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Abstract – This paper proposes an advanced physical
optics-inspired support vector regression (APOI-SVR)
for efficiently modeling the radar cross section (RCS)
of conducting targets. Specifically, an improved physi-
cal optics-inspired kernel function is newly proposed by
introducing two angular frequency parameters, thereby
enhancing the capability of characterizing the various
fluctuation patterns in RCS with respect to observation
angles. Furthermore, considering the critical role of data
preprocessing in facilitating the model’s ability to learn
the underlying RCS patterns accurately, a physics-based
data preprocessing method is introduced. Numerical val-
idations based on two exemplary targets demonstrate that
APOI-SVR effectively reduces the predictive root mean
square error (RMSE) by over 24.7% compared with the
benchmark model. Afterward, APOI-SVR is adopted to
quickly establish the RCS feature map of an aircraft
model, the results show that it is comparable to numer-
ical simulations in accuracy but less than one-tenth in
time cost, indicating the practicality of APOI-SVR for
efficiently analyzing the RCS characteristics of targets.

Index Terms – Angular frequency parameter, data pre-
processing, physical optics, radar cross section, support
vector regression.

I. INTRODUCTION
In the domain of electromagnetic scattering

research, the accurate prediction of the radar cross
section (RCS) of a target is essential for target recog-
nition and tracking [1, 2], and also exerts a profound
influence on a variety of modern applications across
aerospace and civilian domains [3–5]. Computational
electromagnetic (CEM) methods, such as the finite
element method (FEM) [6, 7] and the finite difference
time domain (FDTD) [8, 9], have demonstrated remark-
able accuracy in simulating the interactions between

electromagnetic waves and objects. However, when
tasked with modeling complex and electrically-large
targets, these methods encounter significant challenges
such as the high computational resource demands and
extensive time costs for matrix inversion O(N3), thereby
revealing notable limitations in practical application.
Researchers have been exploring methods to surmount
these computational challenges, such as developing
domain decomposition algorithms and acceleration
techniques leveraging multi-CPU/GPU architectures
[10–12]. These efforts have led to some improvements,
but do not constitute a definitive solution. Innovative
and potential solutions are still a pressing need to be
explored.

In recent years, the rapid advancement of machine
learning (ML) has introduced many innovative techni-
cal approaches for the modeling and analysis of target’s
RCS. For instance, artificial neural networks (ANNs)
have been effectively utilized for the real-time predic-
tion of 2D scattered fields [13] and the efficient com-
putation of broadband monostatic RCS of morphing S-
shaped cavities [14]. In addition, a hybrid model combin-
ing the autoregressive integrated moving average algo-
rithm and the long short-term memory (LSTM) algo-
rithm has been employed for the RCS sequence predic-
tion [15]. Although these methods can model complex
nonlinear relationships, they often require a large amount
of data for training and can be prone to overfitting on
small datasets.

Support vector regression (SVR), a robust machine
learning model known for its exceptional nonlinear rep-
resentation and generalization capabilities, and is less
prone to overfitting on small datasets [16–18], has been
increasingly incorporated into the field of CEM. Exam-
ples include modeling the target’s RCS [19, 20] and the
backscattering coefficient of the 3D sea surface [21]. To
improve the RCS prediction accuracy of SVR, a physical
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optics-inspired (POI) kernel function, which is a com-
posite kernel function composed of the cosine function
and the Gaussian kernel function, has been proposed
[22]. Besides, a comprehensive analysis of the impact
of various sampling schemes on the modeling of RCS
using the POI kernel-based SVR (termed POI-SVR) has
also been conducted. Results show that, compared to the
centrally-located sampling (CLS), simple random sam-
pling (SRS), and Latin hypercube sampling (LHS), uni-
form design (UD) and uniform design sampling (UDS)
yield more representative training datasets, which can
further improve the RCS modeling precision of POI-
SVR. However, the cosine components in the POI kernel
function are fixed without adjustable parameters, which
limits the ability of POI-SVR to characterize the local
fluctuation patterns of RCS. Moreover, the impact of data
preprocessing on the modeling accuracy of SVR has not
been explored yet.

In this paper, we introduce two angular frequency
parameters into the cosine components of the POI ker-
nel function, thereby augmenting the capacity of POI-
SVR to characterize the local fluctuation characteris-
tics of the target’s RCS. Also, a physics-based data pre-
processing method is proposed to further improve the
accuracy of SVR in the modeling of the target’s RCS.
To facilitate the follow-up comparative analyses, the
advanced POI-SVR presented herein is abbreviated as
APOI-SVR.

The rest of this paper is organized as follows.
Section II introduces the proposed APOI-SVR, includ-
ing the improved POI kernel function, the physics-based
data preprocessing method, and the training procedure of
APOI-SVR. Several numerical validations for the pro-
posed APOI-SVR are presented in section III. Finally,
the conclusion is summarized in section IV.

II. THE PROPOSED APOI-SVR
APOI-SVR mainly improves the kernel function and

the data preprocessing method on the basis of POI-
SVR. Therefore, in this section, a detailed introduction
is mainly given to the improved POI kernel function and
the proposed data preprocessing method. The procedure
of training APOI-SVR is illustrated at the end of this
section as well.

A. Improved POI kernel
It is well accepted that kernel function is crucial for

the performance of SVR. For linear problems, a linear
kernel function is typically used; for periodic or quasi-
periodic issues, a periodic kernel function is often cho-
sen; and to enhance the local representation capability of
SVR, a Gaussian kernel function is frequently selected.
However, when it comes to complex problems, such as
predicting the RCS of complex targets, a suitable kernel
function needs to be carefully designed, which demands

a deep understanding of the problem (i.e., prior knowl-
edge).

In [22], the backscattered electric field Esca(θ ,ϕ,r)
is approximated by:

Esca(θ ,ϕ,r) = jkη
exp(− jkr)

4πr

×
N

∑
i=1

Ai
[
k̂× (k̂×J′i)

]
exp[−j2k · r′iϑ ], (1)

where (θ ,ϕ) is the incident angle of the electromagnetic
wave, r is the distance from the origin to the observation
point r, k is the incident wave vector, k̂ = k

/
k, k and

η represent the wave number and the wave impedance,
J(r′) denotes the induced current at the source point r′, Ai
is the area of the facet S′i, and r′iϑ is a point on the facet S′i.
Under far-field conditions, (1) can be further simplified
to a function of (θ ,ϕ):

Esca(θ ,ϕ) =
N

∑
i=1

aigi(θ ,ϕ), (2)

with:{
ai = jkηAi exp(−jkr)/4πr
gi(θ ,ϕ) =

[
k̂×

(
k̂×J′i

)]
exp

[
−j2k · r′iϑ

] , (3)

where r is set to a sufficiently large constant (i.e., 109m).
Notably, gi(θ ,ϕ) contains the phase term:

exp
[
−j2k · r′iϑ

]
=exp [−j2k (sinθ cosϕ · xiϑ

+sinθ sinϕ · yiϑ + cosθ · ziϑ )] ,
(4)

where (xiϑ ,yiϑ ,ziϑ ) are the coordinates of r′iϑ . The phase
difference between facets introduces interference effects,
leading to angular-dependent fluctuations of Esca(θ ,ϕ).
To account for the fluctuation characteristics of the tar-
get’s RCS and to maintain local representation capabil-
ity of SVR, the following kernel function was proposed
[22]:

KP(x,x′) =
2

∏
i=1

cos(xi − x′i)exp[− (xi − x′i)
2

2l2
i

], (5)

where x = (θ ,ϕ), l1 and l2 are scaling parameters. As
inspired by physical optics (PO), the kernel function in
(5) was termed POI kernel function. It should be noted
that, the cosine components of KP(x,x′) are to character-
ize the fluctuation patterns of the target’s RCS, the Gaus-
sian components are to maintain good local representa-
tion capability.

However, for complex targets, their RCS responses
often contain multiple harmonics due to the interactions
among surfaces of varying sizes and orientations:

σ(θ ,ϕ)≈ σ0 +∑
m,n

Cmn cos(ω1mθ +ω2nϕ +ψmn) , (6)

where σ0 is the baseline RCS of the target, Cmn is the
amplitude coefficient, ω1m and ω2n are angular frequen-
cies, and ψmn is the initial phase offset of the (m,n)−th
harmonic component. This decomposition highlights the
multi-scale nature of RCS fluctuations. The cosine parts
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of KP(x,x′) are fixed and devoid of adjustable parame-
ters, assuming a single dominant frequency in the RCS
spectrum. Thus, its capacity to accurately capture the
various fluctuation patterns of RCS is inherently con-
strained. To tackle this issue, we introduce two angle
frequency parameters (i.e.,ω1 and ω2), and proposed the
following improved POI kernel function:

K′
P(x,x

′) =
2

∏
i=1

cos[ωi(xi − x′i)]exp[− (xi − x′i)
2

2l2
i

]. (7)

It is clear that KP(x,x′) is a special case of K′
P(x,x′)

when ω1 =ω2 = 1. Figure 1 depicts the obvious variation
in fluctuation patterns that arise from the introduction of
the two angular frequency parameters ω1 and ω2. This
demonstrates the potential of K′

P(x,x′) in capturing the
complex fluctuation patterns of the target’s RCS.

To further illustrate the adaptability of the improved
POI kernel function to the RCS patterns of complex tar-
gets, we analyzed the spectral properties of these two
kernel functions.

First, consider the 1D case (θ -direction):

K′
p(x,x

′) = cos[ω(x− x′)]exp
(
− (x− x′)2

2l2

)
. (8)

The Fourier transform of this kernel is derived as fol-
lows:

F{K′
p}(ω ′)=

1
2

[
exp[− l2(ω ′−ω)2

2
]+ exp[− l2(ω ′+ω)2

2
]

]
.

(9)
This result shows that the improved POI kernel acts

as dual Gaussian bandpass filters centered at ω ′ = ±ω ,
with bandwidth controlled by l.

For 2D RCS modeling, we have:

F{K′
p}(ω ′

1,ω
′
2) ∝

2

∏
i=1

 exp
(
− l2

i (ω
′
i−ωi)

2

2

)
+exp

(
− l2

i (ω
′
i+ωi)

2

2

)
 . (10)

This structure allows the improved POI kernel func-
tion to adaptively amplify frequency components near
(±ω1,±ω2). However, the POI kernel only amplifies fre-
quency components near (±1,±1).

The improved POI kernel function introduces
angular frequency parameters ω1 and ω2, which can

(a) (b) (c)

Fig. 1. Instances of the fluctuation patterns attributed
to the varied angular frequency parameters ω1 and ω2.
(a) l1 = 1, l2 = 7,ω1 = ω2 = 1, (b) l1 = 1, l2 = 7,ω1 =
1,ω2 = 2, (c) l1 = 1, l2 = 7,ω1 = 2,ω2 = 1.

automatically adjust the center frequency of the fil-
ter according to the actual fluctuation frequency of the
target’s RCS (matching the multi-harmonic RCS spec-
trum). In this way, whether for simple or complex targets,
the SVR model can find the most matching frequency
to capture the RCS fluctuations. In contrast, the center
frequency of the filter corresponding to the POI kernel
function is fixed, easily lead to underfitting.

B. Proposed data preprocessing method
In the IEEE dictionary of electrical and electronics

terms, the definition of RCS is given by the following
expression:

σ = lim
r→∞

4πr2 |Escat|2

|Einc|2
, (11)

where Einc is the incident field. The unit of σ is m2.
Assuming |Einc| = 1 V/m, then (11) can be simplified
to:

σ = lim
r→∞

4πr2 |Escat|2 . (12)

In the academic and industrial communities, it is
also customary to use the following notation:

σdB = 10lg(σ), (13)
where the unit of σdB is dBsm.

It is noteworthy that K′
P(x,x′) is derived from the

scattered field formula presented in (2) and, thus, it is
more apt for modeling the scattered field rather than
modeling the target’s RCS directly. Hence, we propose
transforming the target’s RCS into the magnitude of the
scattered field |Escat|. Therefore, according to (12) and
(13), we have:

|Escat|=
√

σ

4πr2 =

√
10σdB/10

4πr2 . (14)

Then, convert it into normalized scattered field
strength:

Ẽscat =
|Escat|−

∣∣Emin
scat

∣∣
|Emax

scat |−
∣∣Emin

scat
∣∣ , (15)

where |Emax
scat | and |Emax

scat | denote the maximum and the
minimum scattered field strengths, respectively.

C. Training of APOI-SVR
This subsection primarily outlines the methodology

for constructing APOI-SVR on previous derivations to
model the target’s RCS characteristics. The core focus
is training APOI-SVR with sampled RCS data. Training
APOI-SVR is essentially solving an optimization prob-
lem with constrains, that is:

max
α,α̂

n
∑

i=1
yi(αi − α̂i)− ε(αi + α̂i)

− 1
2

n
∑

i=1
∑

n
j=1(αi − α̂i)(α j − α̂ j)K′

P(xi,x j)

s.t.
n
∑

i=1
(αi − α̂i) = 0, αi, α̂i ∈ [0,C ]

, (16)



SHI, CAI, DONG, XIAO: ADVANCED PHYSICAL OPTICS-INSPIRED SUPPORT VECTOR REGRESSION FOR EFFICIENT MODELING OF TARGET 312

where ε represents the width of the insensitive tube, and
C is the penalty parameter. Assuming that n RCS data of
the target, denoted as {(θi,ϕi,σi)|i = 1, ...,n}, have been
collected, the steps are as follows:

1. Data preprocessing: Apply (14) and (15) to prepro-
cess the RCS data for training APOI-SVR.

2. Hyperparameter optimization: Adopt the Bayesian
optimization method [23, 24] to obtain optimal values of
hyperparameter l1, l2, ω1, ω2, and C . In this work, an
open-source Python library called “BayesO” is adopted.

3. Model establishment: Retrain APOI-SVR with these
optimal hyperparameters to establish the approximation
model for Ẽscat(θ ,ϕ):

Ẽscat(θ ,ϕ)≈
n

∑
i=1

(αi − α̂i)K′
p[(θ ,ϕ),(θi,ϕi)]+b, (17)

where αi, α̂i and b are obtained by solving (16) with the
sequential minimal optimization (SMO) [25].

4. RCS modeling: Based on (14), (15) and (17), estab-
lish the following surrogate model for modeling the tar-
get’s RCS:

σ(θ ,ϕ) = 4πr2

×
[∣∣∣Emin

scat

∣∣∣+(
|Emax

scat |−
∣∣∣Emin

scat

∣∣∣) Ẽscat (θ ,ϕ)
]2

.

(18)
The overall flowchart of applying APOI-SVR for effi-
cient modeling of the target’s RCS is illustrated in Fig. 2.
The improvements compared with POI-SVR [22] are
marked with cyan.

Fig. 2. Flowchart illustrating the application of APOI-
SVR for efficient RCS modeling of a target.

III. VALIDATION RESULTS
In this section, we evaluate the performance of the

proposed APOI-SVR across three critical dimensions:
the accuracy of APOI-SVR in predicting the target’s

RCS, the efficiency of APOI-SVR in terms of model con-
struction and prediction, and the applicability of APOI-
SVR in rapidly modeling and analyzing the RCS of real-
world targets.

Data preparation: To evaluate the performance of
APOI-SVR, it is necessary to prepare some RCS data
of targets. Due to the unknown RCS distribution of
the target in practical applications, the uniform cover-
age assumption is rational. Informed by the analysis in
[22], uniform design sampling (UDS) is based on this
very assumption and achieves a smaller star discrepancy.
Applying UDS can acquire more representative samples,
thereby enhancing the RCS modeling accuracy of POI-
SVR. Therefore, we employ UDS to sample the RCS
data of both a simple Cube model and a complex SLICY
model (widely used exemplary models in the field of
CEM) in the upper space (θ ∈ [0,0.5π], ϕ ∈ [0,2π]), as
shown in Fig. 3. The multilevel fast multipole algorithm
(MLFMA) is utilized to compute the target’s RCS at the
angles in the UDS table, serving as the training data. The
frequency of the incident electromagnetic waves is set
to 1.0 GHz. Simple random sampling (SRS) is applied
to guide the collection of test data. Details regarding the
training/test datasets are presented in Table 1.

(a) (b)

Fig. 3. Two exemplary targets for the validation of
the proposed APOI-SVR. (a) Conducting Cube with
the side length of 0.5 m and (b) full-sized conducting
SLICY model with dimensions of 0.5625 m × 0.5 m ×
0.3436 m.

Table 1: Datasets information
Target Dataset Name Number Polarization
Cube CVtrain 1296 VV

CVtest 10000 VV
SLICY SHtrain 1296 HH

SHtest 10000 HH

A. Accuracy of APOI-SVR
In this subsection, we assess the modeling accuracy

of APOI-SVR utilizing the training datasets CVtrain and
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SHtrain, which correspond to the simple Cube model and
the complex SLICY model, respectively. Equal training
and hyperparameter optimization procedures are applied
to both datasets, followed by numerical validations on
the corresponding test datasets, CVtest and SHtest. The
results are shown in Figs. 4 and 5, offering a comparative
analysis between the RCS prediction accuracy of POI-
SVR and APOI-SVR.

Figure 4 details the test results for the simple Cube
model. Figure 4 (a) presents the performance of POI-
SVR, with a root mean square error (RMSE) of 1.056926
and a coefficient of determination (R2) of 0.987702. In
contrast, Fig. 4 (b) displays the superior performance of
APOI-SVR, with a reduced RMSE of 0.795794 and a
higher R2 of 0.993028. Figure 5 showcases the results for
the complex SLICY model. Similar to the Cube model,
APOI-SVR exhibits a higher precision in predicting the
RCS of the complex SLICY model, as evidenced by a
lower RMSE of 0.448094 and a higher R2 of 0.994632
shown in Fig. 5 (b). As a competitor, POI-SVR obtains
RMSE and R2 of 0.651156 and 0.994097, respectively.
Table 2 enumerates the RMSE reduction ratios of APOI-
SVR compared with POI-SVR. Specifically, APOI-SVR
reduces the predictive RMSE by 24.71% for the Cube
model and by 31.18% for the SLICY model.

(a) (b)

Fig. 4. Test results for the simple Cube model: (a) POI-
SVR and (b) APOI-SVR.

(a) (b)

Fig. 5. Test results for the complex SLICY model: (a)
POI-SVR and (b) APOI-SVR.

Additionally, the absolute error distributions of POI-
SVR and APOI-SVR are analyzed. Figure 6 presents the
comparisons between the absolute error distributions of

Table 2: Predictive RMSE reduction ratios of APOI-SVR
compared with POI-SVR

Target Predictive RMSE Reduction
POI-SVR APOI-SVR

Cube 1.056926 0.795794 24.71%
SLICY 0.651156 0.448094 31.18%

(a) (b)

Fig. 6. Comparisons of absolute error distributions: (a)
Cube and (b) SLICY.

POI-SVR and APOI-SVR across both the Cube model
and the SLICY model. In the case of the Cube model,
the absolute errors of APOI-SVR are primarily within
the range of 0.0 to 2.0 dBsm, whereas POI-SVR displays
a broader spread up to 3.0 dBsm. Similarly, in the case of
the SLICY model, APOI-SVR maintains a tighter error
range of 0.0 to 1.0 dBsm. demonstrating its robustness in
handling complex targets.

On the whole, whether for the simple Cube model or
the complex SLICY model, APOI-SVR achieves lower
RCS prediction errors compared with POI-SVR. This
indicates the effectiveness of the improved POI ker-
nel function (see section IIA) and the physics-based
data preprocessing method (see section IIB) in enhanc-
ing the RCS prediction accuracy of SVR, thereby
offering a reliable and accurate modeling tool that
facilitates the efficient analysis of the target’s RCS
characteristics.

B. Efficiency of APOI-SVR
In practical applications, the efficacy of an ML

model is not solely appreciated by its prediction accu-
racy but also significantly by its implementation effi-
ciency, including the time costs of optimizing hyperpa-
rameters with Bayesian optimization method and sub-
sequent model retraining with the determined optimal
hyperparameters, as well as the efficiency of the predic-
tion process. Although the introduction of hyperparame-
ters ω1 and ω2 into the improved POI kernel function sig-
nificantly boosts the representation capability of APOI-
SVR, it is essential to investigate any potential trade-offs
in efficiency. Hence, a comprehensive analysis of both
the implementation and prediction efficiency of APOI-
SVR is warranted. It should be noted that, to ensure a
compelling comparison, all time costs presented in this
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paper are obtained under single-core operation with an
Intel Core 2 Duo CPU T6670.

Figure 7 illustrates the time costs of APOI-SVR and
POI-SVR, including implementation, prediction, and
total times for both the Cube and SLICY models. It can
be seen that in terms of implementation time, APOI-SVR
takes less than POI-SVR. This reduction is attributed to
the fact that, although the training time per iteration of
APOI-SVR is slightly increased, the proposed physics-
based data preprocessing method results in fewer opti-
mization iterations necessary to reach convergence to the
optimal solution (see Table 3). Consequently, the imple-
mentation time for APOI-SVR is shorter than that for
POI-SVR. Regarding prediction time, the well-trained
APOI-SVR and POI-SVR show negligible differences
(less than 1.0 second). Finally, in terms of total time cost,
APOI-SVR is less expensive than POI-SVR. Therefore,
APOI-SVR surpasses POI-SVR in terms of overall effi-
ciency.

C. Application of APOI-SVR
Having established the superior accuracy and effi-

ciency of APOI-SVR in the previous subsections, we
now apply APOI-SVR to analyze the RCS characteris-
tics of a real-world target. Figure 8 depicts the aircraft
model under consideration. Given its geometric symme-
try, training data are sampled within the region where θ

is in [0◦,90◦] and ϕ is in [0◦,180◦]. In total, 1296 training
samples are collected, preprocessed and subsequently
used to train APOI-SVR. The well-trained APOI-SVR
is ultimately applied to analyze the aircraft’s RCS char-
acteristics in the upper half space.

The frequency of the incident electromagnetic wave
is set to 1.0 GHz. Figure 9 depicts the aircraft’s RCS fea-

Fig. 7. Time cost comparison between POI-SVR and
APOI-SVR.

Table 3: Time costs and optimization iterations of hyperparameter optimization in the model implementation stage
Target APOI-SVR POI-SVR

Optimization
Time Cost (s)

Optimization
Iteration

Time Cost per
Iteration (s)

Optimization
Time Cost (s)

Optimization
Iteration

Time Cost per
Iteration (s)

Cube 1171.6 60 19.5 1617.6 100 16.2
SLICY 920.9 50 18.1 1224.7 80 15.3

Fig. 8. Aircraft model for the illustration of efficient RCS
modeling and analysis applying APOI-SVR.

Fig. 9. RCS feature map of the aircraft obtained by
APOI-SVR.

ture map, a 91×361 matrix, obtained by APOI-SVR. For
comparison, the results acquired by MLFMA are given in
Fig. 10. It can be observed that the results obtained by the
two methods are highly consistent, indicating the reliabil-
ity of APOI-SVR. However, it is worth noting that there
is a significant difference in time cost (see Table 4). The
total time cost of our APOI-SVR, containing data sam-
pling, hyperparameter optimization, model training, and
RCS prediction, is one-twelfth of that demanded by using
MLFMA. This demonstrates the practicality of APOI-
SVR for efficient RCS modeling of real-world targets.

Fig. 10. RCS feature map of the aircraft acquired by
MLFMA.
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Table 4: Time costs of acquiring the RCS feature map by APOI-SVR and MLFMA
Method Sampling/Simulation

Time Cost (s)
Optimization
Time Cost (s)

Training Time
Cost (s)

Prediction Time
Cost (s)

Total Time Cost
(s)

APOI-SVR 92738.9 1124.8 18.7 1.5 95509.6
MLFMA 1178628.5 — — — 1178628.5

IV. CONCLUSION
This paper proposes an advanced physical optics-

inspired support vector regression (APOI-SVR) for the
efficient modeling of a complex target’s RCS. Two angu-
lar frequency parameters are introduced into the phys-
ical optics-inspired kernel function to address the var-
ious fluctuation patterns of RCS for complex targets,
and a physics-based data preprocessing method is pro-
posed to enable the model to efficiently learn the directly
related physical quantity, i.e., the normalized electric
field. Numerical validations conducted on both a sim-
ple Cube model and a complex SLICY model have con-
firmed that, compared with POI-SVR, the new-proposed
APOI-SVR effectively reduces the RMSE in RCS pre-
diction by over 24.7%. Moreover, it maintains high pre-
dictive efficiency, capable of completing the prediction
of 10,000 samples in the test dataset within 5.0 seconds.
Notably, although the introduction of two angular fre-
quency parameters slightly increases the training time
for each iteration in the hyperparameter optimization
process, the proposed physics-based data preprocessing
method reduces the required number of optimization iter-
ations. As a result, in terms of overall efficiency, APOI-
SVR outperforms POI-SVR.

Additionally, the application of APOI-SVR to an
aircraft model has illustrated its practical efficacy in gen-
erating RCS feature maps with high precision and effi-
ciency compared to the well-known MLFMA. This prac-
tical application indicates that APOI-SVR may be a valu-
able tool in the field of electromagnetic scattering analy-
sis. Future research will commit to expanding the appli-
cability of APOI-SVR, including the enhancements tai-
lored for complex targets with coatings.
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