϕB

∫ n2B

n1B

∫ t2B

t1B
e− jϕ(n2B−n) t̂pB • Ā

, (8)

where the integration limits such as “t1A” are those asso-
ciated with the part of the test domain under patch “A”
and limits such as “t1B” are those associated with the test
domain under patch “B” (Fig. 1). Similarly, unit vectors
exhibit an “A” or “B” subscript to denote which test patch
(A or B) they are associated with. Equation (8) is slightly
different from those in [8] due to the vector nature of the
RWG basis and the two distinct domains associated with
the testing function.
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Observe that there are no derivatives applied to the
magnetic vector potential function in (8), confirming that
this orientation of the test function absorbs all the deriva-
tives arising from the curl operation and produces a truly
“weak” form of the integral equation. For numerical
implementation, the integrals in (8) are no more difficult
to compute than those arising from the traditional EFIE
discretizations.

Ideally, to suppress internal resonances, the test
function domain should extend to a quarter wavelength
depth d within the target [12]. For thinner parts of tar-
gets where the thickness is less than a half wavelength
beneath a particular patch, d is reduced to half the avail-
able depth. In addition, the length w of the test domain
along the variable t under each patch is initially set to
the distance from the centroid to the edge but is reduced
if the patch pair is bent as illustrated in Fig. 1 (b). In
the present work, for interior angles greater than 135
degrees, w and d are reduced by a common factor to
avoid overlap with the other part of the test domain,
as depicted in Fig. 1 (b). For interior angles smaller
than 135 degrees (targets with sharper bends), the con-
straint w=d is imposed and both dimensions are reduced
to avoid overlap. In addition, to avoid large disparities
in test domain size from cell to cell, adjustments in
surrounding cells are made to ensure that test domain
dimensions do not differ by more than a factor of 2 for
test domains associated with the same patch or adjacent
patches. The preprocessing associated with these com-
putations is relatively small.

III. NUMERICAL RESULTS
As an initial example, Fig. 2 shows the error in the

bistatic scattering cross section (SCS) for a perfectly
conducting sphere with ka=2π , where a is the sphere
radius. Flat-faceted models of spheres with the correct
surface area were used. The 2-norm error in the scatter-
ing cross section is defined:

E =

√
1

Nangles
∑

Nθ

m=1 ∑
Nφ

n=1 sinθm |σexact(θm,φn)−σnumerical(θm,φn)|2

σexact, f orward

(9)
The SCS error was averaged over a 5-degree grid in

spherical angles (θ , φ ), and therefore Nθ and Nφ assume
values 37 and 73, respectively, and Nangles=2701. Results
are presented for the EFIE, MFIE, CFIE, and NIMFIE
approaches, where all used RWG basis functions and all
but NMIFIE used RWG testing functions on the target
surface. The CFIE used equal weighting between the
EFIE and MFIE parts. These results show that, for densi-
ties of 50-200 unknowns/λ 2, where λ is the wavelength,
the EFIE and the NIMFIE produce SCS results that are
more than an order of magnitude more accurate than
those produced by the traditional MFIE or CFIE. (In
these and most other results, the EFIE is expected to
exhibit more accurate far fields than the NIMFIE because

of the variational superconvergence associated with its
method of moments discretization [13].)

Fig. 2. Error in the SCS for a sphere with ka=2π .

We next consider several examples whose surfaces
contain sharp or abrupt bends and tips. Figure 3 shows
the magnitude of the surface current density for a per-
fectly conducting missile target [14] with surface area
25λ 2, obtained from the EFIE, MFIE, and NIMFIE
equations with a 2592-cell model. The target is illu-
minated nose-on with a horizontally-polarized incident
electric field. This target has two fin-like protrusions
containing 90-degree bends. For this example, the NIM-
FIE result exhibits qualitative agreement with the EFIE
result, while the MFIE current shows minor differences.

Several measures of the error are reported in Table 1,
including the error in the currents obtained by a compari-
son with a higher order solution of the EFIE, the tangen-
tial electric-field residual error [15], and the SCS error
compared to a higher order EFIE reference result. The
current density error is computed using:

Jerr =

√
1

Atotal
∑

Ncells
n=1

∣∣J̄n, re f − J̄n, RWG
∣∣2 An

2 |H inc
max|

, (10)

where An is the area of cell n. These results suggest that
all four approaches produce somewhat similar accuracy

Table 1: 2-norm errors in the results for the missile
J Error E-residual SCS Error

MFIE 17% 27% 3.3%
CFIE 18 19 2.5

NIMFIE 17 22 2.0
EFIE 19 17 0.15
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in the current density, with a 2-norm error around 20%,
and that the NIMFIE is slightly better than the MFIE in
SCS accuracy.

Fig. 3. Current density magnitude on a perfectly conduct-
ing missile target. Red denotes the largest magnitudes,
followed by yellow, white, light blue, and dark blue, on a
non-logarithmic scale. The target is illuminated nose-on
with a horizontally-polarized incident electric field. The
scales are in wavelength.

Figure 4 shows the surface current magnitude on a
perfectly conducting cone-sphere with a total length of
5.66λ , a cone length-to-radius ratio of 4:1, and a total
surface area of 25λ 2, for a vertically-polarized electric
field incident upon the sharp tip end of the target. A
2812-cell model is used. The NIMFIE result exhibits
agreement with the EFIE result, while the MFIE result
shows some differences. Various error measures are
reported in Table 2. The overall errors are smaller for the
cone-sphere than the missile, and the SCS error obtained
from the NIMFIE results are significantly smaller than
those of the MFIE and CFIE.

Table 2: 2-norm errors for the cone-sphere target
J Error E-residual SCS Error

MFIE 12% 17% 1.5%
CFIE 12 14 0.80

NIMFIE 11 14 0.24
EFIE 13 13 0.030

Figure 5 shows the magnitude of the surface current
on a perfectly conducting “Arrow” target [16] with sur-

Fig. 4. Current density magnitude induced on a perfectly
conducting cone-sphere target of surface area 25λ 2, by
a wave with a vertically polarized electric field incident
upon the tip end of the target. Red denotes the largest
magnitudes, followed by yellow, white, light blue, and
dark blue, on a non-logarithmic scale.

face area of 25λ 2 and 2002 cells. The bottom of the tar-
get is flat, with interior angles of only 36 and 53 degrees
around the front and side edges, respectively. The NIM-
FIE and EFIE results exhibit reasonable visual agree-
ment, while the MFIE result shows differences. Table 3
reports various 2-norm errors. For this target, the NIM-
FIE SCS error is smaller than that of the MFIE or CFIE,
and almost as low as the EFIE SCS error.

Table 3: 2-norm errors for the Arrow target
J Error E-residual SCS Error

MFIE 21% 36% 4.1%
CFIE 19 20 2.1

NIMFIE 17 25 0.78
EFIE 19 21 0.67

Figure 6 shows the magnitude of the current den-
sity on a cube target with cube edge length 1.58λ . This
target happens to be internally resonant for the MFIE,
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Fig. 5. Current density magnitude induced on a per-
fectly conducting “Arrow” target [16] with surface area
of 25λ 2. The target is illuminated nose-on with a
horizontally-polarized incident electric field. The scales
are in wavelength. Red denotes the largest magnitudes,
followed by yellow, white, light blue, and dark blue, on
a non-logarithmic scale.

Table 4: 2-norm errors for the 2700-cell cube target
J Error E-residual SCS Error

MFIE 42% 83% 8.4%
CFIE 9 9 0.19

NIMFIE 9 11 0.19
EFIE 15 8 0.039

and the MFIE result is clearly incorrect. The NIMFIE
result for the current magnitude obtained with a 2700-
cell model exhibits reasonable agreement with a CFIE
result obtained with a 4800-cell model. Table 4 shows
several measures of the 2-norm error, obtained from
2700-cell models for the four approaches. For this exam-
ple, the “resonant-free” NIMFIE and CFIE produce sim-
ilar error levels in both current and SCS.

Table 5 summarizes the results of the preceding
examples and several others in a different manner, by
reporting the ratio of the MFIE SCS 2-norm errors to
those of the other formulations. The additional targets
include a second cube illuminated face-on, the Arrow
illuminated by a vertically-polarized incident electric

field, and two almond targets illuminated by waves inci-
dent on their blunt ends. These results show the dispar-
ity between the EFIE and MFIE SCS accuracy in prac-
tice. They also suggest that the NIMFIE formulation
consistently outperforms the MFIE for SCS error, and
almost always produces more accurate SCS results than
the CFIE.

Fig. 6. Current density magnitude induced on a perfectly
conducting cube target by a wave normally incident on
one of the faces. The MFIE and NIMFIE results are
obtained with 2700-cell models, while the CFIE result is
obtained using a model with 4800 cells. The color scale
is non-logarithmic and is a fraction of twice the incident
magnetic field.
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Table 5: Ratio of MFIE SCS error to other equation’s SCS error
Target Area (λ 2) Density (Cells/λ 2) CFIE NIMFIE EFIE
sphere 12.6 108 2.8 16 55

cube #1 15.015 180 44 44 212
almond #1, H-pol 21.8 118 2.5 2.9 28

cube #2 24 113 7.2 7.9 23
missile 25 104 1.3 1.7 22

4:1 cone-sphere 25 112 1.9 6.3 52
Arrow, H-pol 25 80 1.9 5.3 6.2
Arrow, V-pol 25 80 1.5 3.3 5.4

almond #2, V-pol 44.5 104 1.1 9.8 21

Table 6 shows the matrix condition numbers
reported by the matrix solver for the various approaches
and the preceding examples. The CFIE has the lowest
(best) condition numbers, while the NIMFIE condition
numbers are the same order as those of the EFIE. The
data reflect the fact that the “cube #1” target is internally
resonant for the MFIE (and apparently close to an inter-
nal resonance for the EFIE) and also suggests that there
are irregularities associated with the model used for the
cone-sphere, probably near the tip.

Table 6: Condition numbers for the cases in Table 5
Target MFIE CFIE NIMFIE EFIE
sphere 57 21 235 125

cube #1 1918 26 473 9293
almond #1 276 23 469 417

cube #2 91 26 463 143
missile 971 106 1509 1650

cone-sphere 7880 817 13320 12749
Arrow 592 54 2240 1905

almond #2 550 37 846 2170

IV. CONCLUSION
The NIMFIE approach has been implemented with

flat-patch models and RWG basis functions, and results
for a variety of targets with bends in their surfaces were
compared to the traditional MFIE and the CFIE. For
these targets, the NIMFIE SCS accuracy is consistently
better than that produced by the MFIE and is usually
better than the accuracy of the CFIE. These results sup-
port the hypothesis that the traditional MFIE discretiza-
tion, using the “strong” MFIE operator, is more sen-
sitive to surface discontinuities than the “weak” NIM-
FIE approach. As implemented here, the NIMFIE is free
from internal resonances, and it appears to offer advan-
tages over the traditional MFIE formulation.
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