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Abstract – It is of great significance to obtain the electro-
magnetic field radiated by an antenna or scattered by an
object over a frequency band. But this data often occu-
pies so large a memory that cannot be applied readily.
This paper proposes to compress the field based on the
spherical harmonic transformation (SHT) and rational
interpolation. First, the tangential electric field over a
sphere surrounding the antenna is obtained by simula-
tion or measurement. Then, this field is converted into
the spherical harmonic coefficients, which are sparse dis-
crete spectra. Finally, these coefficients are interpolated
over the whole frequency band with only a few sampling
points. Numerical examples show that the proposed algo-
rithm can compress the data of the near field of a rect-
angular waveguide antenna by about 17278 times, and
those of the far field scattered from an UAV by about
103 times.

Index Terms – Antenna, data compression, rational inter-
polation, spherical harmonic transform.

I. INTRODUCTION
The data of the electromagnetic field radiated by an

antenna or scattered from an object is widely applied
in many engineering scenarios, such as radar imag-
ing, antenna measurement and base station deployment.
As shown in Fig. 1, the field often varies rapidly as
frequency and scanning angle changes. Therefore, one
needs to sample quite densely in both frequency and
angle to accurately represent the field. Many compres-
sion techniques have been developed to reduce this large
amount of data.

The method introduced by Burnside et al. is based
on radar imaging technology [1-3]. It extracted the scat-
tering centers according to the radar images. The scat-
tering field from an individual scattering center can be
expressed as a complex exponential function of fre-

quency and angle. As a result, the radar cross section
(RCS) is compressed drastically. There are some addi-
tional methods based on the theory of scattering centers,
such as the matrix pencil method [4] and the CLEAN
algorithm [5, 6].

Regarding the data of the electromagnetic field as a
matrix, one can make use of the well-established image
compression algorithms. These algorithms often exploit
the low-rank property of a particular matrix. In order
to compress the near field data, Wu et al. proposed the
CUR decomposition [7] and Zhao et al. proposed the
skeletonization-scheme [8]. Guo et al. applied the but-
terfly scheme [9] to compress the system matrix gener-
ated by the combined-field integral equation. The most
widespread ones are the threshold discrete Fourier trans-
form (TDFT) method [10, 11] and the truncated singular
value decomposition (SVD) method [12, 13].

Another type of compression method applies com-
pressive sensing (CS) [14–19] to reconstruct the antenna
radiation pattern in the antenna measurements. The CS
process often uses a transform, such as discrete cosine
transform or discrete Fourier transform, that renders the
data of the field to be a sparse vector in the trans-
form domain. Minimizing the l1-norm of this vector
will reconstruct the field data with much fewer random
measurements. This method sheds some light on the
proposed method, which transforms the electromagnetic
fields into the spherical harmonic spectra in Fig. 2 by
spherical harmonic transformation (SHT). Fortunately,
the spherical harmonic spectra are low-pass, discrete
and sparse. Furthermore, the l1-norm minimization in
CS may be time-consuming if the iterative procedure
diverges, whereas SHT is a deterministic algorithm with
O(N3) operations, where N is the truncation order.

Some use SHT to compress the pattern of an
antenna. Reference [20] expanded the field by SHT
and Slepian decomposition. Reference [21] applied the
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sparse spherical harmonic expansion with compressed
sensing to expand the far field of an antenna. None of
them discussed the frequency-sweeping technique, thus
the compression ratio for a frequency band will be lim-
ited. Reference [22] applied the 2-D scalar SHT and
the windowed interpolation for compression. As is dis-
cussed in [22], this commonly used rational interpolation
method is numerically unstable as the number of sam-
pling points increases. Therefore, the interpolated func-
tion may have some spikes in the curve, called “Froissart
doublets” [23].

Since the data of the field is also a function of fre-
quency, we need to implement frequency sweeping effi-
ciently. Reference [24] considered the field radiated by
an antenna at a specific angle as a function of frequency,
which is expanded by the Chebyshev polynomials. Actu-
ally, most of the physical quantities in an electronic
system are not polynomials, but rational polynomials.
Therefore, this paper applies the rational interpolation
based on the Loewner matrix as the frequency sweeping
tool.

In summary, the proposed method combines two
techniques to compress the data of field in Fig. 1. On
the one hand, the field at a specific frequency is con-
verted into spherical harmonic spectra in Fig. 2. On the
other hand, the spherical harmonic spectra over a fre-
quency band are approximated by the rational interpo-
lation, which requires the spectra at only a few sampling
frequencies.

This paper is organized as follows. Section II intro-
duces the theory of SHT and rational interpolation, and
gives the flowchart of the proposed algorithm. Section
III validates the proposed algorithm with two numerical
examples. Finally, conclusions are drawn in section IV.

Fig. 1. Electric field varies with frequency.

Fig. 2. Spherical harmonic spectra vary with frequency.

II. FORMULATION OF THE ALGORITHM
A. Spherical harmonic transform

Spherical harmonic transform is a well-established
algorithm in near-field antenna measurement. The time-
harmonic electromagnetic field in a source free space
generated by the antenna can be expanded by the spheri-
cal harmonics as in [25]:

E =−
N

∑
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where N is the truncation order of the spherical harmon-
ics, an,m and bn,m are the spherical harmonic coefficients
and the range of subscripts is 1≤n≤N, −n≤m≤n. The
vector spherical harmonics in the spherical coordinate
system are:
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where θ and ϕ are the elevation angle and the azimuth
angle respectively, n is the degree, m is the order,
P|m|

n (cosθ ) is the associated Legendre function, Zn(kr)
is the spherical Bessel function, k is the wave number of
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√
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In the spherical near-field antenna measurement, we
acquire the tangential near electric field on a sphere sur-
rounding the antenna by a mechanical scanning proce-
dure:

E tan = Eθ θ̂ +Eϕ ϕ̂, (5)
where Eθ and Eϕ are the components of E tan in the θ

and ϕ direction. The unknown spherical harmonic coef-
ficients can be evaluated by the following integrals:
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The above double integral consists of an inner inte-

gral and an outer integral. The inner integral is just a
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Fourier integral respect to , which can be evaluated effi-
ciently by the Fast Fourier Transform (FFT). The outer
integral is usually calculated by a Gaussian Quadrature.
Given the near fields of the antenna, acquiring the spher-
ical harmonic coefficients by (6) and (7) is referred to as
the forward SHT. Given the spherical harmonic coeffi-
cients of the antenna, evaluating the near fields by (1) is
called the inverse SHT. Owing to the FFT, both forward
SHT and inverse SHT have the computational complex-
ity of O(N3), which can be reduced to O(N2logN) by a
novel fast SHT [26].

The expansion coefficients an,m and bn,m are also
termed the spherical harmonic spectra of the electro-
magnetic field. These are low-pass and discrete spectra
which can be stored easily. Because 1≤n≤N, −n≤m≤n,
the number of coefficients an,m is N×(N+2), and it
also applies for bn,m. According to [26], we often take
N=kd+10, where d is the size of the antenna; the mem-
ory requirement for this spectrum is trivial.

Furthermore, among all the 2N×(N+2) coeffi-
cients, only a small portion are relatively large quanti-
ties, whereas the rest are so small they can be neglected.
Therefore, if we only store the non-zero coefficients, then
the memory requirement could be reduced significantly.
The sparsity pattern of these coefficients is shown in
Figs. 12 and 13.

Obviously, (6) and (7) are applied to represent the
near field at a single frequency. Often we need the field
over a wide frequency band, which will be addressed by
a frequency sweeping algorithm called rational interpo-
lation based on Loewner matrix [27, 28].

B. Rational interpolation respect to frequency
Consider only one of the coefficients an,m and bn,m.

This coefficient is denoted by x(s), where s represents
the frequency. Suppose 2p−1 sampling data have been
obtained by the forward SHT for the near field of an
antenna:

x(si)=xi, i= 1,2,3,· · ·,2p−1, (8)

where s1<s2<· · ·<s2p−1 are the sampling frequenci-es.
We partition these data into two groups:

x(λi)=wi, i= 1,2,3,· · ·,p, (9)
x(µ j)=v j, j= 1,2,3,· · ·,p−1. (10)

With (9), x(s) can be expressed by the following
rational approximation in barycentric form:
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where αi (i= 1,· · ·,p) are unknown coefficients to be
determined by (10). Evaluating xL (s) at the points in the
second partition (10) leads to:
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which is written in compact matrix form as:
v1−w1
µ1−λ1

· · · v1−wp
µ1−λp

... v j−wi
µ j−λi

...
vp−1−w1
µp−1−λ1

· · · vp−1−wp
µp−1−λp


 α1

...
αp

= 0. (14)

The system matrix on the left side of (14) is the so-
called Loewner matrix based on the adopted partition of
the samples, and the unknown coefficients αican be read-
ily evaluated by the SVD of the Loewner matrix. Then,
the rational polynomial (11) goes through all the 2p−1
points, and can be viewed as an approximation of the
unknown function x(s).

C. Compressing the field of an antenna or scatterer
The above rational interpolation is suitable for the

scalar function, and can be generalized to interpolate
a vector function, such as the vector containing all the
coefficients an,m and bn,m, for a frequency band s∈[sa,sb].
More details are given in [3].

The flowchart Fig. 3 presents the algorithm to com-
press the field of an antenna. It mainly includes four com-
ponents. The first one is to obtain the tangential near
electric field over a sphere surrounding the antenna by

Fig. 3. Flowchart of the compression algorithm.
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computational electromagnetic algorithms or measure-
ments. The second one is the forward SHT in part A.
The third one is the rational interpolation in part B. And
the last one is the inverse SHT in part A. All together, we
can compress the field into the spherical harmonic coef-
ficients and retrieve the field at any frequency efficiently.

III. NUMERICAL RESULTS
The proposed method is validated with the field radi-

ated by a waveguide antenna and the field scattered from
an UAV. As the frequency changes, the field of the former
varies slightly, while those of the latter varies rapidly.
Therefore, we investigate the former over a wide band
and the latter over a narrow band. In order to evaluate
the accuracy of the compression methods, we define the
relative error as:

ε =

√√√√∑
M
j=1 ∑

N
i=1

∣∣Ec (θi,ϕ j)−Er (θi,ϕ j)
∣∣2

∑
M
j=1 ∑

N
i=1

∣∣Er (θi,ϕ j)
∣∣2 , (15)

where θi,ϕ j are the sampling points along the two angles
in the spherical coordinate, M and N are the correspond-
ing number of points, Ec represents the electric field
obtained by a compression method, and Er represents
the reference field, which is obtained by MoM directly.
Furthermore, the definition of compression ratio (CR)
is [28]:

CR =
size o f the original data

size o f the compression data
. (16)

A. Rectangular waveguide antenna
Figure 4 shows the structure of a WR187 rect-

angular waveguide antenna, which has an aperture of
47.55×22.15 mm, and is 180 mm in length. This antenna
operates at C-band between 4 GHz and 6 GHz. The pro-
posed algorithm is implemented to compress and restore
the near field. It is pointed out that the tangential electric
field E tan over the enclosing sphere is obtained by MoM,
which is the second step of the algorithm. The radius of
the sphere is 150 mm, and the truncation order in SHT is
N= 14.

Subsequently, the near field is converted into spheri-
cal wave expansion coefficients. Among all the 448 coef-
ficients, there are only 102 non-zero ones, as shown in
Figs. 5 and 6. These coefficients are fitted by the rational
interpolation with only 11 frequencies and the tolerance
in Fig. 3 is τ = 0.03. In other words, the MoM simu-
lation is implemented 11 times. Figures 7 and 8 show
that the real and imaginary parts of the interpolated a1,1
and b14,7 are almost identical to the reference. There-
fore, the spherical wave expansion coefficients at an arbi-
trary frequency in the band can be predicted by (10). For
example, we compute the coefficients at 5.33 GHz, then
restore the near electric field on the enclosing sphere by
inverse SHT. Figures 9 and 10 show that the near-field is
in good agreement with the reference result.

Fig. 4. Waveguide antenna and enclosing sphere.

Fig. 5. Sparsity of spherical harmonic spectra an,m.

Finally, the compression ratio of the near-field is
considered. First, we evaluate the memory requirement
of the near field without compression. Suppose there are
200 uniformly distributed frequencies from 4 GHz to 6
GHz, and the field at each frequency has 360 azimuthal
points and 180 elevational points on the surrounding
sphere. Then the memory requirement of the near-
field complex vectors is 200×360×180×3×16≈622
MB. Thus, the proposed method needs only 11 fre-
quencies over the whole band, and each frequency has
only 102 non-zero spherical wave expansion coefficients.
The memory requirement is 11×102×2×16≈0.036 MB,
which is negligible. Therefore, the compression ratio is
about 17278.
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Fig. 6. Sparsity of spherical harmonic spectra bn,m.

Fig. 7. Rational interpolation of the coefficient a1,1.

Fig. 8. Rational interpolation of the coefficient b14,7.

Fig. 9. Near-field of waveguide antenna at 5.33 GHz.

Fig. 10. Near-field of waveguide antenna in XOY cut at
5.33 GHz.

B. UAV RCS
Figure 11 shows the model of a UAV, which is about

5 m in length. The UAV is illuminated by a plane wave
E inc=ẑe− jky, and the operating frequency band is from
1180 MHz to 1220 MHz. The proposed algorithm will be
applied to compress the bistatic RCS of the UAV. Simi-
larly, the second step of the algorithm is computing the
tangential near-field E tan of the UAV over the enclosing
sphere by MoM. The radius of the sphere is 5 m, and the
truncation order in SHT is N= 139.

Then, the near-field is converted into spherical wave
expansion coefficients. There are 15761 non-zero coef-
ficients among all the 39198 coefficients, as shown in
Figs. 12 and 13. These non-zero coefficients are interpo-
lated over the frequency band with only 19 frequencies.
Figures 14 and 15 show that the real parts and imagi-
nary parts of the interpolated a125,0 and b2,−1are in good
agreement with those of the reference. Also, we compute
the coefficients at an arbitrary frequency, say 1216 MHz,
by (10), and then restore the far-field or RCS by inverse
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Fig. 11. Structure of a UAV.

Fig. 12. Sparsity of spherical harmonic spectra an,m.

Fig. 13. Sparsity of spherical harmonic spectra bn,m.

SHT. Figures 16 and 17 show that the restored far-field
is almost the same as the reference result.

Then, the compression ratio is considered. First, we
evaluate the memory requirement of the RCS without
compression. Suppose there are 40 uniformly distributed

Fig. 14. Rational interpolation of coefficient a125,0.

Fig. 15. Rational interpolation of coefficient b2,−1.

Fig. 16. Normalized bi-static RCS of UAV at 1216 MHz.

frequencies from 1180 MHz to 1220 MHz, and each fre-
quency has 720 azimuthal angles and 360 elevational
angles. The memory requirement of the complex vectors
will be 40×720×360×3×16≈498 MB. The proposed
algorithm needs only 19 frequencies over the whole
band, and each frequency has 15761 non-zero spherical
wave expansion coefficients. The memory requirement is
19×15761×16≈4.78 MB, and the compression ratio is
about 103.
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Fig. 17. Normalized bi-static RCS of UAV in XOY cut at
1216 MHz.

Finally, the efficiency of the proposed algorithm is
compared to TDFT [10, 11] and SVD [12, 13] in Fig. 18.
Figure 19 shows the spectrum obtained by TDFT, which

Fig. 18. Efficiency of three methods at 1216 MHz.

Fig. 19. Spectrum of the RCS obtained by TDFT.

converts a dense matrix into a sparse one by dropping
the small elements in the spectrum matrix. If the rela-
tive error is set to be 0.1, the compression ratio of the
proposed method is 64.13, while those of TDFT and
SVD are 8.71 and 5.21, respectively. Thus, the proposed
method is more efficient than the other two methods.

IV. CONCLUSION
This paper gives a novel method to compress the

field data of an antenna or a scatterer by SHT and rational
interpolation. On the one hand, SHT converts the vectors
of near field on a sphere into spherical wave expansion
coefficients, which are low-pass sparse discrete spectra.
On the other hand, rational interpolation fits these spec-
tra over a frequency band with only a few sampling fre-
quencies. As a result, the data of field are compressed
dramatically, and we can readily restore the field data at
an arbitrary frequency. This method can efficiently com-
press both far field and near field.

The proposed method will be improved in the
future. First, the spherical wave expansion process will
be replaced by FaVeST [24] or the spherical-multipole
expansion [29]. Then, the proposed method will be
revised to compressing the monostatic RCS, which is
more useful in radar imaging and target recognition.
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