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Abstract – This paper introduces a 3-bit reconfigurable
intelligent surface (RIS) design characterized by its
unique angle-insensitive properties for 5G communica-
tion systems. The proposed configuration provides eight
distinct phase states enabled by the states of two var-
actors with an applied bias voltage. The design of the
unit cell with double centric square split ring resonators
and the formation of the RIS with a 5x5 array have
been presented. A detailed analysis of the RIS perfor-
mance has been conducted using the CST 3D electro-
magnetic simulator to study the reflection amplitude and
phase responses. It is demonstrated that the results show
a phase range of up to 315 degrees, along with eight dis-
tinct states exhibiting a stable interval of 45 degrees. This
effectively covers incidence angles ranging from 0 to 60
degrees.

Index Terms – 3-bit RIS, 5G, angular insensitivity, quan-
tization, reconfigurable intelligent surface, split ring res-
onator, SRR, varactor.

I. INTRODUCTION
The wireless communication landscape is currently

undergoing a transformative phase with the emergence
of the reconfigurable intelligent surface (RIS) [1]. These
innovative platforms are gaining widespread recognition
for their ability to effectively manipulate signal propaga-
tion environments, thereby significantly enhancing wire-
less network performance. The traditional challenges
associated with uncontrolled interaction of radio waves
environmental elements, which often lead to signal qual-
ity deterioration, are being addressed through the deploy-
ment of RIS [2]. These surfaces play a pivotal role in
optimizing wave reflections, refractions, and scattering,
which in turn facilitates the reduction of multipath fading
while maintaining low hardware costs and energy effi-
ciency [3–4].

At the core of RIS technology is the metasurface, a
crucial component renowned for its remarkable capabil-

ity to manipulate electromagnetic (EM) waves through
meticulously designed and strategically arranged meta-
atoms [5]. The concept of digital coding metasurfaces
has revolutionized the design process, allowing for real-
time programmability and reconfigurability. The inte-
gration of tunable components like PIN diodes, varac-
tor diodes, and field-programmable gate arrays (FPGA)
has further enhanced the functional diversity of metasur-
faces, paving the way for high-performance multifunc-
tional metasurfaces in RIS-assisted wireless communi-
cation [6].

This paper introduces a 3-bit programmable RIS to
address the challenges arising from angular sensitivity
and phase control in RIS. Such sensitivity may lead to
issues that can result in the failure of RIS-assisted wire-
less communication networks such as the ones that rely
on the reciprocity of wireless channels [7–8]. The pro-
posed design in this paper features a unit cell which
has double centric square split ring resonators (SRRs)
with two varactors for phase control, aiming to enhance
angular insensitivity [9–10]. The unit cell is then used
to form RIS with 5×5 array configuration. The results
demonstrate a phase range of up to 315 degrees, with
eight distinct states exhibiting a stable interval of 45
degrees, effectively covering incidence angles from 0 to
60 degrees [11–12].

II. DESIGN OF SRR UNIT CELL
The square SRR unit cell in the design is imple-

mented on a Teflon-based substrate, as depicted in Fig. 1
(a). Each SRR unit cell comprises a square loop with a
side length (a) of 5 mm, a split width (d) of 0.5 mm,
and a metal width (c) of 0.2 mm, m represents the side
length of the SRR unit cell and is equal to 5 mm. The
spacing (s) between adjacent SRRs is maintained at 0.5
mm, optimizing the coupling effect and resonance char-
acteristics. A detailed analysis has been conducted and
verification using the 3D EM simulator CST. The varac-
tor diode model used is the MAVR-00020-141100 from
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MACOM. The capacitances of this varactor diode range
from 0.75 pF to 2.60 pF.

(a) (b)

Fig. 1. Layout of SRR unit cell with varactor diodes: (a)
single element unit cell and (b) 5x5 array with final unit
cell.

III. SIMULATION RESULTS AND
DISCUSSION

Figure 2 illustrates the normalized reflection coeffi-
cient amplitude across a frequency range from 20 GHz
to 30 GHz for various varactor capacitance values. Each
curve represents the response for a specific capacitance
value and its corresponding phase shift, demonstrat-
ing the shift in the resonant frequency of the element
with changes in capacitance. The peak amplitude val-
ues in Fig. 2 indicate the resonant points where max-
imum reflection occurs. These characteristics demon-
strate the ability to control the phase of reflected signals
by adjusting the varactor capacitance, a key characteris-
tic for beam-steering applications.

Figure 3 displays the linear phase shift progression
of a SRR unit cell at 26 GHz, with the reflection phase
angle increasing in 45◦ increments across eight configu-
ration states, ranging from 0◦ degrees at state 1 to 315◦

Fig. 2. Frequency response of a varactor-tuned RIS.

Fig. 3. Progressive phase shift characteristics of SRR unit
cell at 26 GHz.

degrees at state 8. In Fig. 4, the variation of the normal-
ized scattering pattern for different incident angles over
an 180◦ degree range is given, with each curve represent-
ing the scattering intensity at a specific incident angle.

RIS angular reciprocity is investigated to identify
the angular sensitivity of the proposed RIS structure.
Sets of simulations have been conducted for the pre-
determined incident angles and corresponding reflected
angles have been measured and illustrated in Table 1.

Fig. 4. Normalized 2D scattering pattern vs. angle.

Table 1: Angular sensitivity

Simulation I Incident Angle - Θi 90
◦

112.5
◦

Reflected Angle - Θr 112.5
◦

90.5
◦

The normalized 2D scattering parameter responses
for each incident angle are illustrated in Fig. 4. The sim-
ulation results affirm that plane waves are reflected back
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toward the incidence direction on the RIS, thereby vali-
dating the concept of angular reciprocity.

The DC biasing circuit for the varactor is given in
Fig. 5. Figure 6 gives the capacitance of the varactor ver-
sus applied reverse voltage. The complete system with

Fig. 5. DC biasing circuit for the presented unit cell
reconfigurable diode.

Fig. 6. Capacitance of the varactor versus reverse bias
voltage.

Fig. 7. Integrating the SRR unit cell with the DC circuit
and SPICE representation for varactor diodes.

the varactor bias circuit is integrated and simulated as
shown in Fig. 7. The return loss for the unit cell when
the applied reverse voltage is between 0.5 V and 5.6 V is
plotted in Fig. 8. Figure 8 illustrates how the return loss
varies with the frequency for each bias setting, indicat-
ing the varactor’s performance and tenability within this
range.

Fig. 8. Simulated return losses with different reverse bias
voltages.

Figure 9 illustrates the insertion loss for the applied
reverse voltages. Figure 10 gives the group delay for
the unit cell when reverse bias voltages vary. The phase
characteristics of the insertion loss is given in Fig. 11.
Figure 12 shows two color-coded plots representing
phase distributions for a RIS. The top plot is labeled
“Continuous phase distribution” and shows a gradient
of colors, indicating a smooth transition of phase val-
ues across the surface. The bottom plot is labeled “2-

Fig. 9. Insertion losses with different reverse bias
voltages.
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Fig. 10. Simulated group delay for different reverse bias
voltages.

Fig. 11. Simulated phase characteristics of S21 with dif-
ferent DC reverse bias voltages.

bit phase distribution” and displays four distinct colors,
representing discrete phase states achievable with 2-bit
quantization.

Figure 13 illustrates the RIS array factor for beam
steering, comparing continuous and 2-bit phase con-
trol methods. It displays the amplitude in decibels (dB)
against the angle theta in degrees. The continuous phase
control (blue line) results in a smoother, more precise,
steering profile, while the 2-bit phase control (red line)
shows a more discretized pattern with higher side lobes,
indicating less precise beam control.

Figure 14 displays four plots that compare the per-
formance of an RIS array factor at 26 GHz with the dif-
ferent quantization levels such as 1-bit, 2-bit, and 3-bit.
The top left plot indicates the mean quantization phase
error which measures the average phase error due to
quantization at various reflected angles. The top right

Fig. 12. Comparative displays of continuous and 2-bit
phase distribution.

Fig. 13. Comparison of continuous and 2-bit phase con-
trol for RIS beam steering at 26 GHz.

plot represents the quantization loss. This plot indicates
the power loss associated with phase quantization. The
bottom left plot represents the beam pointing error which
shows the deviation of the actual beam direction from
the intended direction due to quantization. The bottom
right plot shows the side lobe level. This plot represents
the relative power level of side lobes compared to the
main lobe, a critical factor in beamforming performance.
Figure 15 contains two graphs depicting the performance
of an RIS array at 26 GHz based on the different unit cell
sizes (0.1λ , 0.25λ , and 0.5λ where λ is the wavelength).
The left graph shows the pointing error in degrees as a
function of the reflected angle. It demonstrates how the
beam’s actual direction deviates from the targeted direc-
tion for each unit cell size. The right graph illustrates the
level of the side lobes in dB relative to the main lobe,
also as a function of the reflected angle, indicating how
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unit cell size impacts the prominence of the side lobes
during beamforming.

Fig. 14. Performance metrics of RIS array factor with
phase quantization at 26 GHz.

Fig. 15. Impact of unit cell size on RIS beam pointing
accuracy and side lobe levels at 26 GHz.

IV. CONCLUSION
In this paper, we have designed and simulated a

3-bit reconfigurable intelligent surface (RIS). The pro-
posed design incorporates a unit cell with angular reci-
procity, aiming to enhance uplink and downlink mis-
alignment. This improvement addresses the potential risk
of failure in RIS-assisted wireless communication net-
works caused by misalignment issues. It is shown that
the RIS presented in this paper achieves a comprehen-
sive phase shift range from 0◦ to 315◦, enabling eight
distinct digital states with stable 45◦ intervals. This has
been accomplished by incorporating two varactors and
enabling eight distinct phase states by changing the
applied voltage. The outcomes of this research can be

used for communication systems that rely on precise
angular sensitivity and critical phase control.
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