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Fast Direct LDL′ Solver for Method of Moments Electric Field Integral
Equation Solution
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Abstract – This paper proposes a new fast direct solver
using the block diagonalization method. In our proposed
method, the symmetric half single-level compressed
block matrix is factorized using the diagonalization
method into block diagonal and upper triangle block
LDL′ format where, due to symmetric property, L is a
transpose of L′. The far-field blocks in the upper triangle
row block are merged and compressed using Adaptive
Cross Approximation (ACA) and QR factorization. The
solution consists of solving the diagonal block matrix
and matrix-vector multiplication of the compressed row
blocks of the upper triangle matrices. Our results show
that the factorization cost and memory scales to O(N1.5)
and the solution process scales to O(N). The method
generates an efficient solution process for solving large-
scale electromagnetics problems.

Index Terms – Adaptive Cross Approximation (ACA),
Electric Field Integral Equation (EFIE), electromagnet-
ics scattering, fast direct solver, matrix compression,
Method of Moments (MoM).

I. INTRODUCTION

Method of Moments (MoM) is a well-known inte-
gral equation-based Computational Electromagnetics
(CEM) [1] method for solving complex electromagnetic
radiation and scattering problems numerically in the fre-
quency domain. Compared to differential equation-based
methods like Finite Element Method (FEM) [2] and
Finite Difference Time Domain (FDTD) [3] methods,
MoM is free from grid dispersion error and leads to a
smaller matrix size than FEM. The MoM application for
solving large-scale electromagnetics problems is limited
by dense matrix computation property with the matrix
computation and storage cost of O(N2) for N number of
unknowns. Solving the MoM dense matrix with a direct

solver leads to O(N3) computation cost and with iter-
ative solver leads to Nitr O(N2) cost for Nitr iteration
count with O(N2) matrix-vector product cost. The high
matrix computation, storage, and solution cost is miti-
gated by various matrix compression-based fast solver
algorithms proposed by various researchers. The matrix
compression for fast solvers may be of two categories:
analytical-based compression and algebraic matrix com-
pression. Examples of analytic-based compression meth-
ods are Multilevel Fast Multipole Algorithm (MLFMA)
[4], Adaptive Integral Method (AIM) [5], and pre-
corrected FFT [6]. Similarly, we have algebraic matrix
compressed methods like Adaptive Cross Approxima-
tion (ACA) [7, 8], IE-QR [9], and H-Matrix [10–12].
Analytical fast solvers are kernel-dependent, whereas
algebraic fast solvers are kernel-independent and easy
to implement. All the fast solvers work on reducing
matrix filling, solution, and storage time. Full wave
fast solver in CEM reduces matrix filling and storage
time to O(NlogN). However, the matrix solution time
depends on the method of solution and whether the algo-
rithm adopts an iterative approach or a direct approach.
For the iterative solution, the solution time scales as
Nitr O(NlogN) for O(NlogN) compressed matrix-vector
product cost. The solution of these methods relies on
the compressed matrix’s iterative solution. The iterative
solution process is a convergence-dependent method for
each matrix-vector product iteration. Furthermore, the
convergence for each iteration depends on the condition
number of the matrix computed. It is well-known that
the Electric Field Integral Equation (EFIE) [13] gives an
ill-conditioned MoM matrix. This ill-conditioning due
to the closed geometry structure can be overcome by
using a Magnetic Field Integral Equation (MFIE) [14]
and a Combined Field Integral Equation (CFIE) [15].
Also, the ill-conditioning may be due to structural geom-
etry or mesh quality. The ill-conditioning leads to a high
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iteration count when solved with an iterative solver. The
high iteration is mitigated by using various matrix pre-
conditioners [16–18]. The preconditioner computation
comes with the extra precondition computation cost and
precondition solution cost during the iterative solution
process.

Solving multiple right-hand side (RHS) electromag-
netics problems like in monostatic radar cross section
(RCS) computation or multiport microwave network sys-
tem analysis with a fast iterative solver may lead to high
solution time. The overall solution time will scale to
Nrhs Nitr O(NlogN) for Nrhs RHS. Also, for a multi-
RHS or single-RHS system, the number of unknowns
increases with the increase in simulation frequency or
geometry size. With the increase in the number of
unknowns, solving the linear system of equations with
an iterative, fast solver will lead to a further increase in
the number of iterations (Nitr) for the solution process.

The lacuna of the iterative solver for solving lin-
ear systems of equations is overcome by using direct
matrix solution methods. Direct solvers are the most
reliable method for solving any linear system of equa-
tions, with a guaranteed solution for the system. How-
ever, the high factorization and solution costs hinder the
application of direct solvers for significant electromag-
netic problems. In the past decade, there has been an
inclination among the fast solver research community
to develop direct solution-based fast solvers. MLFMA-
based analytical fast direct solvers proposed in [19, 20]
are kernel-dependent. Algebraic fast direct solvers built
upon extended matrix [21] and H2-Matrix [22] does
not scale well for significant problems. A power series-
based fast direct solver is proposed in [23, 24], where
the solution convergence depends on the matrix’s con-
dition number. Sherman-Morrison-Woodbury based fast
direct solvers [25, 26] have high factorization and solu-
tion time. A LU-based fast direct solver is proposed in
[27–29], and factorization is applied to a single-level
compressed MoM matrix. LU matrix factorization and
solutions are serial and difficult to parallelize.

This work proposes a new fast direct solver based on
the diagonalization applied on a symmetric half single-
level compressed block MoM matrix. The factorization
cost is reduced by applying low-rank block matrix opera-
tion, and the linear cost of the matrix solution is achieved
by merging the compressed far-field matrix blocks into
a single compressed matrix block. The solution process
consists of block diagonal matrix solution and matrix-
vector product of the row block compress matrices. The
paper is organized as follows: section II presents a brief
description of EFIE MoM with block matrix compres-
sion. In section III, we present the proposed block diag-
onalized fast direct solver. Section III also presents the
low-rank matrix operation performed on the compressed

matrices to reduce the factorization and solution time. In
section IV, the efficiency and accuracy of the proposed
fast direct solver is presented. Section V concludes the
paper.

II. BRIEF DESCRIPTION OF EFIE-MOM

The MoM matrix is computed for 3D surfaces using
EFIE, MFIE, or CFIE formulations. Selection of the
integral equation method is essential when solving the
matrix with a regular iterative solver. MFIE is only appli-
cable for closed-body geometries. CFIE is a combination
of EFIE and MFIE, which further increases matrix com-
putation time. For the sake of clarity, this work uses only
EFIE for MoM matrix computation to solve 3D Perfect
Electric Conductor (PEC) geometry and can be easily
extended to MFIE and CFIE. The governing equation for
EFIE is:

Etotal = Einc +Escatt , (1)
where Etotal is the total electric field equal to the sum of
the incident electric field (Einc ) and the scattered electric
field (Escatt ). Applying the boundary condition, expand-
ing current density (J(r′)) and charge density (ρ(r′))
for the electric field vector potential and scalar potential
with the RWG [30] basis functions ( fi), and performing
Galerkin testing, the elements of the MOM matrix are:

Z(i, j) =
jωμ
4π

∫∫
fi · f j

e− jk|r−r′|
r− r′

dsdt +
1

jω4πε

∫∫
∇

fi
e− jk|r−r′|

r− r′
∇ · f jdsdt. (2)

In the above equation, the MoM matrix element is
computed for the ith test jth source basis. In equation
(2), k is the wavenumber, r and r′ represent the observer
and source points, and μ and ε are the permeability and
permittivity of the background material. Integration is
performed over the RWG source and testing domains.
MoM matrix computation using equation (2) leads to a
linear system of equations. The system of equations can
be written as a combination of a near-field interaction
matrix ZN and a far-field interaction matrix ZF given by:

[ZN +ZF ]x = b. (3)
Solving equation (3) for x presents computation

time and memory limitations, which can be overcome
by applying various fast solver methods. These methods
work on the compressibility of the far-field matrix.

For the computation of a fast solver, the mesh of the
3D geometry is divided into small blocks using the mul-
tilevel binary-tree or oct-tree partition method [12]. The
fast solver is the single level when the far-field matrix
compression is carried out at the lowest level, and the
multilevel is when the matrix compression is done at all
levels. Single-level fast solver reduces matrix filling and
solution time to O(N1.5) whereas multilevel reduces the
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time complexity to O(NlogN). This work uses a single-
level compressed MoM block matrix fast solver to ease
block matrix operation. For the single-level fast solver
matrix construction, matrix compression is applied at the
lowest level of binary-tree-based 3D geometry decom-
position, and the interaction is computed for the mesh
block satisfying the admissibility condition [12]. At the
leaf level, the block interaction that does not satisfy the
admissibility condition is considered a near-field interac-
tion. Further, this work employs the re-compressed ACA
method [31] to compute a symmetric single-level com-
pressed block matrix. The compressed matrix is made
symmetric by averaging the upper diagonal and lower
diagonal values and replacing the upper diagonal and
lower diagonal values with the average value. Using
the symmetric property, we can reuse the upper diago-
nal value for matrix-vector product and matrix factoriza-
tion. Exploiting the symmetric property, we compute and
save the diagonal and upper diagonal matrix in the com-
pressed far-field and dense near-field blocks [12]. The
single-level symmetric half-compressed block matrix is
used for factorization and solution process. The formu-
lation for the new fast direct solver with reduced factor-
ization and solution time is discussed in the next section.

III. FAST DIRECT SOLVER

This section discusses the factorization and solution
process for developing a fast direct solver applied on a
single-level compressed block matrix. The matrix diago-
nalization process has previously been used to solve the
linear system of equations for sparse and dense matri-
ces [32–34]. However, these methods lead to a high
cost of factorization and solution. In our previous work
[18, 23, 24], the diagonalization of the near-field block
matrix is discussed in detail. There, the computation is
performed on the dense near-field block matrices. Due
to the dense nature of the near-field matrix, the cost of
computation and storage is kept low. Extending the diag-
onalization method to a fast solver-based full matrix is
limited by the far-field matrix blocks. In this work, we
diagonalize the full MoM compressed matrix. To under-
stand the complete implementation of the factorization
process, we will discuss the factorization process for
the whole matrix in detail. The far-field matrix opera-
tion cost is reduced by performing low-rank block matrix
operation. The method is applied to the MoM matrix to
factorize it to LDL′ format, where D is a diagonal block
matrix and L and L′ are lower and upper triangle block
matrices. The lower triangle block matrix L is the trans-
pose of the upper triangle block matrix, leading to com-
putation and memory savings. In the following subsec-
tion, details of the diagonalization process, along with
the ways to make it faster for set-up and solution matrix-
vector product, are presented.

A. Block matrix factorization

Gaussian Elimination is a well-known method for
diagonalizing dense or sparse block matrices. The
Gaussian Elimination is performed over the single-level
symmetric compressed block matrix. An asymmetric
compressed block matrix is computed for the mesh
geometry divided into mesh element clusters based on
the multilevel binary-tree division. The single-level com-
pressed block matrix near-field and far-field matrix inter-
action is computed for binary-tree mesh blocks at the
lowest level. The symmetric half-block matrix [Z] for
factorization is shown below:

[Z] =

⎡⎢⎢⎣
Z11 Z12 Z13 Z14
0 Z22 Z23 Z24
0
0

0
0

Z33
0

Z34
Z44

⎤⎥⎥⎦ . (4)

The above block matrix consists of near- and far-
field matrix blocks. The factorization process consists of
diagonalizing the above matrix by multiplying it with
the right sparse block matrix. The right scaling matrix
nullifies the row blocks of the matrix, leaving a diago-
nal block matrix. Right scaling matrix [ααα111] for first row
blocks is given as:

[ααα1] =

⎡⎢⎢⎣
I11
0
0
0

−Z−1
11 Z12
I22
0
0

−Z−1
11 Z13
0

I33
0

−Z−1
11 Z14
0
0

I44

⎤⎥⎥⎦ ,
(5)

where I11, I22 , I33 , and I44 are the identity block
matrices. Equations (4) and (5) are combined to scale the
first-row blocks of [Z] to diagonal blocks, and the system
of the equation is given as:

[Z̃
1
] =

⎡⎢⎢⎣
Z11
0
0
0

Z12
Z22
0
0

Z13
Z23
Z33
0

Z14
Z24
Z34
Z44

⎤⎥⎥⎦

×

⎡⎢⎢⎣
I11
0
0
0

−Z−1
11 Z12
I22
0
0

−Z−1
11 Z13
0

I33
0

−Z−1
11 Z14
0
0

I44

⎤⎥⎥⎦ .
(6)

Equation (6) is represented as:

[Z̃
1
] = [Z] [ααα1]. (7)

Performing the block matrix and scaling matrix mul-
tiplication in the above equation, the first-row block diag-
onalized matrix block equation is written as:[

Z̃
1]

=⎡⎢⎢⎣
Z11
0
0
0

0
Z22−Z21Z−1

11 Z12
0
0

0
Z23−Z21Z−1

11 Z13
Z33−Z31Z−1

11 Z13
0

0
Z24−Z21Z−1

11 Z14
Z34−Z31Z−1

11 Z14
Z44−Z41Z−1

11 Z14

⎤⎥⎥⎦ .
(8)
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Equation (8) gives the diagonalization of the first-
row blocks. In the above equation, using the symme-
try property, the matrix blocks Z21, Z31, and Z41 are
obtained by computing the transpose of Z12, Z13, and
Z14. So Z21 = Z′

12, Z31 = Z′
13, and Z41 = Z′

14. Like-
wise, each row block is diagonalized by computing the
row scaling matrix block and multiplying it with the row
diagonalized matrix. The final diagonalization process is
given as:

[ZD] = [αααT
3 ][ααα

T
2 ][ααα

T
1 ][Z][ααα1][ααα2]][ααα3] . (9)

Equation (9) written in diagonal form is:

[ZD] =

⎡⎢⎢⎣
Z11
0
0
0

0
Z̃22
0
0

0
0

Z̃33
0

0
0
0

Z̃44

⎤⎥⎥⎦ . (10)

In equation (10), [ZD] is the diagonal block matrix
D and [ααα1][ααα2]][ααα3] is the upper triangle block matrix U
of the LDU factorization. L is the transpose of U due to
the symmetric property of the matrix. The block diago-
nalized system of the equation is written as:

[ZD]]] [x̃] =
[
b̃
]
. (11)

Here, [b] and [x] is computed by:[
b̃
]
= [αααT

3 ][ααα
T
2 ][ααα

T
1 ][b], (12)

[x]P = [ααα1][ααα2][ααα3][x̃]. (13)
The final solution process consists of solving equa-

tion (11) and performing block matrix-vector products to
extract the solution vector in equations (12) and (13). The
matrix solution cost reduction will be discussed later.

The major cost of the above-discussed process is the
factorization process. The process includes the compu-
tation of the block scaling matrix in equation (5) and
performing block matrix operations given in equation
(8). The generalized matrix operation in equation (8) for
scaling kth row block operating on varying mth row and
nth column matrix blocks is written as:

Z̃mn= Zmn −ZmkZ−1
kk Zkn. (14)

In equation (14), for nullifying one row, there are
four major matrix operations to be performed on the
remaining matrix blocks. The matrix operations are:
matrix inversion of the diagonal block matrix [Z−1

kk ],
matrix solution for block matrix [Zkn], matrix multipli-
cation, and block matrix addition. To perform the above
operations in equation (8), matrix inversion needs to be
computed once; a matrix block solution is required for
the selected row block to be nullified. The major matrix
operations to be repeated for each block computation are
matrix multiplication and addition. When all the blocks
are dense, the operations are straightforward, but this will
lead to a high factorization cost, along with a high matrix
computation cost. In this work, we reduced the cost of
matrix computation and solution as follows.

The matrix consists of dense near-field matrix
blocks and low-rank compressed far-field matrix blocks,
as given in equation (3). The near-field dense matrix
operations are performed using equation (14). However,
to keep the computation cost low, we will perform a low-
rank block matrix operation [35] on the far-field com-
pressed form matrix. From equation (14), the low-rank
matrix operating will be required for block matrix solu-
tion for the computation of scaling matrix, block matrix
multiplication, and block matrix addition. The low-rank
matrix operations are discussed in further subsections.

1. Low-rank matrix solution
The low-rank matrix solution is computed in equa-

tion (14) for mth row and nth column block as [Z−1
kk ][Zkn],

where [Z−1
kk ] is LU factorized dense matrix and [Zkn] is a

low-rank compressed matrix of the form [U]kn[V]kn, and
[U]kn is of size u× r and [V]kn is of size r× v , for u row
size, v column size, and r rank of the block matrix such
that r′ min(m,n). Solving [Z−1

kk ] for [U]kn and multiplying
with [V]kn is equal to solving [Z−1

kk ] for [Zkn] as shown in
Fig. 1. The process saves the solution time by avoiding a
full matrix solution.

Fig. 1. Low-rank block matrix solution. The matrix oper-
ation inside the brackets is performed first to reduce the
computation cost.

2. Low-rank matrix multiplication
Low-rank matrix multiplication is computed in

equation (14) for mth row and nthcolumn block for [[[Zmk]
and [Z−1

kk Zkn]. The low-rank multiplication in this opera-
tion comes with two scenarios. First, [[[Zmk] is dense and
[Z−1

kk Zkn] is in compressed form and, second, both [[[Zmk]

and [Z−1
kk Zkn] are in compressed form.

In the first case, let us consider [[[Zmk] of size
u2 × u1 and [Z−1

kk Zkn] is in the compressed form of
[U1]u1×r1[V1]r1×v1 where u1 is row size, v1 is column
size, and r1 is the rank of the block matrix. Compressed
fast multiplication is carried out by multiplying [[[Zmk]
with [U1] and replacing it with [U1]. Multiplication cost
is reduced to u2×u1× r1. Similarly, compressed matrix
multiplication is performed when [[[Zmk] is in compressed
form and [Z−1

kk Zkn] is in dense form.
In the second case, when [[[Zmk] and [Z−1

kk Zkn] both
are in compressed form, fast matrix multiplication is
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carried out by multiplying compressed parts. Let [[[Zmk]
be the compressed form of [U1]u1×r1[V1]r1×v1 where u1
is row size, v1 is the column size, and r1 is the rank
of the matrix. Let [[[Zmk] be the compressed form of
[U2]u2×r2[V2]r2×v2 where u2 is row size, v2 is column
size, and r2 is the rank of the matrix block. Fast matrix
multiplication is carried out by multiplying [V1]r1×v1
with [U2]u2×r2 as shown in Fig. 2, leading to a block
matrix of the size r1× r2. The low-rank matrix is multi-
plied by row block [U1]u1×r1 or column block [V2]r2×v2
and replacing the row or column block.

Fig. 2. Low-rank block matrix multiplication operation.
Multiplication inside the brackets is performed first for
cost saving.

3. Low-rank matrix addition
Low-rank block matrix addition computation for

mth row is required for adding matrix blocks [Zmn]
and −[ZmkZ−1

kk Zkn] in equation (14). Converting the
compressed matrices in dense form and adding them
will lead to high cost, and adding only the respec-
tive compressed row and column blocks leads to an
incorrect reluctant matrix. Low-rank matrix operation
is performed by merging the respective column row
and column blocks and compressing them. Let [Zmn]
be of the form [U1]u1×r1[V1]r1×v1 and −[ZmkZ−1

kk Zkn]
of the form [U2]u1×r2[V2]r2×v1. Then [U1] and [U2]
is merged by column, and [V1] and [V2] is merged
by row as shown in Fig. 3. The merged matrices are
low-rank matrices and are further compressed and con-
verted into row and column blocks by following the
matrix multiplication operation discussed in the previous
step.

The low-rank matrix operation discussed above
reduces the factorization cost for the full single-level
compressed matrix. Factorization is carried out with a
row block-wise operation by replacing the existing com-
pressed and dense matrices. This process leads to mem-
ory savings with no extra storage requirements for matrix
storage. The single-level compressed and dense matrix is
replaced by a factorized compressed and dense matrix.
The solution time for the factorization can be further
reduced by merging the compressed factorized far-field
matrix blocks, which are discussed later.

Fig. 3. Low-rank block matrix row and column merging
are used to perform low-rank block matrix addition oper-
ations.

B. Fast matrix solution

The solution process includes solving the diagonal
block matrix in equation (11) and the matrix-vector prod-
uct in equations (12) and (13). The solution cost of the
diagonal block is O(N), as shown in [18], where it is
used as a preconditioner. The scaling row block matrices
[ααα1], [ααα1], and [ααα3] consist of dense near-field and com-
pressed far-field blocks and for the compressed far-field
and dense near-field matrix-vector product cost scales
to O(N1.5). The matrix-vector product cost is further
reduced by merging the far-field compressed blocks as
done in H2-Matrix computation. In the scaling matrix
block equation (6), let us suppose all matrix blocks
[−Z−1

11 Z12], [−Z−1
11 Z13], and [−Z−1

11 Z14] are in com-
pressed form and are represented as [U1]u1×r1[V1]r1×v1,
[U2]u2×r2[V2]r2×v2, and [U3]u3×r3[V3]r3×v3 of the same
row basis and size such that u1 = u2 = u3. For merging,
we follow the following steps:

1. Compute QR decomposition of the first column
block matrix. [U1]u1×r1 into [Q1]u1×r1[R1]r1×r1
where Q1 is an orthonormal matrix and R1 is an
upper triangle block matrix.

2. The first compressed row block matrix [V1]r1×v1 is
replaced with the new matrix product [R1]× [V1]

represented as
[
Ṽ1

]
r1×v1

.

3. The second matrix block [V2]r2×v2 is scaled to [Q1]

using transfer matrix computed as [Q1]
−1 [U2] . As

[Q1] is an orthonormal matrix, the solution process
will be [Q1]

′
[U2]. The transfer matrix will be of size

r1× r2 and is multiplied with [V2]r2×v2 represented

as
[
Ṽ2

]
r1×v2

.

Following the above steps, the third block compressed
row matrix [V3]r3×v3 is scaled to the first block using a

transfer matrix and is represented as
[
Ṽ3

]
r1×v3

.The con-

version process is pictorially represented in Fig. 4.
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Fig. 4. Conversion of multiple compressed far-field
blocks to a single compressed block to reduce matrix-
vector product cost.

The new scaling matrix requires storage of the col-
umn block matrix. [Q1] and row block matrices

[
Ṽ1

]
,[

Ṽ2

]
, and

[
Ṽ3

]
. The row block matrix is merged to

form a new matrix
[
Ṽnew

]
. The final compressed matrix

will be of the form [Q1]×
[
Ṽnew

]
. This reduces the

overall matrix storage and matrix-vector product cost.
Our results show the matrix-vector product cost scaled
to O(N).

C. Complexity analysis

Complexity analysis for the near field factorization
is discussed in [18]. In this section we will add the far-
field operation cost on the proposed method. The pro-
posed algorithm has two steps. First is the low rank com-
pressed single level matrix factorization using low rank
matrix operation and second is low rank matrix merg-
ing and solution using matrix-vector product. Let the low
rank matrix be of size of rank k with row and column size
n such that k << n.

Step 1. The factorization part consists of low rank matrix
solutions. The solution cost for the low rank matrix will
be reduced to kn, as the solution is carried out for com-
pressed column matrix. The solution is followed by low
rank matrix multiplication operation, where the matrix
is merged to form a matrix of size k2n which is further
compressed with complexity of k2(n+ n), retaining the
low cost of operation.

Step 2. The merging part includes transpose of the low
rank row block and multiplication. The transpose is of
O(1) complexity whereas multiplication cost is k2n. The
solution part is of low rank matrix-vector product costing
k2 (n+n).

Our experimental results for a hollow cylinder of
radius 0.25λ with varying lengths and unknowns show
that the factorization cost remains to be O(N1.5) com-

plexity and total solution time costs maintain O(N) com-
plexity. The complexity is shown in Fig. 5 for an increas-
ing number of unknowns. The cylinder is meshed with
tringles for λ /10 edge length. The binary tree division
for mesh is terminated for a block size of 10λ -15λ at the
lowest level.

Fig. 5. Block matrix factorization and upper triangle
block time using an increasing number of unknowns.

Figure 6 shows memory complexity for factoriza-
tion process with an increasing number of unknowns. It
is observed that the process gives O(N1.5) memory com-
plexity.

Fig. 6. Factorization memory with an increasing number
of unknowns.

IV. NUMERICAL RESULTS

This section demonstrates the accuracy and effi-
ciency of the proposed new fast direct solver method.
The fast direct solver is applied on a single-level sym-
metric half-compressed block matrix computed with
ACA compression tolerance of 1e-3 on 128 GB mem-
ory and an Intel (Xeon E5-2670) processor system. We
have shown the accuracy of bistatic and monostatic RCS.
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Efficiency is shown for the factorization and solution
time for different geometries compared with open source
fast direct solver code 3D EFIE ie3d code from Butter-
flyPACK [38] H-Matrix solver. All simulations were car-
ried out using a double-precision data type.

A. Bistatic RCS

The accuracy of the proposed fast direct solver is
shown for a 4λ sphere bistatic RCS. The bistatic RCS is
computed for the plane wave incident at angle θ = 0◦ and
φ = 0◦, with the observation angle varying from θ = 0◦
to 180◦ and φ = 0◦. The sphere meshes λ /10 edge length
with 82,515 unknowns. The bistatic RCS is computed
from the proposed fast direct solver ButterflyPACK and
is compared with the Mie Series analytical method.

It is observed from Fig. 7 that the bistatic RCS com-
puted from the fast direct solver matches well with the
Mie Series analytical method.

Fig. 7. Bistatic RCS for observation angle θ =
0◦ to 180◦ and φ = 0◦ with incident angle θ = 0◦ and
φ = 0◦.

Table 1 shows the factorization and solution time
and storage memory for the 4λ radius sphere from the
proposed fast direct solver and open-source Butterfly-
PACK. It can be observed that the proposed fast direct
solver is 1.3x faster than ButterflyPACK for 4λ sphere
RCS computation.

Table 1: Factorization and solution time for 4λ sphere
Fact.

Time (s)

Sol.

Time (s)

Total

Time (s)

Memory

(GB)

ButterflyPACK 26312.73 2.08 26314.81 21
Fast Direct

Solver
20129.40 2.65 20132.05 27

B. Monostatic RCS

In this sub-section, we show the accuracy and effi-
ciency of the proposed method for monostatic RCS com-

putation, a multi-RHS problem. The computations are
shown for an open and closed structure.

1. Square plate [36]
Monostatic RCS for 181 RHS is computed for the

square plate of size 3λ×3λ with plane wave incident
and observation angle varying from θ = −90◦ to 90◦
from φ = 270◦. The plate was meshed for λ /10 ele-
ment size for 6033 unknowns. The RCS is computed
using a ButterflyPACK solver and with the proposed fast
direct solver. It is observed from Fig. 8 that the proposed
method of RCS computation matches the open-source
fast direct solver, and the results are given in [36].

Fig. 8. Monostatic RCS of a square plate for a plane
wave incident and observation angle varying from θ =
−90◦ to 90◦ and φ = 270◦.

The factorization and solution time and storage
memory in Table 2 are shown for the ButterflyPACK
solver and the proposed fast direct solver for 181 RHS.

Table 2: Factorization and solution time for square plate
Fact.

Time (s)

Sol.

Time (s)

Total

Time (s)

Memory

(GB)

ButterflyPACK 26.53 9.49 36.02 0.18
Fast Direct

Solver
13.58 7.42 21.02 0.15

Table 2 shows the significant time saving for matrix
factorization time and total time with the proposed fast
direct solver. The proposed method is 1.7x faster than
ButterflyPACK.

2. NASA almond [37]
Monostatic RCS for 180 RHS is computed for the

NASA almond with the dimensions as in [35] at 7 GHz
with a VV polarized plane wave incident and observa-
tion angle varying from φ = 0◦ to 180◦ and θ ◦ = 90◦.
The CAD geometry is meshed for λ /10 element size for
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8761 unknowns. The RCS is computed using the Butter-
flyPACK solver and with the proposed fast direct solver.

Fig. 9. Monostatic RCS of NASA almond for a plane
wave incident and observation angle varying from φ =
0◦ to 180◦ and θ ◦ = 90◦.

It is observed that the proposed method of RCS com-
putation matched with the ButterflyPACK solver, and the
results are given in [37].

Table 3: Factorization and solution time for NASA
almond

Fact.

Time (s)

Sol.

Time (s)

Total

Time (s)

Memory

(GB)

ButterflyPACK 150.96 18.63 169.59 0.39
Fast Direct

Solver
47.32 18.14 65.46 0.44

Matrix factorization and solution time and storage
memory in Table 3 are shown for the ButterflyPACK
solver and proposed fast direct solver for 180 RHS. The
proposed fast direct solver is 2.5x faster than Butterfly-
PACK.

3. Ship
Monostatic RCS for 180 RHSs is computed for a

ship of size 113 m length, 14 m width, and 20 m max
height, and is computed at 80 MHz with a VV polar-
ized plane wave. The incident and observation angles
vary from φ = 0◦ to 180◦ and θ ◦ = 90◦. The geometry
is meshed for λ /10 element size for 128,028 unknowns.
RCS is computed using a multilevel ButterflyPACK
solver and with the proposed fast direct solver.

It is observed from Fig. 10 that the proposed method
of RCS computation matched with the ButterflyPACK
solver.

The factorization time, solution time, and storage
memory in Table 4 is shown for the ButterflyPACK
solver and proposed fast direct solver for 180 RHS. It

Fig. 10. Monostatic RCS of a ship-like object for a plane
wave incident and observation angle varying from φ =
0◦ to 180◦ and θ ◦ = 90◦.

Table 4: Factorization and solution time for the ship
Fact.

Time (s)

Sol.

Time (s)

Total

Time (s)

Memory

(GB)

ButterflyPACK 70694.09 772.30 71466.39 45
Fast Direct

Solver
52391.67 1024.91 53416.58 51

is observed from Table 4 that there is a significant time
saving for factorization time and total time with the pro-
posed fast direct solver, and it is 1.3x faster than the But-
terflyPACK solver.

V. CONCLUSION

The work proposed in this paper is a new fast direct
solver based on the diagonalization method with the
guaranteed solution for the MoM linear system of equa-
tions. The single-level symmetric half-compressed block
matrix is factorized into LDL′ where D is a diagonal
block matrix, and L′ is an upper triangle compressed
block matrix. The high cost of diagonalization is over-
come using a low-rank block matrix operation process.
Our results show the factorization cost scaled to O(N1.5).
The solution depends on the block diagonal matrix solu-
tion process and matrix-vector product of the upper tri-
angle D. The far-field compressed matrices in the upper
triangle blocks for each row block are merged further
to save matrix-vector product cost and storage memory.
Also, the solution process time for the proposed factor-
ization scales to O(N). In the current work, the matrix is
compressed for the error tolerance of 1e-3. The factor-
ization and solution cost can be reduced by compressing
the matrix for lower error tolerance 1e-2. The low cost
of the solution process, as demonstrated by illustrative
examples, makes it highly desirable for solving multi-
RHS problems like monostatic RCS computation or mul-
tiport network analysis. Unlike block LU factorization



NEGI, BALAKRISHNAN, RAO: FAST DIRECT LDL′ SOLVER FOR METHOD OF MOMENTS ELECTRIC FIELD INTEGRAL EQUATION SOLUTION 276

and solution process, which is highly serial in nature, in
the proposed method, the block operation can be done
independently, making the process amendable for effi-
cient parallelization for both factorization and solution.
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Abstract – Computational electromagnetics based on
surface integral equations provides accurate and effi-
cient solutions for three-dimensional electromagnetic
scattering problems in the frequency domain. In this
review paper, we first introduce a complete and detailed
theoretical analysis of the surface integral equation
method, including different properties of the correspond-
ing integral operators and equations. Using a pedagogi-
cal approach that should appeal to electrical engineers,
we provide a systematic and comprehensive derivation
of the different formulations found in the literature and
discuss their advantages and pitfalls. Additionally, we
provide a mathematical overview of the corresponding
function spaces that clarifies the importance of correctly
combining basis and testing functions and we exam-
ine the various aspects of discretization schemes, such
as the Green’s function singularity subtraction and the
application of different testing methods. Moreover, we
assess alternative formulations and discretization proce-
dures and draw particular conclusions about them, by
comparing numerous examples and results from previ-
ously published works. Finally, we provide a detailed
discussion on numerical solvers and approaches.

Index Terms – Basis function, Buffa-Christiansen
function, Calderon preconditioner, discretization,
electromagnetic scattering, fast solvers, formulation,
Green’s function, half-Rao-Wilton-Glisson function,
high-performance computing, integral equation, inte-
gral operator, low frequency breakdown, Method of
Moments, Rao-Wilton-Glisson function, singularity
subtraction, surface integral equation, testing function,
testing method, Trintinalia-Ling functions.

I. INTRODUCTION

For many decades, computational electromagnetics
has been playing a crucial role both in academia and in
industry, to investigate a plethora of phenomena [1–6].
Indeed, analytical expressions for electromagnetic scat-
tering problems exist only for objects with very specific

shapes. For scattering, Mie theory can be used only to
model analytically homogeneous, coated, or multilay-
ered spheres and infinite cylinders [7]. The treatment of
scatterers with more complex geometries requires the use
of accurate numerical techniques.

A very popular technique used for modeling scatter-
ing objects is the discrete dipole approximation (DDA),
which approximates the scatterer by a finite array of
polarizable point dipoles [8, 9], but presents enormous
computational costs for large objects [10]. Numeri-
cal techniques that are based on differential formula-
tions like the finite element method (FEM) [11–13] and
the finite-difference time-domain (FDTD) [14–16] have
sparse matrices in the final linear system, which is a sig-
nificant advantage since they can use efficient storage
and solver algorithms with better performances. Nev-
ertheless, the discretization of the whole computational
domain (including the surrounding medium) and the
existence of spurious modes represent some major con-
cerns for these approaches [17].

Volume integral equations (VIEs) use the integral
form of Maxwell’s equations [18]. Contrary to differen-
tial techniques, only the discretization of the scatterer’s
domain is needed [19]. The surrounding is not discretized
since its effect is intrinsically included in the formula-
tion. Also, VIEs can be used to model inhomogeneous
materials. However, an important disadvantage of VIEs
is that they involve densely populated matrices [20].

Surface integral equations (SIEs), are very efficient
because they only require the discretization of the scat-
terer’s surface, thus presenting a significantly smaller
number of unknowns compared to VIEs [21]. How-
ever, they are limited to piecewise homogeneous mate-
rials since they use the Green’s function of a homoge-
neous region. The SIE method is a widely used numer-
ical approach for analyzing electromagnetic scattering
in metallic, dielectric, and composite metallic-dielectric
structures [22]. SIEs can be formulated in many differ-
ent ways for the same electromagnetic problem. Thus,
one may wonder what is the best formulation to use?
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Some of the most popular SIE formulations for impen-
etrable scatterers are the electric field integral equa-
tion (EFIE), magnetic field integral equation (MFIE)
and combined-field integral equation (CFIE) [23]. For
penetrable objects the most used formulations are the
Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)
[24] and Müller [25]. In the 1970s and 1980s many
numerical approaches were introduced for solving the
aforementioned equations, initially for rotationally sym-
metric objects [23, 26, 27], and subsequently for arbi-
trarily shaped three-dimensional (3D) objects [28–30].
SIEs can be categorized into the Fredholm integral equa-
tions of the first and the second kinds [31]. EFIE and
PMCHWT equations are both of the first kind. MFIE
and Müller equations belong to the second kind. The
first kind of surface integral equations present a supe-
rior numerical accuracy compared to the second kind,
while the latter show better performance regarding iter-
ative solutions and convergence [32]. Hence, identify-
ing a specific formulation as the most optimal is not
straightforward. The main reason behind this trade-off
between accuracy and iterative solution convergence has
been proven to originate from the improper testing of the
second kind of formulations [33, 34]. Hence, in every
problem, the discretization scheme (selection of basis
and testing functions) and the SIE formulation must
be selected carefully, since the numerical accuracy and
efficiency of the solution are heavily affected by this
formulation-discretization combination.

In this review, we present the theoretical analysis
of a general electromagnetic problem that leads to dif-
ferent SIE formulations. We discuss the integral oper-
ators, the integral equations and the different formula-
tions. Moreover, we delve into the various components
of a discretization scheme, such as the singularity sub-
traction and the utilization of different basis and testing
functions, by providing also a mathematical overview of
function spaces to explain the significance of combining
basis and testing functions properly. Furthermore, we go
through several results from various published works, in
order to compare different formulations and discretiza-
tion procedures, so that we can draw specific conclu-
sions about them alone and also about their combination.
Finally, we provide a detailed discussion on numerical
solvers and approaches.

II. THEORETICAL FRAMEWORK
A. Scattering problems

Consider Fig. 1, where a scatterer is placed in a
homogeneous background. The scatterer is of arbitrary
shape and consists of piecewise homogeneous media.
Every region is a domain Ωi with a constant electric
permittivity εi and magnetic permeability μi. The time
dependence e− jωt is used throughout.

Fig. 1. Scatterer in a homogeneous background Ω1.

For each domain,

∇×∇×Ei(r)− k2
i Ei(r) = jωμiJi(r) , (1)

where ki = ω√εiμi. The Dyadic Green’s function
Gi (r,r

′) solves the equation [35]

∇×∇×Gi
(
r,r′
)− k2

i Gi
(
r,r′
)
= 1δ

(
r− r′

)
. (2)

The multiplication of (1) with Gi (r,r
′) from the

right and (2) with Ei (r) from the left gives

∇×∇×Ei(r) ·Gi
(
r,r′
)−

Ei(r) ·∇×∇×Gi
(
r,r′
)
=

jωμiJi(r) ·Gi
(
r,r′
)−Ei(r)δ

(
r− r′

)
. (3)

Integrating (3) over Ωi and using the following rela-
tion [36]

∇ ·
(
[∇×E(r)]×G

(
r,r′
)
+

E(r)× [∇×G
(
r,r′
)])

= (4)

∇×∇×E(r) ·G(r,r′)−E(r) ·∇×∇×G
(
r,r′
)
,

gives ∫
Ωi

dV ∇ ·
(
[∇×Ei(r)]×Gi

(
r,r′
)
+

Ei(r)×
[
∇×Gi

(
r,r′
)])

=

Einc
i
(
r′
)−
⎧⎨⎩

Ei (r
′) , r′ ∈ Ωi

κ (r′)Ei (r
′) , r′ ∈ ∂Ωi

0, r′ /∈ Ωi

, (5)

where

Einc
i
(
r′
)
= jωμi

∫
Ωi

dV Ji(r) ·Gi
(
r,r′
)

= jωμi

∫
Ωi

dV Gi
(
r′,r
) ·Ji(r) , (6)

is the incident electric field intensity generated by the
current density Ji(r) inside Ωi. Regarding the transpo-
sition of the Dyadic Green’s function [37], Gi (r,r

′)T =
Gi (r

′,r). Next, by using Gauss’ theorem, the following
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surface integral emerges∫
∂Ωi

dSn̂i ·
(
[∇×Ei(r)]×Gi

(
r,r′
)
+

Ei(r)×
[
∇×Gi

(
r,r′
)])

=

Einc
i
(
r′
)−
⎧⎨⎩

Ei (r
′) , r′ ∈ Ωi

κ (r′)Ei (r
′) , r′ ∈ ∂Ωi

0, r′ /∈ Ωi

, (7)

where n̂i is the unit normal vector on ∂Ωi with direc-
tion from the inside to the outside of Ωi. By using the
time-harmonic nature of the different field quantities, the
kernel of the integral becomes [37]

n̂i(r) · [∇×Ei(r)]×Gi
(
r,r′
)
=

n̂i(r)× [∇×Ei(r)] ·Gi
(
r,r′
)
=

jωμiGi
(
r′,r
) · [n̂i(r)×Hi(r)] , (8)

and with the use of[
∇×Gi

(
r,r′
)]T

=−∇×Gi
(
r′,r
)
, (9)

the second kernel term becomes

n̂i(r) ·Ei(r)×
[
∇×Gi

(
r,r′
)]

=

[n̂i(r)×Ei(r)] ·
[
∇×Gi

(
r,r′
)]

=

−[∇×Gi
(
r′,r
)] · [n̂i(r)×Ei(r)] . (10)

Finally, by introducing the surface electric and mag-
netic current densities

Js,i(r) = n̂i(r)×Hi(r) (11)
Ms,i(r) =−n̂i(r)×Ei(r) , (12)

where n̂i(r) is the unit normal vector of ∂Ωi towards the
outer side of Ωi. Equation (7) becomes [18]

ηi

[
jki

∫
∂Ωi

dS′Gi
(
r,r′
) ·Js,i

(
r′
)]

+∫
∂Ωi

dS′
[
∇′ ×Gi

(
r,r′
)] ·Ms,i

(
r′
)
=

Einc
i (r)−

⎧⎨⎩
Ei (r) , r ∈ Ωi
κ (r)Ei (r) , r ∈ ∂Ωi
0, r /∈ Ωi

, (13)

where r and r′ have been swapped. Also, κ (r) = 1 −
Ω(r)/4π , where Ω(r) is the solid angle subtended by
the observation point r [18]. For locally smooth surfaces
Ω(r) = 2π , thus κ (r) = 1/2.

A similar analysis can be applied to the case of the
magnetic field [38]. Starting from the following equation

∇×∇×Hi(r)− k2
i Hi(r) = ∇×Ji(r) . (14)

By identifying the incident magnetic field intensity
as

Hinc
i
(
r′
)
=
∫

Ωi

dV Ji(r) ·
[
∇′ ×Gi

(
r,r′
)]

=
∫

Ωi

dV Gi
(
r′,r
) · [∇×Ji(r)] , (15)

an analogous equation is derived

η−1
i

[
jki

∫
∂Ωi

dS′Gi
(
r,r′
) ·Ms,i

(
r′
)]−∫

∂Ωi

dS′
[
∇′ ×Gi

(
r,r′
)] ·Js,i

(
r′
)
=

Hinc
i (r)−

⎧⎨⎩
Hi (r) , r ∈ Ωi
κ (r)Hi (r) , r ∈ ∂Ωi
0, r /∈ Ωi

. (16)

After the solution of the above integral equations,
the currents can be used to calculate the fields at any
position r ∈ Ωi, as follows

Ei (r) = Einc
i (r)−

ηi

[
jki

∫
∂Ωi

dS′Gi
(
r,r′
) ·Js,i

(
r′
)]−∫

∂Ωi

dS′
[
∇′ ×Gi

(
r,r′
)] ·Ms,i

(
r′
)
, (17)

Hi (r) = Hinc
i (r)−

η−1
i

[
jki

∫
∂Ωi

dS′Gi
(
r,r′
) ·Ms,i

(
r′
)]

+∫
∂Ωi

dS′
[
∇′ ×Gi

(
r,r′
)] ·Js,i

(
r′
)
. (18)

B. Boundary conditions

As illustrated in Fig. 2, we assume the existence
of two domains Ω1 and Ω2 with different media, and
a boundary ∂Ω = ∂Ω1 ∩ ∂Ω2. Maxwell’s equations
require that the tangential components of the electric and
magnetic fields are continuous across the boundary ∂Ω,
as depicted in the following equations, where r ∈ ∂Ω:

n̂(r)×H1 (r) =−n̂(r)×H2 (r) , (19)
−n̂(r)×E1 (r) = n̂(r)×E2 (r) , (20)

where n̂(r) = n̂1(r) is the the unit normal vector of ∂Ω
pointing towards Ω2 and n̂2(r) = −n̂(r), as shown in
Fig. 2. Thus, when it comes to the surface electric and
magnetic current densities on ∂Ω1 and ∂Ω2, the relation
between them for r ∈ ∂Ω is

Js,1 (r) =−Js,2 (r) , (21)
Ms,1 (r) =−Ms,2 (r) . (22)

The above relations between surface current densi-
ties play a key role not only for the theoretical formula-
tion, but also for its discretization.

Fig. 2. Boundary between the domains Ω1, Ω2, and defi-
nition of the normal n̂(r).
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III. SURFACE INTEGRAL FORMULATIONS
A. Integral operators

Formally, a linear integral equation can be written
L {s}= R , (23)

where L is the integral (linear) operator, s is the
unknown quantity (the electric and magnetic surface cur-
rent densities) and R is the known quantity (the excita-
tion). The surface integral operator

L {s}(r) =
∫

∂Ω
dS′K

(
r,r′
)

s
(
r′
)

(24)

includes a kernel K (r,r′) and the integral runs over a
boundary ∂Ω of the geometry.

The linear integral operator can be categorized
according to its singularity. If the singularity order is less
than the integral’s dimension, then the operator is weakly
singular [39]. An example of such an operator is the fol-
lowing

Lw {s}(r) =
∫

∂Ω
dS′

1
|r− r′|s

(
r′
)
. (25)

In this case, as |r− r′| → 0, the kernel becomes sin-
gular. Its singularity dimension is equal to 1. However,
since we are integrating over the 2D surface ∂Ω, the
integral’s dimension is equal to 2. Thus, this is a weak
(or mild) singularity, and the integral remains finite.
Additionally, a weakly singular integral operator Lw is
bounded and maps a function to a smoother one, because
its range space is reduced by one order relative to its
original domain [40]. Furthermore, the spectrum of a
bounded operator accumulates to a constant and, in the
special case that it accumulates to zero, the integral oper-
ator is said to be compact [41]. Regarding the previously
presented example, the integral operator Lw is compact,
meaning its eigenvalues (in spectral terms) accumulate to
zero, and the operator tends to smooth the function it acts
upon. If the singularity order is equal to or larger than
the integral’s dimension, then the operator is singular
or hyper-singular, respectively. A typical hyper-singular
example arises from increasing the power of the kernel’s
denominator, as follows

Lh {s}(r) =
∫

∂Ω
dS′

1
|r− r′|3 s

(
r′
)
. (26)

In this scenario, as |r− r′| → 0, the kernel becomes
singular. However, its singularity dimension is equal to 3
and it is larger than the integral’s dimension. Operators
with (hyper-)singular kernels can lead to the appearance
of an unbounded operator, with a spectrum that tends to
go to infinity [42]. In the following sections we identify
the integral operators that appear in (13) and (16) of the
aforementioned analysis.

1. D operator

In (13) and (16) there is the linear integral operator

Di {X }(r) = jki

∫
∂Ωi

dS′Gi
(
r,r′
) ·X (r′) , (27)

where X (r) can be the surface electric current density
Js,i (r) or the surface magnetic current density Ms,i (r).
By taking into consideration that

Gi
(
r,r′
)
=

(
1+

∇∇
k2

i

)
e jki|r−r′|

4π |r− r′|

=

(
1+

∇∇
k2

i

)
Gi
(
r,r′
)
, (28)

equation (27) can lead to the following calculations

Di {X }(r) = jki

∫
∂Ωi

dS′Gi
(
r,r′
) ·X (r′)

= jki

∫
∂Ωi

dS′Gi
(
r,r′
)
X
(
r′
)− (29)

1
jki

∇
∫

∂Ωi

dS′Gi
(
r,r′
)

∇′
s ·X

(
r′
)
.

2. K operator

In (13) and (16) we can also identify the linear inte-
gral operator

Ki {X }(r) =
∫

∂Ωi

dS′
[
∇′ ×Gi

(
r,r′
)] ·X (r′) , (30)

which, with the use of equation ∇′ × Gi (r,r
′) =

∇′Gi (r,r
′)×1, can be further written as follows

Ki {X }(r) =
∫

∂Ωi

dS′
[
∇′ ×Gi

(
r,r′
)] ·X (r′)

=
∫

∂Ωi

dS′
[
∇′Gi

(
r,r′
)]×X

(
r′
)
. (31)

B. Integral equations

As mentioned in section I, two different kinds of
integral equations exist. The integral equations of the
first kind,

L1 {s}= R , (32)

and those of the second kind,

(L2 +I ){s}= R , (33)

where I {s} is the identity operator [41]. An integral
equation of the first kind has a unique solution if the lin-
ear integral operator is coercive and one-to-one [43]. For
an integral equation of the second kind, a unique solution
exists when the operator L2 +I is one-to-one and the
integral operator L2 is compact [43]. In general, an inte-
gral equation with an operator of the form L +K has a
unique solution if L +K is one-to-one, L is compact,
and K is a bounded operator with a bounded inverse
[42–44]. Hence, in order to have unique solutions, in (32)
the linear integral operator should not be compact, and in
(33) it should not be unbounded [42].

According to the calculations of the previous
sections, (13) and (16) can be rewritten on a (locally)



283 ACES JOURNAL, Vol. 40, No. 04, April 2025

smooth surface ∂Ωi as follows
ηiDi {Js,i}(r)+Ki {Ms,i}(r) =

Einc
i (r)− 1

2
Ei (r) , r ∈ ∂Ωi , (34)

−Ki {Js,i}(r)+η−1
i Di {Ms,i}(r) =

Hinc
i (r)− 1

2
Hi (r) , r ∈ ∂Ωi . (35)

The electric and magnetic fields can then be split
into components parallel and perpendicular to the bound-
ary ∂Ωi:

Ei (r) = [Ei (r)× n̂i (r)]× n̂i (r)+

[n̂i (r) ·Ei (r)] n̂i (r) , (36)
Hi (r) = [Hi (r)× n̂i (r)]× n̂i (r)+

[n̂i (r) ·Hi (r)] n̂i (r) . (37)
Using the boundary conditions and the continuity

equations leads to the following expressions for (34) and
(35):

ηiD {Js,i}(r)+K {Ms,i}(r)− 1
2

n̂i (r)×Ms,i (r)

+ j
ηi

2ki
[∇s ·Js,i (r)] n̂i (r) = Einc

i (r) , r ∈ ∂Ωi , (38)

−K {Js,i}(r)+η−1
i D {Ms,i}(r)+ 1

2
n̂i (r)×Js,i (r)

+ j
1

2ηiki
[∇s ·Ms,i (r)] n̂i (r) = Hinc

i (r) , r ∈ ∂Ωi . (39)

Equation (38) is the electric field integral equation
(EFIE) and (39) the magnetic field integral equation
(MFIE).

Formulations that use either the EFIE or the MFIE
for the solution of a scattering problem often lead to
internal resonances, which produce inaccurate results,
especially at a resonance frequency of the scatterer [45].
To avoid this major problem, different combinations of
the EFIE and MFIE have been proposed. Surface integral
equation formulations, which are free of internal reso-
nances, can thus be obtained by summing, with appro-
priate coefficients, the EFIEs and the MFIEs for all com-
putational domains, which leads to a final matrix system
of combined integral equations that are solved simulta-
neously [46]. A conventional approach to derive SIE for-
mulations involves the tangential traces of the EFIE and
MFIE representations, along with the boundary condi-
tions. Thus, two categories of SIE formulations are pro-
duced. The N-Formulations are produced by combining
the following tangential components

(N−EFIE)i : [n̂(r)× (EFIE)]∂Ωi
, (40)

(N−MFIE)i : [n̂(r)× (MFIE)]∂Ωi
, (41)

and the T-Formulations consist of
(T−EFIE) : [−n̂(r)× n̂(r)× (EFIE)]∂Ωi

, (42)

(T−MFIE) : [−n̂(r)× n̂(r)× (MFIE)]∂Ωi
, (43)

where n̂(r) is the outward unit normal vector on the
closed surface ∂Ωi.

C. N-Formulations

Consider a boundary ∂Ω between two adjacent
domains Ω� and Ωm. The selection n̂(r)= n̂� (r) is made,
where n̂� (r) is the normal unit vector of ∂Ω towards Ωm.
Then, N-EFIE and N-MFIE take the following forms in
the domains Ω� and Ωm:
(N−EFIE)�:

+η�D
n
�

{
Js,�
}
(r)+

(
K n

� +
I

2

){
Ms,�
}
(r) =

n̂(r)×Einc
� (r) , (44)

(N−EFIE)m:

−ηmDn
m
{

Js,�
}
(r)−

(
K n

m − I

2

){
Ms,�
}
(r) =

n̂(r)×Einc
m (r) , (45)

(N−MFIE)�:

−
(

K n
� +

I

2

){
Js,�
}
(r)+η−1

� Dn
�

{
Ms,�
}
(r) =

n̂(r)×Hinc
� (r) , (46)

(N−MFIE)m:

+

(
K n

m − I

2

){
Js,�
}
(r)−η−1

m Dn
m
{

Ms,�
}
(r) =

n̂(r)×Hinc
m (r) , (47)

where I is the identity operator and
Dn

i {X }(r) = n̂(r)×Di {X }(r) , (48)
K n

i {X }(r) = n̂(r)×Ki {X }(r) . (49)
Different N-Formulations can then be obtained by

combining the previous equations with different coeffi-
cients, as shown below

mN
� (N−MFIE)�+mN

m(N−MFIE)m , (50)

eN
� (N−EFIE)�+ eN

m(N−EFIE)m . (51)
The most popular formulation of this kind is mN-

Müller [47] with coefficients

mN
� =

μ�

μm +μ�
, mN

m =
μm

μm +μ�
, (52)

and
eN
� =

ε�
εm + ε�

, eN
m =

εm

εm + ε�
. (53)

The N-Müller (with coefficients: mN
� = μ�, mN

m = μm,
eN
� = ε�, eN

m = εm) [25] and mN-Müller [47] formulations
have very fast rates of convergence when iterative solvers
are used [48]. This happens because of the identity oper-
ator that appears on the diagonal of the system matrix.
Thus, these formulations present a low condition number
and fast convergence [48]. However, there are losses in
terms of accuracy with the use of divergence-conforming
basis functions of the lowest order, which will be dis-
cussed in section IVB.



MAVRIKAKIS, MARTIN: SURFACE INTEGRAL EQUATIONS IN COMPUTATIONAL ELECTROMAGNETICS: A COMPREHENSIVE OVERVIEW 284

D. T-Formulations

T-Formulations are a linear combination of the T-
EFIE (42) and the T-MFIE (43). Again, consider a
boundary ∂Ω between two adjacent domains Ω� and Ωm.
The selection n̂(r) = n̂� (r) is made, where n̂� (r) is the
normal unit vector of ∂Ω towards Ωm. Then, T-EFIE and
T-MFIE take the following forms in the domains Ω� and
Ωm:
(T−EFIE)�:

+η�D
t
�

{
Js,�
}
(r)+

(
K t

� − In

2

){
Ms,�
}
(r) =

− n̂(r)× n̂(r)×Einc
� (r) , (54)

(T−EFIE)m:

−ηmD t
m
{

Js,�
}
(r)−

(
K t

m +
In

2

){
Ms,�
}
(r) =

− n̂(r)× n̂(r)×Einc
m (r) , (55)

(T−MFIE)�:

−
(

K t
� − In

2

){
Js,�
}
(r)+η−1

� D t
�

{
Ms,�
}
(r) =

− n̂(r)× n̂(r)×Hinc
� (r) , (56)

(T−MFIE)m:

+

(
K t

m +
In

2

){
Js,�
}
(r)−η−1

m D t
m
{

Ms,�
}
(r) =

− n̂(r)× n̂(r)×Hinc
m (r) , (57)

where
D t

i {X }(r) =−n̂(r)× n̂(r)×Di {X }(r) , (58)
K t

i {X }(r) =−n̂(r)× n̂(r)×Ki {X }(r) , (59)
In = n̂×I . (60)

Different T-Formulations can then be obtained by
combining the previous equations with different coeffi-
cients, as shown below

eT
� (T−EFIE)�+ eT

m(T−EFIE)m , (61)

mT
� (T−MFIE)�+mT

m(T−MFIE)m . (62)
The most popular formulation of this kind is T-

PMCHWT [49] with coefficients
mT
� =−mT

m = eT
� =−eT

m = 1 . (63)
The T-PMCHWT [49], which is a Fredholm equa-

tion of the first kind, includes weakly singular inte-
gral operators. Hence, it presents very slow convergence
compared to other N- and T-Formulations, because of the
weak diagonal contributions in the system matrix [50].
However, its convergence can be improved by applying a
preconditioning technique. The Calderon multiplicative
preconditioner (CMP) has proved to be very effective in
that context [51, 52].

E. Combined Field Integral Equations (CFIE)

The CFIE formulations are obtained by a linear
combination of T-EFIE, N-EFIE, T-MFIE, and N-MFIE
equations, in the adjacent regions:

eN
mη−1

m (N−EFIE)m + eT
mη−1

m (T−EFIE)m+

mN
m(N−MFIE)m +mT

m(T−MFIE)m , (64)

eN
� (N−EFIE)�+ eT

� (T−EFIE)�+

mN
� η�(N−MFIE)�+mT

� η�(T−MFIE)� . (65)
However, every CFIE formulation does not lead to

accurate solutions. Setting to zero one of the coeffi-
cients in the previous equations [45] gives the follow-
ing four categories of formulations: TENE-TM (mN =
0), TE-THNH (eN = 0), TENE-NH (mT = 0), and NE-
THNH (eT = 0). For every possible combination of
mN ,mT ,eN ,eT ∈{−1,1} it has been shown that the CFIE
formulations are free of resonances and present accu-
rate solutions [53]. A different kind of CFIE formulation
is JMCFIE [54], which consists of the following set of
equations:

(JCFIE): −η−1
m (T−EFIE)m +η−1

� (T−EFIE)�+
(N−MFIE)m +(N−MFIE)� , (66)

(MCFIE): −ηm(T−MFIE)m +η�(T−MFIE)�+
(N−EFIE)m +(N−EFIE)� . (67)

This formulation has been shown to be very robust,
with fast convergence for iterative solvers, accurate far-
field representation [48], and high efficiency for the sim-
ulation of composite objects with junctions [54].

IV. DISCRETIZATION

The discretization of the surface(s) of the scat-
terer(s) is an essential step to numerically solve an elec-
tromagnetic scattering problem with the various formu-
lations presented above. Consider the simple problem of
a single scattering body that lies in a homogeneous back-
ground medium. In this case, the first step is to discretize
the body’s surface by implementing a surface triangula-
tion which will generate a mesh M with Ne edges.

To use the Method of Moments (MoM), both the
surface electric and magnetic current densities must be
expanded with basis functions to calculate them numer-
ically on each edge of M in terms of their expansion
coefficients:

Js,i =
Ne

∑
n=1

αnfn (r) , (68)

Ms,i =
Ne

∑
n=1

βnfn (r) , (69)

where fn (r) are the basis functions. Also, a testing pro-
cedure with a testing function is required, to convert the
integral equation into a matrix equation. The approach
where the same function is used as basis and for testing
is the well known Galerkin method [55]. The choice of
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the proper basis and testing functions is essential for the
implementation of the MoM, to obtain a final system that
leads to accurate solutions. Hence, a mathematical anal-
ysis regarding function spaces and integral operators is
needed to properly select the testing and basis functions.

A. Function spaces

Let us look at a scalar boundary value problem
with a solution Ψ. Sobolev considered that inside any
bounded medium, the energy should be finite, which
leads to the requirement that both Ψ and ∇Ψ should be
square integrable in a bounded domain Ω [56]. For inte-
rior problems this space is presented as H1(Ω). Thus, the
space of square integrable scalar functions in a bounded
domain Ω is defined as H0(Ω) = L2(Ω). If the domain
Ω is unbounded, then there is a local definition of the
square integrable feature in every bounded subset of Ω
[56].

We are concerned about the boundary values on
∂Ω, since the surface electric and magnetic current den-
sities are on the boundary. With the help of the trace
theorem it has been shown that the set of all bound-
ary values in H1(Ω) form the Hilbert space H1/2(∂Ω)
[57], which is smaller than L2(∂Ω). Moreover, if ∇2Ψ is
also square integrable, all the normal derivatives of func-
tions in H1(Ω) form the space H−1/2(∂Ω), which is the
dual of H1/2(∂Ω). Regarding the electromagnetic vector
fields, they belong to H1(Ω) given that every field com-
ponent is in this space.

A curl Sobolev space is defined as a space in which
functions and their curls are square integrable [58]

H(curl,Ω) =
{

f : f ∈ L2(Ω),∇× f ∈ L2(Ω)
}
. (70)

Poynting’s theorem implies that energy is bounded if
both the electric and magnetic field intensities are square
integrable over any bounded subdomain of Ω. By consid-
ering Maxwell’s equations, the energy is bounded if E,
H, ∇×E, ∇×H are square integrable in bounded sub-
domains, which means that both E, H ∈ H(curl,Ω). The
analogous divergence Sobolev space is [58]

H(div,Ω) =
{

f : f ∈ L2(Ω),∇ · f ∈ L2(Ω)
}
, (71)

which includes both the electric and magnetic flux densi-
ties: D, B ∈ H(div,Ω). In order to analyse SIEs, we need
the trace spaces that are presented below, which illustrate
the effect of applying the trace operators (−n̂× n̂×) and
(n̂×) to a function f ∈ H(curl,Ω):

−n̂× n̂× f : H(curl,Ω)−→ H−1/2(curl,∂Ω) , (72)

n̂× f : H(curl,Ω)−→ H−1/2(div,∂Ω) , (73)

where ∂Ω is the boundary of domain Ω and

H−1/2(curl,∂Ω) =

{
f :f ∈ H−1/2(∂Ω), n̂ ·∇s × f ∈ H−1/2(∂Ω)

}
, (74)

H−1/2(div,∂Ω) ={
f :f ∈ H−1/2(∂Ω),∇s · f ∈ H−1/2(∂Ω)

}
, (75)

where ∇s is the surface gradient on the boundary. The
space H−1/2(div,∂Ω), which includes both the surface
electric current density (J = n̂×H) and the surface mag-
netic current density (M = −n̂ × E), is the L2 dual of
H−1/2(curl,∂Ω) [59].

B. Basis functions

In general, the continuity equations for both the sur-
face electric and magnetic current densities impose a
physical requirement on the basis function, which should
be able to represent properly the quantities ∇s · Js and
∇s ·Ms, that are related to the surface electric (ρe,s) and
magnetic (ρm,s) charge densities (multiplied with the fac-
tor jω). Thus, a good representation of both current
densities requires the use of a divergence-conforming
basis function. The mathematical approach of the previ-
ous section showed that the electric and magnetic current
densities belong to H−1/2(div,∂Ω), which confirms that
basis functions have to be divergence-conforming. The
two most popular functions of this category are the Rao-
Wilton-Glisson (RWG) and the quasi-curl-conforming
Buffa-Christiansen (BC) functions that will be described
next.

1. Rao-Wilton-Glisson (RWG)

The most common basis function is the RWG [60],
which is the lowest order divergence-conforming func-
tion. Consider a triangular mesh M on a surface; a RWG
function fn (r) is defined in Fig. 3 for every pair of adja-
cent triangles T+ and T− with a common edge �n. The
analytical expression for RWG is given by

fn (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+

�n

2A+
(r−p+) , r ∈ T+

− �n

2A− (r−p−) , r ∈ T−

0, otherwise

, (76)

where p+ and p− are the vertices of the two triangles T+

and T−, opposed to their common edge �n. Also, �n is
the length of the common edge and A+ and A− are the
areas of T+ and T−.

A main feature of RWG is that there is no normal
component of the surface current density along the sur-
rounding line boundary of the pair T+, T−, which means
that line charges do not exist on it. Also, the component
of the surface current density that is normal to the com-
mon edge �n is constant and continuous across �n. Fur-
thermore, the surface charge density is constant in each
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triangular element, since

∇s · fn (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+

�n

A+
, r ∈ T+

− �n

A−, r ∈ T−

0, otherwise

, (77)

with the total charge on each pair accumulating to zero.

Fig. 3. RWG function on a pair of adjacent triangles.

2. Half-RWG

The half-RWG basis function is a modified version
of its original counterpart and is defined only in a sin-
gle triangle of mesh M [61], as shown in Fig. 4. Every
edge �n ∈M has an arbitrarily generated direction. How-
ever, this direction is fixed, so the edge vector ���n of each
edge is constant. Also, the reference normal unit vector
n̂re f points towards the direction that is the result of the
counterclockwise rotation of the triangle’s vertices (their
order is initially defined once for each triangle). The half-
RWG function associated with an edge �n of a mesh tri-
angle T with area A is defined as

hn (r) =

⎧⎨⎩ ± �n

2A
(r−p) , r ∈ T

0, otherwise
, (78)

where p is the vertex of T across �n. The sign of hn (r) in
each of the problem’s domains Ωi is different for oppo-
site sides of the boundary between two adjacent domains.
Hence, if Ω� and Ωm have a common boundary, then
hn,� (r)=−hn,m (r). This means that the boundary condi-
tions regarding the surface electric and magnetic current
densities are satisfied by half-RWG, when using the same
expansion coefficients. As a result, some signs in the
formulations that were previously presented will change
with the use of this function. By employing the continu-
ity of the original RWG-functions, the cumulative RWG
function is defined as

fn (r) = ∑
{k:�k=�n}

hk (r) , (79)

where fn (r) refers to an edge �n and hk (r) refers to a
half-RWG basis function that borders �n.

Fig. 4. Half-RWG function defined on a single mesh tri-
angle.

3. Buffa-Christiansen (BC)

Another divergence-conforming and quasi-curl-
conforming basis function is the BC function, which is
defined on a barycentric refinement Mb of the original
triangular mesh M [62]. Essentially, it is a linear com-
bination of a set of RWG functions which are defined on
Mb. However, a BC function is associated with an edge
of the original mesh M .

Consider a reference edge �n on the original mesh
M . The barycentric refinement Mb is presented in Fig.
5. Around the right and left vertices of the reference edge
there are Nc = 4 and N∗

c = 5 triangles, respectively, that
belong to M . In Fig. 5 the plus (+) and minus (−) signs
show the appropriate direction of the numbered RWG
functions (or half-RWG for open surfaces) on the new
edges of Mb. The linear combination of these functions,
with appropriate signs and coefficients, synthesizes the
BC basis function of the reference edge. The aforemen-
tioned coefficients are defined as follows [51],

ci =

⎧⎪⎪⎨⎪⎪⎩
1

2l0
, i = 0

Nc − i
2liNc

, i = 1, ...,2Nc −1
, (80)
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Fig. 5. Barycentically refined mesh Mb.
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ci∗ =

⎧⎪⎪⎨⎪⎪⎩
− 1

2l0∗
, i∗ = 0

−N∗
c − i∗

2li∗N∗
c
, i∗ = 1∗, ...,2N∗

c −1 .
(81)

The form of the BC for the reference edge �n is shown in
Fig. 6.

Fig. 6. Buffa-Christiansen basis function.

The BC functions present however a significant
drawback regarding the representation of the surface
charge density since they model the surface charge den-
sity as a constant function around the vertices of the orig-
inal mesh M [42]. The RWG functions present constant
surface charge density inside the triangular elements, as
mentioned in the previous section. Hence, the latter are
more appropriate for modeling discontinuous and singu-
lar surface charge density near sharp corners [63].

4. Trintinalia-Ling (TL)

The TL basis function [64], also called linear-linear
(LL) basis function [65], can be perceived as a decom-
position of the RWG basis function. Indeed, consider
a triangular mesh M on a surface; the first and the
second kind of LL functions are defined for every pair

fLL,1
n (r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�n

4(A+)2 (r− r1) · [(r4 − r1)× n̂(r)] (r3 − r1) , r ∈ T+

�n

4(A−)2 (r− r2) · [(r4 − r2)× n̂(r)] (r3 − r2) , r ∈ T−

0, otherwise

(82)

fLL,2
n (r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�n

4(A+)2 (r1 − r) · [(r3 − r1)× n̂(r)] (r4 − r1) , r ∈ T+

�n

4(A−)2 (r2 − r) · [(r3 − r2)× n̂(r)] (r4 − r2) , r ∈ T−

0, otherwise

(83)

of adjacent triangles T+ and T− with a common edge
�n, as shown below. Figures 7 and 8 show the form of
both kinds of LL basis functions. The grayscale gradient
inside the triangles illustrates the magnitude of the basis
function. The analytical formulas of the first and second
kinds of LL basis functions are given by (82) and (83),
where �n is the length of the common edge and A+ and
A− are the areas of T+ and T−.

For both kinds of LL functions, the spatial distribu-
tion is parallel to the surrounding edges where the mag-
nitude of the basis function is nonzero (non-white color

Fig. 7. First kind of LL basis function.

Fig. 8. Second kind of LL basis function.
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in Figs. 7 and 8). Also, it varies linearly along those
edges (maximum at the intersection with the reference
edge �n). What is more, it is zero next to the surrounding
edges where the magnitude of the basis function is zero
(white color). Lastly, it exhibits a linear variation on the
reference edge �n for both perpendicular and tangential
directions.

As mentioned at the beginning of this section, LL
functions are the decomposition of the RWG function,
more specifically,

fRWG
n (r) = fLL,1

n (r)+ fLL,2
n (r) . (84)

The surface divergence of these functions, which is pro-
portional to the charge surface density, is expressed by

∇s · fLL,1
n (r) = ∇s · fLL,2

n (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+

�n

2A+
, r ∈ T+

− �n

2A−, r ∈ T−

0, otherwise

,

(85)
which is constant and the half of the surface divergence
of the RWG function. From the last equation, we can see
that the divergence of the LL functions is finite and com-
prehend that they are divergence-conforming.

C. Testing functions

As mentioned previously, a testing procedure with a
function is required to convert the surface integral equa-
tion into a matrix equation. In this sense, the proper
testing functions have to be selected for the MoM imple-
mentation, such that the final system leads to accurate
solutions. In order to understand this, the mapping prop-
erties of surface integral operators have to be examined.
Consider the following finite element spaces:

RM =
{

RWG j
}Ne

j=1 , (86)

Rn
M =

{
n̂×RWG j

}Ne
j=1 , (87)

BM =
{

BC j
}Ne

j=1 , (88)

Bn
M =

{
n̂×BC j

}Ne
j=1 , (89)

where M is the original mesh and Ne is the number of
edges in M . Regarding the previously presented formu-
lations, the mapping properties of the discretized integral
operators for RWG functions are [34]

Dn : RM −→ BM , (90)
D t : RM −→ Bn

M , (91)(
K n ± I

2

)
: RM −→ RM , (92)(

K t ± In

2

)
: RM −→ Rn

M . (93)

As far as BC functions are concerned, the analogous
mapping properties are the following [66]

Dn : BM −→ RM , (94)
D t : BM −→ Rn

M , (95)(
K n ± I

2

)
: BM −→ BM , (96)(

K t ± In

2

)
: BM −→ Bn

M . (97)

Regarding the above spaces, the n̂×RWG function space
is not an L2 dual of the RWG space, but the n̂ × BC
function space is [34]. The same goes for the n̂×RWG
and BC function spaces. In each formulation, the integral
operators that provide the main contributions to the final
matrix system (elements around the diagonal) have to be
well tested. It has been shown that testing the surface
integral operators with the dual of their range space leads
to the most accurate results [66]. Thus, the basis func-
tion that is used to expand the main contributing integral
operators will determine the choice of the testing func-
tion, as will be presented in section VB.

D. Singularity subtraction

The use of SIEs with the MoM produces singular
integrals with weakly- or hyper-singular surface integral
operators. These singularities appear when the basis and
testing functions belong to the same triangular element
or to adjacent triangles that share an edge or a vertex.
The reason for these singularities is the denominator of
Green’s function, that goes to zero as R = |r− r′| = 0,
when r= r′. The solution to this problem can be given by
the application of a singularity subtraction method [67].

In order to implement the method, the Green’s func-
tion in a domain Ωi has to be expanded in a Taylor series,
as follows,

Gi
(
r,r′
)
=

1
4π

(
1
R
+ jki − k2

i R
2

+
jk2

i R2

6
− ...

)
, (98)

where the odd terms are the singular ones (q =
−1,1,3, ...). In this sense, Green’s function can be
divided into a free of singularities smooth part and a sin-
gular part, hence

Gi
(
r,r′
)
= Gs

i
(
r,r′
)
+Ti
(
r,r′
)
, (99)

where

Gs
i
(
r,r′
)
=

e jkiR

4πR
− 1

4πR
+

k2
i R

8π
, (100)

Ti
(
r,r′
)
=

1
4πR

− k2
i R

8π
. (101)

Thus, the smooth part Gs
i (r,r

′) can be accurately inte-
grated numerically and the singular part Ti (r,r

′) can
be integrated semi-analytically with the help of closed-
form relations. In Fig. 9 we present the normalized val-
ues of the real part of the scalar Green’s function, the
real part of the smoothed term Gs

i (r,r
′) and the singular

term Ti (r,r
′) as a function of the electrical distance kiR.
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The subtraction of the first odd term would be enough
for making the smooth part non-singular, but in this case
Green’s function would have a discontinuous derivative
at R= 0. Also, the term kiR is small for the case of singu-
larities so the first and the second odd terms are enough
for the definition of Gs

i (r,r
′), since odd terms of higher

orders diminish rapidly for small values of kiR [68].

0 5 10 15 20
-0.5

0

0.5

Fig. 9. Graphical representation of singularity subtrac-
tion.

The integrals that occur from the implementation of
the singularity subtraction method are the following

Iq
1 =
∫

∂Ωi

dS [∇ · fm (r)]
∫

∂Ωi

dS′Rq∇′ · fn
(
r′
)
, (102)

Iq
2 =
∫

∂Ωi

dSfm (r) ·
∫

∂Ωi

dS′Rqfn
(
r′
)
, (103)

Iq
3 =
∫

∂Ωi

dSfm (r) ·
∫

∂Ωi

dS′
(
∇′Rq)× fn

(
r′
)
, (104)

where fm (r) is the testing function, fn (r) is the basis
function and q = −1,1. The aforementioned integrals
are solved semi-analytically, which means that the inner
integrals are solved analytically for arbitrary r, with
closed-form expressions, and the outer integrals are
solved numerically. The closed-form relations for the
inner integrals can be found in [68].

V. FORMULATION AND DISCRETIZATION
COMPARISONS

The previous considerations highlight the need to
discuss in the following sections many different aspects
of SIE methods, including the comparison between dif-
ferent formulations, as well as different basis and testing
functions.

A. Comparison of different formulations

In this section, we compare the different SIE formu-
lations – namely mN-Müller, T-PMCHWT and JMCFIE
– for the case of a spherical gold nanostructure with a

radius r = 100 nm in an air background, which presents
the advantage that the analytical Mie solution can be con-
sidered as reference. A detailed discussion of the results
for this case, as well as for some more general shape scat-
terers, can be found in [70]. We assume that the incident
plane wave is propagating along the z-axis and has lin-
ear polarization towards the x-axis. The wavelength is
λ = 550 nm (monochromatic results, such as the bistatic
scattering cross section in Fig. 10) and the following
figures were obtained with RWG basis functions and the
Galerkin method.

Fig. 10. Bistatic scattering cross section of a gold sphere
(r = 100 nm) for three mesh densities with (a) Ne = 228,
(b) Ne = 888, (c) Ne = 2700 number of edges and (d)
extinction Cext spectrum obtained by the T-PMCHWT
for the three meshes compared to the Mie solution.
Adapted with permission from [70] © Optica Publish-
ing Group.

It is expected that, as the number of unknowns
increases, the different formulations tend to approximate
better the Mie solution. However, T-PMCHWT seems
to be closer to the Mie solution than other formulations
for a smaller number of unknowns, see Fig. 10 (a). The
very good matching of this formulation with the analyt-
ical solution is explained in Fig. 10 (d), where the spec-
trum of the sphere’s extinction cross section Cext , which
is extracted via T-PMCHWT, is compared to the Mie the-
ory solution.

As shown in Fig. 11 (b), all three formulations
present the same level of accuracy in the near-field zone,
where the tangential component of the scattered electric
field intensity (on the sphere) is considered for the error
extraction. However, in the far-zone, where Cext is taken
into account for error calculations, JMCFIE performs
the best, followed by T-PMCHWT. The mN-Müller
presents the highest error of the three, see Fig. 11 (a).
In [73] the strong material dependencies of conventional
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Table 1: Comparison of different formulations
Set of Formulations Test Function Basis Function Reference

T-PMCHWT, CTF, ICTF RWG RWG [69]
T-PMCHWT, mN-Müller, JMCFIE, NFM, DDA RWG RWG [70]

T-PMCHWT, N-Müller, CTF, CNF, JMCFIE RWG RWG [71]
T-PMCHWT, CTF, CNF, N-Müller, mN-Müller, JMCFIE RWG RWG [48]
T-PMCHWT, CTF, CNF, N-Müller, mN-Müller, JMCFIE TL TL [48]

T-PMCHWT, N-Müller, T-Müller RWG RWG [47]
T-PMCHWT, CTF, CNF, N-Müller, T-PMCHWT (CMP) RWG RWG [72]

formulations, such as the normal and scaled forms of T-
PMCHWT, CTF, JMCFIE and others, are examined and
their performances for different plasmonic nanostructure
problems are presented. In Table 1 we present some of
the papers that examine and compare different formula-
tions of the SIE method, including some that were not
discussed before; the combined tangential formulation
(CTF), the improved combined tangential formulation
(ICTF), the null field method (NFM) and the combined
normal formulation (CNF), while CMP in the last row of
Table 1 stands for Calderon multiplicative preconditioner
[51, 52].

Fig. 11. Error in (a) the far zone ξ f and (b) the near
zone ξn of a gold sphere (r = 100 nm) obtained with the
mN-Müller, T-PMCHWT, and JMCFIE formulations as
a function of the number of mesh edges Ne. Adapted with
permission from [70] © Optica Publishing Group.

B. Basis and testing functions comparisons

As mentioned in section IVC, the use of the dual
of the range of integral operators for testing leads to
more accurate results. For the integral equations of the
first kind, like EFIE and T-PMCHWT, this is identi-
cal with Galerkin’s method, but for the integral equa-
tions of the second kind, like MFIE and mN-Müller, this
leads the use of the Petrov–Galerkin method with appro-
priate curl-conforming testing functions. Moreover, the
use of hybrid meshes introduces additional complex-
ity and intriguing capabilities, while it also affects the
condition number of the final system and the total
simulation time, as shown in [74]. In [66] there is
a very detailed examination of many different formu-
lations, discretization schemes and problems, but we

Fig. 12. RMS error of the bistatic RCS in the E-plane
computed with the T-PMCHWT formulation. Dielectric
sphere with k0a = 1 and εr = 4, μr = 1. Adapted with
permission from [66] © John Wiley & Sons.

Table 2: T-PMCHWT test & basis function pairs
Method J M EFIE MFIE

Dual (RR) RWG RWG RWG RWG
Dual (BB) BC BC BC BC
Dual (RB) RWG BC RWG BC
Dual (BR) BC RWG BC RWG

will focus mostly on the cases of T-PMCHWT and
N-Müller.

In Fig. 12, the fact that the dual of the range of inte-
gral operators is better for testing in terms of accuracy is
confirmed, while Table 2 presents all the different cases
of dual testing for the T-PMCHWT formulation. Figure
12 shows that, for the T-PMCHWT formulation, when
both RWG and BC are used as basis functions in a mixed
discretization scheme (i.e. the cases Dual (RB) and Dual
(BR) in the last two rows of Table 2), the results are
worse than the Galerkin method with RWG functions as
both testing and basis functions.

For the mN-Müller formulation, the reference Table
3 presents all the different cases of dual testing. Figure 13
presents similar results, but for the case of a mN-Müller
formulation. In the case of the sphere, which is a smooth
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Table 3: mN-Müller test & basis function pairs
Method J M MFIE EFIE

Dual (RR) RWG RWG n×BC n×BC
Dual (BB) BC BC n×RWG n×RWG
Dual (RB) RWG BC n×BC n×RWG
Dual (BR) BC RWG n×RWG n×BC

Fig. 13. RMS error of the bistatic RCS in the E-plane
computed with the mN-Müller formulation. Dielectric
sphere with k0a = 1 and εr = 4, μr = 1. Adapted with
permission from [66] © John Wiley & Sons.

object, the mN-Müller gives a more accurate solution,
compared to the results of the T-PMCHWT formulation,
when the Dual(RB) mixed discretization scheme is used.
However, for objects that are not smooth, such as cubes
and prisms, the T-PMCHWT formulation is more accu-
rate than the mN-Müller formulation. Lastly, a compre-
hensive comparison of different discretization schemes,

Table 4: Comparison of different discretization schemes
Formulations Test & Basis Functions Pairs References

MFIE (RWG, RWG) and (n̂×RWG, n̂×RWG) [75]
MFIE (RWG, RWG), (n̂×RWG, n̂×RWG), and [76, 77]

(monopolar RWG, monopolar RWG)
MFIE (LL, LL) and (RWG, RWG) [65, 78]

PMCHWT (n̂×RWG, RWG) [41]
Müller (RWG, RWG) and (n̂×BC, RWG) [41]

N-Müller (RWG, RWG) and (n̂×BC, RWG) [32]
EFIE (RWG, RWG) and (BC, BC) [66]
MFIE (n̂×BC, RWG) and (n̂×RWG, BC) [66]

PMCHWT (RWG, RWG), (BC, BC), (Mixed RWG-BC, Mixed RWG-BC), and [66]
(Mixed BC-RWG, Mixed BC-RWG)

mN-Müller (n̂×BC, RWG), (Mixed n̂×BC-n̂×RWG, Mixed RWG-BC), [66]
(n̂×RWG, BC), and (Mixed n̂×RWG-n̂×BC, Mixed BC-RWG)

MFIE, CFIE Higher order test & basis functions [79]
mN-Müller, JMCFIE Higher order test & basis functions [79]

including the various test and basis function pairings
used in common formulations, is presented in Table 4.

VI. NUMERICAL SOLVERS AND
APPROACHES

As mentioned in previous sections, integral equa-
tions are converted into the final linear system with the
aid of a set of testing and basis functions. However, a sig-
nificant challenge in SIE methods has been the appear-
ance of large dense matrices after the discretization of
complex real-life electromagnetic scattering problems.
In the 1980s, the capabilities of MoM solvers were illus-
trated in [80], which highlighted that the largest prob-
lem solvable via direct lower–upper (LU) factorization
within an hour was still relatively modest in size. The
general consensus at the time was that MoM would not
be a viable approach for real-world scattering scenarios
due to its high computational cost and limited scalabil-
ity, since it scaled as O(N2) in terms of memory con-
sumption while having a complexity of O(N3) for direct
solvers. In terms of iterative solvers, the dense matrix
equations involving O(N) unknowns can be addressed
via a Krylov-subspace algorithm, such as the general-
ized minimum residual (GMRES), conjugate gradient
(CG), and bi-conjugate stabilized (BiCGStab) [81], but
the aforementioned bottlenecks make their application
to large-scale models impractical. Another key challenge
of the SIE method is that some formulations (e.g. the
EFIE and PMCHWT) belong to the first kind of inte-
gral equations. As a result, the final linear systems tend
to be ill-conditioned, prompting the need for additional
techniques, such as regularization or specialized pre-
conditioning, to ensure that the resulting matrices are
well-conditioned and can be solved efficiently. Also,
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an ill-conditioned final matrix system can occur when
SIEs are used for low frequency simulations. However,
the advancement of the Calderon preconditioner, along
with the development of various numerical approaches
for both direct [82] and iterative solvers [83, 84], and par-
ticularly the implementation of fast solvers, have helped
mitigate these difficulties.

A. Low frequency breakdown

When the SIE method is used for electrically small
yet complex geometries or with very dense discretiza-
tions, a recurring challenge known as the low frequency
breakdown problem arises. This issue has been exten-
sively analyzed in [85, 86]. One common strategy for
handling the low-frequency regime, while preserving the
correct physical behavior, is to employ loop-tree or loop-
star basis functions combined with a suitable frequency
normalization approach. Nevertheless, fast methods like
the multi-level fast multipole algorithm (MLFMA) typi-
cally fail when the frequency is very low [87].

Even with loop-tree or loop-star basis functions,
iterative solvers may still experience high iteration
counts. The root cause is linked to the divergence prop-
erties of the RWG basis, which are not ideal for accu-
rately representing charges at low frequencies [88]. To
address this, a basis-rearrangement scheme was intro-
duced in [88, 89]. Reshaping the way the basis func-
tions are assembled substantially enhances the eigen-
value spectrum of the final system matrix and reduces
notably the iteration count.

B. Calderon preconditioner

Calderon preconditioning is a regularization tech-
nique for SIEs [40, 51, 52, 90]. This approach utilizes the
self-regularization property of the electric-field integral
operator (EFIO), commonly referred to as the Calderon
integral identity [56], which can be written as:

(Dn)2 =−1
4
I +(K n)2 , (105)

where the notation of the previous sections is followed
for the integral operators. The subscript i is missing,
since for the final system to be formed, a summation
over all domains has been executed. This identity demon-
strates that when the EFIO (Dn) is multiplied by itself,
the resulting operator is better conditioned, particularly
on sufficiently smooth surfaces where it approximates
the summation of a compact and an identity operator.
When the CMP (which was called Calderon multiplica-
tive preconditioner in previous sections) is applied with
the RWG and Buffa-Christiansen functions, it not only
mitigates the ill-conditioning of the EFIO, but also main-
tains the solution accuracy [51].

Mathematically, the operator (Dn)2 establishes the
mapping:

(Dn)2 : H−1/2(div,∂Ω)→ H−1/2(div,∂Ω) , (106)

hence the application of the Calderon multiplicative pre-
conditioner on the EFIE (CMP-EFIE) leads to a range
space that is identical with that of the MFIE. This equiv-
alence allows them to be effectively combined into a
CFIE, which is inherently better conditioned than its
non-preconditioned counterpart. However, the resulting
CFIE system is not a resonance-free formulation, as the
CMP-EFIE and the MFIE share the same resonances
[91]. Lastly, Calderon preconditioning has also been
extended for the PMCHWT formulation in the case of
homogeneous isotropic [92] and chiral objects [93].

C. Iterative fast solvers

Iterative solutions require matrix-vector multiplica-
tions (MVMs), thus the development of a fast algo-
rithm to solve the MoM equation requires the combi-
nation of an iterative method with a fast approach to
compute the MVMs. Over the last few decades, a vari-
ety of fast solvers have been developed to overcome
the high computational and memory costs traditionally
associated with the MoM solution of SIEs. In general,
fast algorithms broadly fall into two categories: kernel-
dependent, which are influenced by the specific prop-
erties of the underlying Green’s function, and kernel-
independent, which leverage low-rank representations of
system sub-blocks without requiring explicit knowledge
of the integral operator’s closed-form expansions.

One of the most impactful kernel-dependent solvers
is the multilevel fast multipole method (MLFMM) [4,
94], which is an extension of the fast multipole method
(FMM) [95, 96]. As presented in [97], in order to
implement the MLFMM, the entire scatterer is initially
enclosed within a large auxiliary cubic box, which is
then divided into eight smaller cubes. This domain sub-
division process continues recursively until the small-
est cubes have an edge length that is comparable to
the wavelength (≈ λ/2). Each cube at every level of
this process is assigned an index. At the finest level,
the cube containing each basis function is identified
by comparing the coordinates of the basis function’s
center with the cube’s center. Additionally, nonempty
cubes are identified through a sorting process, and only
these cubes are stored using a tree-structured data for-
mat [97]. Hence, the method organizes the interac-
tions of basis-testing functions into a tree structure with
multiple levels of hierarchically defined groups (clus-
tering) of varying fineness, by utilizing the analytical
expansion of Green’s function and addition theorem
[98]. Short-range (near-field) interactions are calculated
directly and stored in memory, while long-range (far-
field) interactions are performed efficiently using the fac-
torization/diagonalization of the Green’s function, thus
reducing both the memory requirement and computa-
tional time complexity (MVM speed) to approximately
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O(N logN) for 3D electromagnetic scattering problems
[98]. The introduction of this method marked a signif-
icant shift in computational electromagnetics, allowing
MoM to tackle very large problems in terms of electrical
size, while retaining its accuracy. The approach is widely
parallelized in practice [99–101], making it one of the
leading techniques for real-world large-scale modeling.

Another group of kernel-dependent solvers con-
sists of the grid- or fast Fourier transform (FFT)-based
techniques. The latter leverage the translation invari-
ance of the kernel function, which can reduce the mem-
ory requirement and central processing unit (CPU) time
complexity of 3D problems. Two of the most popular
methods of this group are the pre-corrected FFT (p-
FFT) and adaptive integral method (AIM), which typi-
cally achieve O(N1.5) for storage and O(N1.5 logN) for
MVM. More specifically, both methods rely on an equiv-
alent source approximation. As described in [102], the
acceleration of computations with the application of FFT
requires the entire scatterer to be enclosed within an
auxiliary rectangular domain. Afterwards, this auxiliary
domain is recursively divided into a uniform Cartesian
grid, ensuring that each small cube contains at most a
few discretization elements. To perform the MVM with
FFT, the original basis functions are mapped onto the
Cartesian grid, which is achieved through basis trans-
formation. Additionally, a fast high-order algorithm for
solving surface scattering problems, utilizing a two-face
equivalent source approximation, is presented in [103].
This method achieves computational complexities rang-
ing from O(N6/5 logN) to O(N4/3 logN), by strategi-
cally positioning equivalent sources solely on the faces
of cubic cells. In [104], the Sparse-Matrix/Canonical-
Grid (SM/CG) technique is presented. Unlike the pre-
viously discussed approaches, it does not make use of
equivalent sources; instead, it applies a Taylor series
expansion of the Green’s function on a regularly spaced
canonical grid. The system matrix is then handled via
an FFT-driven iterative scheme, where the number of
Taylor expansion terms dictates the procedure. How-
ever, the SM/CG method demands detailed knowledge
of the integral kernel, while its memory complexity
scales as O(N1.5). In [105], the Quadrature Sampled Pre-
Corrected Fast-Fourier Transform (QS-PCFFT) method
was introduced. This approach projects the unknown
currents onto a uniform grid and computes the discrete
Fourier transform of the current directly by means of a
discontinuous FFT, employing quadrature sampling for
the currents. As a result, it achieves adjustable accuracy
and exponential convergence. Furthermore, the Green’s
function interpolation combined with the FFT algorithm
(GIFFT) [106] was developed to handle arrays of arbi-
trary shape. In GIFFT, an array mask function identifies
array boundaries and determines where the Green’s func-

tion should be interpolated. The MVMs in the iterative
solver are then accelerated via FFT, reducing both stor-
age requirements and overall solution time. Nonetheless,
for SIEs, none of the aforementioned FFT-based tech-
niques achieves asymptotically better performance than
MLFMM. Finally, most iterative methods are sensitive
to the condition number of matrix systems, and the num-
ber of iterations needed to reach the desired accuracy
varies depending on the problem. Even though precon-
ditioning techniques and domain decomposition meth-
ods have been developed to address many of these chal-
lenges, convergence remains not entirely predictable.

D. Direct fast solvers

In parallel, direct fast solvers utilizing hierarchi-
cal matrices (H-matrices) and matrix compression tech-
niques have introduced kernel-independent algebraic
methods. The latter rely on the observation that well-
separated sub-blocks of the dense system matrix exhibit
numerical rank deficiency. Algorithms such as the adap-
tive cross approximation (ACA) [107] compress these
sub-blocks without requiring explicit expansions of the
integral kernel.

The research of fast direct solvers for SIEs seek to
address the drawbacks highlighted earlier. There are a
number of fundamental studies that have laid the ground-
work for direct solution techniques [108–111], many of
which have since influenced advances in computational
electromagnetics.

As presented in [82], early investigations include the
IES3 algorithm [112], direct treatments for 2D slender
scatterers [113], and a compressed block decomposition
(CBD) algorithm for capacitance extraction that com-
bines matrix decomposition with singular value decom-
position (SVD) [114]. Furthermore, an application of a
multilevel nonuniform grid (MLNG) approach for direct
inversion of the EFIE was presented some years ago in
[115].

Meanwhile, the concept of H-matrices [116, 117],
which systematically apply low-rank compression to
well-separated matrix subgroups, has become a recog-
nized framework for hierarchical direct solvers. Since
this approach relies on certain smoothness criteria for
the integral kernel, it typically applies to mid- and low-
frequency regimes in electromagnetics, where the oscil-
latory nature of the kernel is less pronounced [118].
However, numerous implementations have adopted vari-
ous H-matrix techniques [119–121]. Additional compar-
isons between multilevel block inversion and multilevel
LU decomposition have also been made [122]. Another
line of research incorporates the butterfly algorithm with
randomized compression, achieving O(N log2 N) scaling
and supporting large-scale 3D SIE simulations for PEC
[123]. For penetrable scatterers, a quasi-block-Cholesky
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(QBC) approach that investigates the checkerboard sym-
metry pattern in the PMCHWT system matrix was pro-
posed in [124], while a butterfly-based multilevel matrix
decomposition algorithm (MLMDA) for homogeneous
penetrable objects was presented in [125]. Finally, in
[82] a more detailed discussion on works that are based
on the following matrix structures is provided: hierar-
chical off-diagonal low-rank (HODLR), hierarchically
semiseparable (HSS), and H2 matrices.

E. Higher order methods

Another development in integral equation methods
has been the use of higher order isoparametric elements
[126, 127]. Recently, it was shown that hybrid discretiza-
tion schemes can affect the condition number of the final
matrix system and the efficiency of the solution pro-
cedure [74]. This insight further reinforces the idea of
using higher order techniques to improve the numeri-
cal behavior of SIEs. In many electromagnetic radiation
and scattering problems, the primary source of numerical
error often arises from inaccuracies in geometric model-
ing [87]. The use of these elements not only mitigates
the aforementioned error, but also enables exponential
error convergence in regions where the numerical solu-
tions remain smooth [87].

There are two main approaches to employ higher
order isoparametric elements in solving SIEs, namely
the Galerkin [126, 127] and Nystrom methods [92, 105].
Both approaches have demonstrated higher order con-
vergence rates for electromagnetic problems character-
ized by smooth solutions. A very detailed and compre-
hensive review of the higher order computational elec-
tromagnetics for antenna, wireless, and microwave engi-
neering applications is presented in [128].

F. Parallelization and high-performance computing

High-performance computing (HPC) resources have
been widely and effectively employed by researchers and
engineers in the area of computational electromagnet-
ics. Over time, developments in computing hardware and
software have created extraordinary possibilities (and
new challenges) for expanding the modeling techniques
used for scattering problems. Crucially, these advances
have taken place in parallel with progress in electro-
magnetic formulations and numerical algorithms. The
research community has been especially resourceful in
capitalizing on every available advance in hardware and
technology.

Traditionally, two primary parallel programming
paradigms, open multiprocessing (OpenMP) and the
message passing interface (MPI), have dominated the
landscape. These frameworks can facilitate massively
parallel MLFMM simulations involving billions of
unknowns [100, 129].

Table 5: Speed-up of bistatic radar cross section calcula-
tion of an aerocraft with CFIE at 1.5 GHz. Adapted with
permission from [99] © IEEE.

CPU (sec.) GPU (sec.) Speed-up
Vs and V f 52 19 2.8

T 44 1 44.0
Znear 3735 30 124.5

BiCGStab 1911 653 2.9
Total time 5742 705 8.1

A historical perspective highlights the scale of these
achievements. In 1988, Miller illustrated how the largest
feasible problem within a one-hour time frame advanced
from only around 100 unknowns in the early 1950s
to approximately 6,000 unknowns (roughly a factor of
60) by the mid-1980s [80]. However, over the next few
decades, this capability surged to approximately 10.5 bil-
lion unknowns within about 6.25 hours [100], yielding
an increase on the order of 1.75 million. Thus, while
the first half-century of computational electromagnet-
ics and SIEs may have appeared to progress relatively
slowly, the subsequent 30 years saw an explosive expan-
sion of modeling capacity. Additionally, graphics pro-
cessing units (GPUs), which were originally designed
for computer graphics, evolved into indispensable hard-
ware accelerators that can be used with the SIE method.
As shown in Table 5, the utilization of GPUs can signif-
icantly enhance the efficiency of the SIE method [99].
More specifically, Table 5 includes time data regarding
the calculation of radiation patterns of the basis func-
tions Vs, receiving patterns of the testing functions V f ,
the translator factor T, and the assembly of the near-field
system matrix Znear. Additional details about these quan-
tities can be found in [99].

VII. CONCLUSION AND OUTLOOK

The motivation for this review article was to col-
lect and present a complete and comprehensive overview
of the SIE method theory, formulations, discretization
schemes, and final matrix system considerations. This
frequency domain computational electromagnetic tech-
nique, with its surface meshing approach, significantly
decreases the number of unknowns for a given scatter-
ing problem and improves the analysis accuracy and effi-
ciency. Firstly, by focusing on SIE’s theoretical aspects,
this paper provides a unified and systematic presenta-
tion of the electromagnetic analysis and the derivation
of different popular formulations. Furthermore, a math-
ematical overview of function spaces is included, in
order to highlight the importance of correctly combining
basis and testing functions. Moreover, this work exam-
ines different aspects of a discretization scheme, such
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as subtracting the Green’s function singularity, which
is essential for near-field representations, and applying
different testing methods, in order to investigate proce-
dures that are different from the Galerkin method. Hence,
by delving into all the aforementioned parts of a com-
plete SIE computational implementation, we emphasize
that a surface integral equation formulation and the dis-
cretization process must lead to a unique solution and
a conforming discretization procedure, i.e. the integral
operators that are the main contributors regarding the
off-diagonal elements of the final system matrix should
be tested with the dual of their range space, since this
leads to the most accurate results. In this manner, we
review some of the most used SIE methods and illus-
trate whether they meet these conditions and how they
perform compared to each other in terms of accuracy.
Also, different discretization techniques using different
basis and testing functions are investigated in terms
of performance. Finally, we discuss the various chal-
lenges encountered in solving the final matrix equations,
along with numerical strategies designed to mitigate their
adverse computational impact. These strategies include
the utilization of the Calderon preconditioner, the inte-
gration of advanced numerical and computational tech-
niques for both direct and iterative solvers, the imple-
mentation of fast solvers, the application of higher order
methods, and the effective utilization of HPC resources.

Despite all the significant work that has been done
over the last decades, the method still faces some chal-
lenges, e.g. the dense mesh breakdown, the low fre-
quency breakdown, the simulation of composite metallic
and dielectric structures with junctions or objects of high
conductivity that are modeled with impedance boundary
conditions (IBCs).

Finally, we highlight some interesting research
directions for the future in electromagnetic SIE meth-
ods, such as hybrid meshes [74] (e.g. the combination
of triangular and quadrilateral elements), higher order
and conformal elements, generalized MoM approaches
[130], discontinuous Galerkin SIE methods [131], and
source formulations [132]. Furthermore, one of the most
significant challenges regarding the SIE method is to
leverage hybrid parallelization paradigms and method-
ologies (e.g. combining MPI, OpenMP, and CUDA) to
fully exploit the ever-growing variety and capability of
modern HPC hardware [101]. In this context, the path
to a general and fully optimized solution for SIE prob-
lems likely lies in combining multiple key elements –
such as robust preconditioners, advanced fast and direct
solvers, higher order conformal discretizations, and effi-
cient parallelization strategies – into a synergistic frame-
work that will be able to span across the entirety of the
frequency and material spectra. By uniting these con-
cepts, researchers and practitioners stand poised to over-

come long-standing challenges and further advance the
scope and efficiency of SIE-based electromagnetic sim-
ulations.
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Abstract – An alternative method of moments discretiza-
tion of the magnetic field integral equation (MFIE) uses
testing functions inside the target and in a plane nor-
mal to the target surface. This approach is adapted to
targets modeled with flat-faceted patches. A compari-
son with traditional numerical solutions of the MFIE that
use testing functions on the target surface shows that the
normally-integrated MFIE formulation produce far fields
that are more accurate than those obtained from the tra-
ditional MFIE. The alternate approach can be made free
from internal resonances and that approach is often more
accurate than the combined field integral equation.

Index Terms – Electromagnetic scattering, method of
moments, numerical techniques, radar cross section,
scattering cross section.

I. INTRODUCTION

Integral equations such as the electric-field equa-
tion (EFIE) and magnetic field integral equation (MFIE)
are the foundation for many numerical solution tech-
niques in electromagnetics, especially open-region prob-
lems such as radiation and scattering applications involv-
ing perfectly conducting materials. The most common
discretization procedure used with the EFIE involves
Rao-Wilton-Glisson (RWG) basis and testing functions
[1], which converts the “strong” form of the EFIE into a
“weak” equation where the degree of the operator deriva-
tive has been reduced by the testing function. A similar
discretization of the MFIE does not produce a “weak”
equation since one of the MFIE derivatives is normal to
the surface being discretized and not affected by the tan-
gential testing function. The MFIE has other restrictions:
it is not applicable to open targets and may fail under cer-
tain conditions for multiply connected targets [2]. Both
equations many fail at internal resonance frequencies [3].
In addition, the MFIE is thought to be more sensitive to
discontinuities, such as those introduced by flat-faceted
models of curved surfaces [4].

The accuracy of the far fields (and scattering cross
section) produced by traditional MFIE discretizations is
substantially worse than that produced by the EFIE [5–

6]. When the EFIE and MFIE are combined together
to form the combined field integral equation (CFIE) to
avoid internal resonance failures, the accuracy of the
CFIE is degraded by the underlying MFIE accuracy and
seldom equals that of the EFIE away from resonances.

In [7–8], an alternative discretization was intro-
duced for the MFIE, involving testing functions that
are inside the target and in a plane normal to the sur-
face. These functions can absorb both derivatives aris-
ing from the curl operator. The approach, labeled the
normally-integrated MFIE or NIMFIE, produces a true
“weak” equation different from that of the traditional
tangentially-tested MFIE. In [7–9], the NIMFIE was
demonstrated for several smooth targets, using high
order basis functions and perfect models of the curved
target surfaces. In order to employ the NIMFIE for more
complex targets modeled with flat patch models, a new
discretization is proposed with RWG basis functions rep-
resenting the current and testing functions with support
that may be divided into two non-overlapping domains
inside the target. Results from the new approach will be
compared with those produced by a conventional MFIE
discretization (also using RWG basis functions but with
RWG testing functions located on the target surface). In
addition, [8] demonstrated that, by including an expo-
nential phase in the testing functions, the original NIM-
FIE equations could be made free of internal resonances.
Consequently, we use the “resonant free” approach in the
following and also compare the results to those of the
CFIE. Preliminary results from this study were presented
in [10–11].

II. NIMFIE FORMULATION

The NIMFIE formulation is based on the condition
that the total magnetic field vanishes inside a perfectly
conducting target. Therefore, the incident and scattered
magnetic fields satisfy:

T̄ • H̄inc + T̄ • H̄s = 0, (1)
where the incident field is that of the primary source in
the absence of the target, and the scattered field is the
field of the equivalent current density J̄ on the target sur-
face, also computed in the absence of the target. The test-

Submitted On: July 23, 2024
Accepted On: March 31, 2025

https://doi.org/10.13052/2025.ACES.J.400403
1054-4887 © ACES



303 ACES JOURNAL, Vol. 40, No. 04, April 2025

ing function T̄ occupies a plane normal to the surface of
the target and is a vector perpendicular to that plane. The
scattered field is obtained from:

H̄s = ∇× Ā, (2)
where Ā is the magnetic vector potential function:

Ā(r̄) =
∫∫

J̄(s′, t ′)
e− jkR

4πR
ds′dt ′. (3)

The integral in (3) is over the target surface, k =
ω√μ0ε0 is the wavenumber of the background medium,
ω is the radian frequency, and μ0 and ε0 are the perme-
ability and permittivity of the background medium. The
parameter R is the distance from the point of integration
to the point where the field is computed.

For targets represented by flat-faceted triangular
patches, the basis functions representing the current den-
sity are chosen to be RWG functions that straddle pairs
of patches and interpolate to the current density flow-
ing across edges of the model [1]. For convenience each
testing function will also be associated with an edge. The
test function domain associated with two patches strad-
dling an edge p is inside the target, beginning below the
centroid of one patch (A) and terminating beneath the
centroid of an adjacent patch (B), as depicted in Fig. 1.
For patch pairs that are bent to represent curved or non-
planar parts of surfaces, the testing domain in the present
work is separated into two non-overlapping rectangular
regions as depicted in the side view shown in Fig. 1 (b).
Let (s, t, n) denote a local right-handed coordinate system
associated with a patch, with variables s and t tangential
to the patch and n in the outward normal direction. In the
“internal resonance free” NIMFIE formulation, the part
of the test function below one of the two patches is:

T̄ = ŝ p(t; t1, t2) e− jϕ(n2−n)p(n;n1,n2), (4)
where p(t;t1,t2) denotes a windowing function:

p(t; t1, t2) =
{

1 t1 < t < t2
0 otherwise , (5)

and the rectangular domain is the region t1<t<t2,
n1<n<n2. The phase factor:

ϕ =
π
2

1
n2−n1

, (6)

provides a 90-degree phase progression across the test
function domain, to suppress internal resonances in a
manner similar to that of the dual surface integral equa-
tions [12].

The NIMFIE equation associated with the complete
contribution from the basis function associated with edge
q and the two parts of the test function associated with
edge p can be obtained by inserting (4) and its comple-
ment into the relation:

−
∫∫

T̄ • H̄inc =
∫∫

T̄ •∇× Ā, (7)

where the integrations are over the test domain inside
the target. By carrying out any integrations that cancel

Fig. 1. (a) Top and (b) side views of a patch pair showing
the two parts of the domain of the testing function when
the patches are non-planar.

derivatives arising from the curl operation, we obtain the
resulting equation:

−
∫ n2A

n1A

∫ t2A

t1A
e− jϕ(n2A−n) ŝpA • H̄inc

−
∫ n2B

n1B

∫ t2B

t1B
e− jϕ(n2B−n) ŝpB • H̄inc

=
∫ n2A

n1A
e− jϕ(n2A−n)n̂pA • Ā

∣∣∣t2A

t1A

+
∫ n2B

n1B
e− jϕ(n2B−n)n̂pB • Ā

∣∣∣t2B

t1B

−
∫ t2A

t1A

(
e− jϕ(n2A−n)t̂pA • Ā

)∣∣∣n2A

n1A

−
∫ t2B

t1B

(
e− jϕ(n2B−n)t̂pB • Ā

)∣∣∣n2B

n1B

+ jϕA

∫ n2A

n1A

∫ t2A

t1A
e− jϕ(n2A−n) t̂pA • Ā

+ jϕB

∫ n2B

n1B

∫ t2B

t1B
e− jϕ(n2B−n) t̂pB • Ā

, (8)

where the integration limits such as “t1A” are those asso-
ciated with the part of the test domain under patch “A”
and limits such as “t1B” are those associated with the test
domain under patch “B” (Fig. 1). Similarly, unit vectors
exhibit an “A” or “B” subscript to denote which test patch
(A or B) they are associated with. Equation (8) is slightly
different from those in [8] due to the vector nature of the
RWG basis and the two distinct domains associated with
the testing function.
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Observe that there are no derivatives applied to the
magnetic vector potential function in (8), confirming that
this orientation of the test function absorbs all the deriva-
tives arising from the curl operation and produces a truly
“weak” form of the integral equation. For numerical
implementation, the integrals in (8) are no more difficult
to compute than those arising from the traditional EFIE
discretizations.

Ideally, to suppress internal resonances, the test
function domain should extend to a quarter wavelength
depth d within the target [12]. For thinner parts of tar-
gets where the thickness is less than a half wavelength
beneath a particular patch, d is reduced to half the avail-
able depth. In addition, the length w of the test domain
along the variable t under each patch is initially set to
the distance from the centroid to the edge but is reduced
if the patch pair is bent as illustrated in Fig. 1 (b). In
the present work, for interior angles greater than 135
degrees, w and d are reduced by a common factor to
avoid overlap with the other part of the test domain,
as depicted in Fig. 1 (b). For interior angles smaller
than 135 degrees (targets with sharper bends), the con-
straint w=d is imposed and both dimensions are reduced
to avoid overlap. In addition, to avoid large disparities
in test domain size from cell to cell, adjustments in
surrounding cells are made to ensure that test domain
dimensions do not differ by more than a factor of 2 for
test domains associated with the same patch or adjacent
patches. The preprocessing associated with these com-
putations is relatively small.

III. NUMERICAL RESULTS
As an initial example, Fig. 2 shows the error in the

bistatic scattering cross section (SCS) for a perfectly
conducting sphere with ka=2π , where a is the sphere
radius. Flat-faceted models of spheres with the correct
surface area were used. The 2-norm error in the scatter-
ing cross section is defined:

E =

√
1

Nangles
∑Nθ

m=1 ∑
Nφ
n=1 sinθm |σexact(θm,φn)−σnumerical(θm,φn)|2

σexact, f orward

(9)
The SCS error was averaged over a 5-degree grid in

spherical angles (θ , φ ), and therefore Nθ and Nφ assume
values 37 and 73, respectively, and Nangles=2701. Results
are presented for the EFIE, MFIE, CFIE, and NIMFIE
approaches, where all used RWG basis functions and all
but NMIFIE used RWG testing functions on the target
surface. The CFIE used equal weighting between the
EFIE and MFIE parts. These results show that, for densi-
ties of 50-200 unknowns/λ 2, where λ is the wavelength,
the EFIE and the NIMFIE produce SCS results that are
more than an order of magnitude more accurate than
those produced by the traditional MFIE or CFIE. (In
these and most other results, the EFIE is expected to
exhibit more accurate far fields than the NIMFIE because

of the variational superconvergence associated with its
method of moments discretization [13].)

Fig. 2. Error in the SCS for a sphere with ka=2π .

We next consider several examples whose surfaces
contain sharp or abrupt bends and tips. Figure 3 shows
the magnitude of the surface current density for a per-
fectly conducting missile target [14] with surface area
25λ 2, obtained from the EFIE, MFIE, and NIMFIE
equations with a 2592-cell model. The target is illu-
minated nose-on with a horizontally-polarized incident
electric field. This target has two fin-like protrusions
containing 90-degree bends. For this example, the NIM-
FIE result exhibits qualitative agreement with the EFIE
result, while the MFIE current shows minor differences.

Several measures of the error are reported in Table 1,
including the error in the currents obtained by a compari-
son with a higher order solution of the EFIE, the tangen-
tial electric-field residual error [15], and the SCS error
compared to a higher order EFIE reference result. The
current density error is computed using:

Jerr =

√
1

Atotal
∑Ncells

n=1

∣∣J̄n, re f − J̄n, RWG
∣∣2 An

2 |Hinc
max|

, (10)

where An is the area of cell n. These results suggest that
all four approaches produce somewhat similar accuracy

Table 1: 2-norm errors in the results for the missile
J Error E-residual SCS Error

MFIE 17% 27% 3.3%
CFIE 18 19 2.5

NIMFIE 17 22 2.0
EFIE 19 17 0.15
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in the current density, with a 2-norm error around 20%,
and that the NIMFIE is slightly better than the MFIE in
SCS accuracy.

Fig. 3. Current density magnitude on a perfectly conduct-
ing missile target. Red denotes the largest magnitudes,
followed by yellow, white, light blue, and dark blue, on a
non-logarithmic scale. The target is illuminated nose-on
with a horizontally-polarized incident electric field. The
scales are in wavelength.

Figure 4 shows the surface current magnitude on a
perfectly conducting cone-sphere with a total length of
5.66λ , a cone length-to-radius ratio of 4:1, and a total
surface area of 25λ 2, for a vertically-polarized electric
field incident upon the sharp tip end of the target. A
2812-cell model is used. The NIMFIE result exhibits
agreement with the EFIE result, while the MFIE result
shows some differences. Various error measures are
reported in Table 2. The overall errors are smaller for the
cone-sphere than the missile, and the SCS error obtained
from the NIMFIE results are significantly smaller than
those of the MFIE and CFIE.

Table 2: 2-norm errors for the cone-sphere target
J Error E-residual SCS Error

MFIE 12% 17% 1.5%
CFIE 12 14 0.80

NIMFIE 11 14 0.24
EFIE 13 13 0.030

Figure 5 shows the magnitude of the surface current
on a perfectly conducting “Arrow” target [16] with sur-

Fig. 4. Current density magnitude induced on a perfectly
conducting cone-sphere target of surface area 25λ 2, by
a wave with a vertically polarized electric field incident
upon the tip end of the target. Red denotes the largest
magnitudes, followed by yellow, white, light blue, and
dark blue, on a non-logarithmic scale.

face area of 25λ 2 and 2002 cells. The bottom of the tar-
get is flat, with interior angles of only 36 and 53 degrees
around the front and side edges, respectively. The NIM-
FIE and EFIE results exhibit reasonable visual agree-
ment, while the MFIE result shows differences. Table 3
reports various 2-norm errors. For this target, the NIM-
FIE SCS error is smaller than that of the MFIE or CFIE,
and almost as low as the EFIE SCS error.

Table 3: 2-norm errors for the Arrow target
J Error E-residual SCS Error

MFIE 21% 36% 4.1%
CFIE 19 20 2.1

NIMFIE 17 25 0.78
EFIE 19 21 0.67

Figure 6 shows the magnitude of the current den-
sity on a cube target with cube edge length 1.58λ . This
target happens to be internally resonant for the MFIE,
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Fig. 5. Current density magnitude induced on a per-
fectly conducting “Arrow” target [16] with surface area
of 25λ 2. The target is illuminated nose-on with a
horizontally-polarized incident electric field. The scales
are in wavelength. Red denotes the largest magnitudes,
followed by yellow, white, light blue, and dark blue, on
a non-logarithmic scale.

Table 4: 2-norm errors for the 2700-cell cube target
J Error E-residual SCS Error

MFIE 42% 83% 8.4%
CFIE 9 9 0.19

NIMFIE 9 11 0.19
EFIE 15 8 0.039

and the MFIE result is clearly incorrect. The NIMFIE
result for the current magnitude obtained with a 2700-
cell model exhibits reasonable agreement with a CFIE
result obtained with a 4800-cell model. Table 4 shows
several measures of the 2-norm error, obtained from
2700-cell models for the four approaches. For this exam-
ple, the “resonant-free” NIMFIE and CFIE produce sim-
ilar error levels in both current and SCS.

Table 5 summarizes the results of the preceding
examples and several others in a different manner, by
reporting the ratio of the MFIE SCS 2-norm errors to
those of the other formulations. The additional targets
include a second cube illuminated face-on, the Arrow
illuminated by a vertically-polarized incident electric

field, and two almond targets illuminated by waves inci-
dent on their blunt ends. These results show the dispar-
ity between the EFIE and MFIE SCS accuracy in prac-
tice. They also suggest that the NIMFIE formulation
consistently outperforms the MFIE for SCS error, and
almost always produces more accurate SCS results than
the CFIE.

Fig. 6. Current density magnitude induced on a perfectly
conducting cube target by a wave normally incident on
one of the faces. The MFIE and NIMFIE results are
obtained with 2700-cell models, while the CFIE result is
obtained using a model with 4800 cells. The color scale
is non-logarithmic and is a fraction of twice the incident
magnetic field.
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Table 5: Ratio of MFIE SCS error to other equation’s SCS error
Target Area (λ 2) Density (Cells/λ 2) CFIE NIMFIE EFIE

sphere 12.6 108 2.8 16 55
cube #1 15.015 180 44 44 212

almond #1, H-pol 21.8 118 2.5 2.9 28
cube #2 24 113 7.2 7.9 23
missile 25 104 1.3 1.7 22

4:1 cone-sphere 25 112 1.9 6.3 52
Arrow, H-pol 25 80 1.9 5.3 6.2
Arrow, V-pol 25 80 1.5 3.3 5.4

almond #2, V-pol 44.5 104 1.1 9.8 21

Table 6 shows the matrix condition numbers
reported by the matrix solver for the various approaches
and the preceding examples. The CFIE has the lowest
(best) condition numbers, while the NIMFIE condition
numbers are the same order as those of the EFIE. The
data reflect the fact that the “cube #1” target is internally
resonant for the MFIE (and apparently close to an inter-
nal resonance for the EFIE) and also suggests that there
are irregularities associated with the model used for the
cone-sphere, probably near the tip.

Table 6: Condition numbers for the cases in Table 5
Target MFIE CFIE NIMFIE EFIE

sphere 57 21 235 125
cube #1 1918 26 473 9293

almond #1 276 23 469 417
cube #2 91 26 463 143
missile 971 106 1509 1650

cone-sphere 7880 817 13320 12749
Arrow 592 54 2240 1905

almond #2 550 37 846 2170

IV. CONCLUSION

The NIMFIE approach has been implemented with
flat-patch models and RWG basis functions, and results
for a variety of targets with bends in their surfaces were
compared to the traditional MFIE and the CFIE. For
these targets, the NIMFIE SCS accuracy is consistently
better than that produced by the MFIE and is usually
better than the accuracy of the CFIE. These results sup-
port the hypothesis that the traditional MFIE discretiza-
tion, using the “strong” MFIE operator, is more sen-
sitive to surface discontinuities than the “weak” NIM-
FIE approach. As implemented here, the NIMFIE is free
from internal resonances, and it appears to offer advan-
tages over the traditional MFIE formulation.
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Abstract – This paper proposes an advanced physical
optics-inspired support vector regression (APOI-SVR)
for efficiently modeling the radar cross section (RCS)
of conducting targets. Specifically, an improved physi-
cal optics-inspired kernel function is newly proposed by
introducing two angular frequency parameters, thereby
enhancing the capability of characterizing the various
fluctuation patterns in RCS with respect to observation
angles. Furthermore, considering the critical role of data
preprocessing in facilitating the model’s ability to learn
the underlying RCS patterns accurately, a physics-based
data preprocessing method is introduced. Numerical val-
idations based on two exemplary targets demonstrate that
APOI-SVR effectively reduces the predictive root mean
square error (RMSE) by over 24.7% compared with the
benchmark model. Afterward, APOI-SVR is adopted to
quickly establish the RCS feature map of an aircraft
model, the results show that it is comparable to numer-
ical simulations in accuracy but less than one-tenth in
time cost, indicating the practicality of APOI-SVR for
efficiently analyzing the RCS characteristics of targets.

Index Terms – Angular frequency parameter, data pre-
processing, physical optics, radar cross section, support
vector regression.

I. INTRODUCTION

In the domain of electromagnetic scattering
research, the accurate prediction of the radar cross
section (RCS) of a target is essential for target recog-
nition and tracking [1, 2], and also exerts a profound
influence on a variety of modern applications across
aerospace and civilian domains [3–5]. Computational
electromagnetic (CEM) methods, such as the finite
element method (FEM) [6, 7] and the finite difference
time domain (FDTD) [8, 9], have demonstrated remark-
able accuracy in simulating the interactions between

electromagnetic waves and objects. However, when
tasked with modeling complex and electrically-large
targets, these methods encounter significant challenges
such as the high computational resource demands and
extensive time costs for matrix inversion O(N3), thereby
revealing notable limitations in practical application.
Researchers have been exploring methods to surmount
these computational challenges, such as developing
domain decomposition algorithms and acceleration
techniques leveraging multi-CPU/GPU architectures
[10–12]. These efforts have led to some improvements,
but do not constitute a definitive solution. Innovative
and potential solutions are still a pressing need to be
explored.

In recent years, the rapid advancement of machine
learning (ML) has introduced many innovative techni-
cal approaches for the modeling and analysis of target’s
RCS. For instance, artificial neural networks (ANNs)
have been effectively utilized for the real-time predic-
tion of 2D scattered fields [13] and the efficient com-
putation of broadband monostatic RCS of morphing S-
shaped cavities [14]. In addition, a hybrid model combin-
ing the autoregressive integrated moving average algo-
rithm and the long short-term memory (LSTM) algo-
rithm has been employed for the RCS sequence predic-
tion [15]. Although these methods can model complex
nonlinear relationships, they often require a large amount
of data for training and can be prone to overfitting on
small datasets.

Support vector regression (SVR), a robust machine
learning model known for its exceptional nonlinear rep-
resentation and generalization capabilities, and is less
prone to overfitting on small datasets [16–18], has been
increasingly incorporated into the field of CEM. Exam-
ples include modeling the target’s RCS [19, 20] and the
backscattering coefficient of the 3D sea surface [21]. To
improve the RCS prediction accuracy of SVR, a physical
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optics-inspired (POI) kernel function, which is a com-
posite kernel function composed of the cosine function
and the Gaussian kernel function, has been proposed
[22]. Besides, a comprehensive analysis of the impact
of various sampling schemes on the modeling of RCS
using the POI kernel-based SVR (termed POI-SVR) has
also been conducted. Results show that, compared to the
centrally-located sampling (CLS), simple random sam-
pling (SRS), and Latin hypercube sampling (LHS), uni-
form design (UD) and uniform design sampling (UDS)
yield more representative training datasets, which can
further improve the RCS modeling precision of POI-
SVR. However, the cosine components in the POI kernel
function are fixed without adjustable parameters, which
limits the ability of POI-SVR to characterize the local
fluctuation patterns of RCS. Moreover, the impact of data
preprocessing on the modeling accuracy of SVR has not
been explored yet.

In this paper, we introduce two angular frequency
parameters into the cosine components of the POI ker-
nel function, thereby augmenting the capacity of POI-
SVR to characterize the local fluctuation characteris-
tics of the target’s RCS. Also, a physics-based data pre-
processing method is proposed to further improve the
accuracy of SVR in the modeling of the target’s RCS.
To facilitate the follow-up comparative analyses, the
advanced POI-SVR presented herein is abbreviated as
APOI-SVR.

The rest of this paper is organized as follows.
Section II introduces the proposed APOI-SVR, includ-
ing the improved POI kernel function, the physics-based
data preprocessing method, and the training procedure of
APOI-SVR. Several numerical validations for the pro-
posed APOI-SVR are presented in section III. Finally,
the conclusion is summarized in section IV.

II. THE PROPOSED APOI-SVR

APOI-SVR mainly improves the kernel function and
the data preprocessing method on the basis of POI-
SVR. Therefore, in this section, a detailed introduction
is mainly given to the improved POI kernel function and
the proposed data preprocessing method. The procedure
of training APOI-SVR is illustrated at the end of this
section as well.

A. Improved POI kernel

It is well accepted that kernel function is crucial for
the performance of SVR. For linear problems, a linear
kernel function is typically used; for periodic or quasi-
periodic issues, a periodic kernel function is often cho-
sen; and to enhance the local representation capability of
SVR, a Gaussian kernel function is frequently selected.
However, when it comes to complex problems, such as
predicting the RCS of complex targets, a suitable kernel
function needs to be carefully designed, which demands

a deep understanding of the problem (i.e., prior knowl-
edge).

In [22], the backscattered electric field Esca(θ ,ϕ,r)
is approximated by:

Esca(θ ,ϕ,r) = jkη
exp(− jkr)

4πr

×
N

∑
i=1

Ai
[
k̂× (k̂×J′i)

]
exp[−j2k · r′iϑ ], (1)

where (θ ,ϕ) is the incident angle of the electromagnetic
wave, r is the distance from the origin to the observation
point r, k is the incident wave vector, k̂ = k

/
k, k and

η represent the wave number and the wave impedance,
J(r′) denotes the induced current at the source point r′, Ai
is the area of the facet S′i, and r′iϑ is a point on the facet S′i.
Under far-field conditions, (1) can be further simplified
to a function of (θ ,ϕ):

Esca(θ ,ϕ) =
N

∑
i=1

aigi(θ ,ϕ), (2)

with:{
ai = jkηAi exp(−jkr)/4πr
gi(θ ,ϕ) =

[
k̂× (k̂×J′i

)]
exp
[−j2k · r′iϑ

] , (3)

where r is set to a sufficiently large constant (i.e., 109m).
Notably, gi(θ ,ϕ) contains the phase term:

exp
[−j2k · r′iϑ

]
=exp [−j2k (sinθ cosϕ · xiϑ

+sinθ sinϕ · yiϑ + cosθ · ziϑ )] ,
(4)

where (xiϑ ,yiϑ ,ziϑ ) are the coordinates of r′iϑ . The phase
difference between facets introduces interference effects,
leading to angular-dependent fluctuations of Esca(θ ,ϕ).
To account for the fluctuation characteristics of the tar-
get’s RCS and to maintain local representation capabil-
ity of SVR, the following kernel function was proposed
[22]:

KP(x,x′) =
2

∏
i=1

cos(xi − x′i)exp[− (xi − x′i)2

2l2
i

], (5)

where x = (θ ,ϕ), l1 and l2 are scaling parameters. As
inspired by physical optics (PO), the kernel function in
(5) was termed POI kernel function. It should be noted
that, the cosine components of KP(x,x′) are to character-
ize the fluctuation patterns of the target’s RCS, the Gaus-
sian components are to maintain good local representa-
tion capability.

However, for complex targets, their RCS responses
often contain multiple harmonics due to the interactions
among surfaces of varying sizes and orientations:

σ(θ ,ϕ)≈ σ0 +∑
m,n

Cmn cos(ω1mθ +ω2nϕ +ψmn) , (6)

where σ0 is the baseline RCS of the target, Cmn is the
amplitude coefficient, ω1m and ω2n are angular frequen-
cies, and ψmn is the initial phase offset of the (m,n)−th
harmonic component. This decomposition highlights the
multi-scale nature of RCS fluctuations. The cosine parts
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of KP(x,x′) are fixed and devoid of adjustable parame-
ters, assuming a single dominant frequency in the RCS
spectrum. Thus, its capacity to accurately capture the
various fluctuation patterns of RCS is inherently con-
strained. To tackle this issue, we introduce two angle
frequency parameters (i.e.,ω1 and ω2), and proposed the
following improved POI kernel function:

K′
P(x,x

′) =
2

∏
i=1

cos[ωi(xi − x′i)]exp[− (xi − x′i)2

2l2
i

]. (7)

It is clear that KP(x,x′) is a special case of K′
P(x,x′)

when ω1 =ω2 = 1. Figure 1 depicts the obvious variation
in fluctuation patterns that arise from the introduction of
the two angular frequency parameters ω1 and ω2. This
demonstrates the potential of K′

P(x,x′) in capturing the
complex fluctuation patterns of the target’s RCS.

To further illustrate the adaptability of the improved
POI kernel function to the RCS patterns of complex tar-
gets, we analyzed the spectral properties of these two
kernel functions.

First, consider the 1D case (θ -direction):

K′
p(x,x

′) = cos[ω(x− x′)]exp
(
− (x− x′)2

2l2

)
. (8)

The Fourier transform of this kernel is derived as fol-
lows:

F{K′
p}(ω ′)=

1
2

[
exp[− l2(ω ′ −ω)2

2
]+ exp[− l2(ω ′+ω)2

2
]

]
.

(9)
This result shows that the improved POI kernel acts

as dual Gaussian bandpass filters centered at ω ′ = ±ω ,
with bandwidth controlled by l.

For 2D RCS modeling, we have:

F{K′
p}(ω ′

1,ω
′
2) ∝

2

∏
i=1

⎡⎣ exp
(
− l2

i (ω
′
i−ωi)

2

2

)
+exp

(
− l2

i (ω
′
i+ωi)

2

2

)
⎤⎦ . (10)

This structure allows the improved POI kernel func-
tion to adaptively amplify frequency components near
(±ω1,±ω2). However, the POI kernel only amplifies fre-
quency components near (±1,±1).

The improved POI kernel function introduces
angular frequency parameters ω1 and ω2, which can

(a) (b) (c)

Fig. 1. Instances of the fluctuation patterns attributed
to the varied angular frequency parameters ω1 and ω2.
(a) l1 = 1, l2 = 7,ω1 = ω2 = 1, (b) l1 = 1, l2 = 7,ω1 =
1,ω2 = 2, (c) l1 = 1, l2 = 7,ω1 = 2,ω2 = 1.

automatically adjust the center frequency of the fil-
ter according to the actual fluctuation frequency of the
target’s RCS (matching the multi-harmonic RCS spec-
trum). In this way, whether for simple or complex targets,
the SVR model can find the most matching frequency
to capture the RCS fluctuations. In contrast, the center
frequency of the filter corresponding to the POI kernel
function is fixed, easily lead to underfitting.

B. Proposed data preprocessing method

In the IEEE dictionary of electrical and electronics
terms, the definition of RCS is given by the following
expression:

σ = lim
r→∞

4πr2 |Escat|2
|Einc|2

, (11)

where Einc is the incident field. The unit of σ is m2.
Assuming |Einc| = 1 V/m, then (11) can be simplified
to:

σ = lim
r→∞

4πr2 |Escat|2 . (12)

In the academic and industrial communities, it is
also customary to use the following notation:

σdB = 10lg(σ), (13)
where the unit of σdB is dBsm.

It is noteworthy that K′
P(x,x′) is derived from the

scattered field formula presented in (2) and, thus, it is
more apt for modeling the scattered field rather than
modeling the target’s RCS directly. Hence, we propose
transforming the target’s RCS into the magnitude of the
scattered field |Escat|. Therefore, according to (12) and
(13), we have:

|Escat|=
√

σ
4πr2 =

√
10σdB/10

4πr2 . (14)

Then, convert it into normalized scattered field
strength:

Ẽscat =
|Escat|−

∣∣Emin
scat
∣∣

|Emax
scat |−

∣∣Emin
scat
∣∣ , (15)

where |Emax
scat | and |Emax

scat | denote the maximum and the
minimum scattered field strengths, respectively.

C. Training of APOI-SVR

This subsection primarily outlines the methodology
for constructing APOI-SVR on previous derivations to
model the target’s RCS characteristics. The core focus
is training APOI-SVR with sampled RCS data. Training
APOI-SVR is essentially solving an optimization prob-
lem with constrains, that is:

max
α,α̂

n
∑

i=1
yi(αi − α̂i)− ε(αi + α̂i)

− 1
2

n
∑

i=1
∑n

j=1(αi − α̂i)(α j − α̂ j)K′
P(xi,x j)

s.t.
n
∑

i=1
(αi − α̂i) = 0, αi, α̂i ∈ [0,C ]

, (16)
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where ε represents the width of the insensitive tube, and
C is the penalty parameter. Assuming that n RCS data of
the target, denoted as {(θi,ϕi,σi)|i = 1, ...,n}, have been
collected, the steps are as follows:

1. Data preprocessing: Apply (14) and (15) to prepro-
cess the RCS data for training APOI-SVR.

2. Hyperparameter optimization: Adopt the Bayesian
optimization method [23, 24] to obtain optimal values of
hyperparameter l1, l2, ω1, ω2, and C . In this work, an
open-source Python library called “BayesO” is adopted.

3. Model establishment: Retrain APOI-SVR with these
optimal hyperparameters to establish the approximation
model for Ẽscat(θ ,ϕ):

Ẽscat(θ ,ϕ)≈
n

∑
i=1

(αi − α̂i)K′
p[(θ ,ϕ),(θi,ϕi)]+b, (17)

where αi, α̂i and b are obtained by solving (16) with the
sequential minimal optimization (SMO) [25].

4. RCS modeling: Based on (14), (15) and (17), estab-
lish the following surrogate model for modeling the tar-
get’s RCS:

σ(θ ,ϕ) = 4πr2

×
[∣∣∣Emin

scat

∣∣∣+(|Emax
scat |−

∣∣∣Emin
scat

∣∣∣) Ẽscat (θ ,ϕ)
]2

.

(18)
The overall flowchart of applying APOI-SVR for effi-
cient modeling of the target’s RCS is illustrated in Fig. 2.
The improvements compared with POI-SVR [22] are
marked with cyan.

Fig. 2. Flowchart illustrating the application of APOI-
SVR for efficient RCS modeling of a target.

III. VALIDATION RESULTS

In this section, we evaluate the performance of the
proposed APOI-SVR across three critical dimensions:
the accuracy of APOI-SVR in predicting the target’s

RCS, the efficiency of APOI-SVR in terms of model con-
struction and prediction, and the applicability of APOI-
SVR in rapidly modeling and analyzing the RCS of real-
world targets.

Data preparation: To evaluate the performance of
APOI-SVR, it is necessary to prepare some RCS data
of targets. Due to the unknown RCS distribution of
the target in practical applications, the uniform cover-
age assumption is rational. Informed by the analysis in
[22], uniform design sampling (UDS) is based on this
very assumption and achieves a smaller star discrepancy.
Applying UDS can acquire more representative samples,
thereby enhancing the RCS modeling accuracy of POI-
SVR. Therefore, we employ UDS to sample the RCS
data of both a simple Cube model and a complex SLICY
model (widely used exemplary models in the field of
CEM) in the upper space (θ ∈ [0,0.5π], ϕ ∈ [0,2π]), as
shown in Fig. 3. The multilevel fast multipole algorithm
(MLFMA) is utilized to compute the target’s RCS at the
angles in the UDS table, serving as the training data. The
frequency of the incident electromagnetic waves is set
to 1.0 GHz. Simple random sampling (SRS) is applied
to guide the collection of test data. Details regarding the
training/test datasets are presented in Table 1.

(a) (b)

Fig. 3. Two exemplary targets for the validation of
the proposed APOI-SVR. (a) Conducting Cube with
the side length of 0.5 m and (b) full-sized conducting
SLICY model with dimensions of 0.5625 m × 0.5 m ×
0.3436 m.

Table 1: Datasets information
Target Dataset Name Number Polarization

Cube CVtrain 1296 VV
CVtest 10000 VV

SLICY SHtrain 1296 HH
SHtest 10000 HH

A. Accuracy of APOI-SVR

In this subsection, we assess the modeling accuracy
of APOI-SVR utilizing the training datasets CVtrain and
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SHtrain, which correspond to the simple Cube model and
the complex SLICY model, respectively. Equal training
and hyperparameter optimization procedures are applied
to both datasets, followed by numerical validations on
the corresponding test datasets, CVtest and SHtest. The
results are shown in Figs. 4 and 5, offering a comparative
analysis between the RCS prediction accuracy of POI-
SVR and APOI-SVR.

Figure 4 details the test results for the simple Cube
model. Figure 4 (a) presents the performance of POI-
SVR, with a root mean square error (RMSE) of 1.056926
and a coefficient of determination (R2) of 0.987702. In
contrast, Fig. 4 (b) displays the superior performance of
APOI-SVR, with a reduced RMSE of 0.795794 and a
higher R2 of 0.993028. Figure 5 showcases the results for
the complex SLICY model. Similar to the Cube model,
APOI-SVR exhibits a higher precision in predicting the
RCS of the complex SLICY model, as evidenced by a
lower RMSE of 0.448094 and a higher R2 of 0.994632
shown in Fig. 5 (b). As a competitor, POI-SVR obtains
RMSE and R2 of 0.651156 and 0.994097, respectively.
Table 2 enumerates the RMSE reduction ratios of APOI-
SVR compared with POI-SVR. Specifically, APOI-SVR
reduces the predictive RMSE by 24.71% for the Cube
model and by 31.18% for the SLICY model.

(a) (b)

Fig. 4. Test results for the simple Cube model: (a) POI-
SVR and (b) APOI-SVR.

(a) (b)

Fig. 5. Test results for the complex SLICY model: (a)
POI-SVR and (b) APOI-SVR.

Additionally, the absolute error distributions of POI-
SVR and APOI-SVR are analyzed. Figure 6 presents the
comparisons between the absolute error distributions of

Table 2: Predictive RMSE reduction ratios of APOI-SVR
compared with POI-SVR

Target Predictive RMSE Reduction

POI-SVR APOI-SVR

Cube 1.056926 0.795794 24.71%
SLICY 0.651156 0.448094 31.18%

(a) (b)

Fig. 6. Comparisons of absolute error distributions: (a)
Cube and (b) SLICY.

POI-SVR and APOI-SVR across both the Cube model
and the SLICY model. In the case of the Cube model,
the absolute errors of APOI-SVR are primarily within
the range of 0.0 to 2.0 dBsm, whereas POI-SVR displays
a broader spread up to 3.0 dBsm. Similarly, in the case of
the SLICY model, APOI-SVR maintains a tighter error
range of 0.0 to 1.0 dBsm. demonstrating its robustness in
handling complex targets.

On the whole, whether for the simple Cube model or
the complex SLICY model, APOI-SVR achieves lower
RCS prediction errors compared with POI-SVR. This
indicates the effectiveness of the improved POI ker-
nel function (see section IIA) and the physics-based
data preprocessing method (see section IIB) in enhanc-
ing the RCS prediction accuracy of SVR, thereby
offering a reliable and accurate modeling tool that
facilitates the efficient analysis of the target’s RCS
characteristics.

B. Efficiency of APOI-SVR

In practical applications, the efficacy of an ML
model is not solely appreciated by its prediction accu-
racy but also significantly by its implementation effi-
ciency, including the time costs of optimizing hyperpa-
rameters with Bayesian optimization method and sub-
sequent model retraining with the determined optimal
hyperparameters, as well as the efficiency of the predic-
tion process. Although the introduction of hyperparame-
ters ω1 and ω2 into the improved POI kernel function sig-
nificantly boosts the representation capability of APOI-
SVR, it is essential to investigate any potential trade-offs
in efficiency. Hence, a comprehensive analysis of both
the implementation and prediction efficiency of APOI-
SVR is warranted. It should be noted that, to ensure a
compelling comparison, all time costs presented in this
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paper are obtained under single-core operation with an
Intel Core 2 Duo CPU T6670.

Figure 7 illustrates the time costs of APOI-SVR and
POI-SVR, including implementation, prediction, and
total times for both the Cube and SLICY models. It can
be seen that in terms of implementation time, APOI-SVR
takes less than POI-SVR. This reduction is attributed to
the fact that, although the training time per iteration of
APOI-SVR is slightly increased, the proposed physics-
based data preprocessing method results in fewer opti-
mization iterations necessary to reach convergence to the
optimal solution (see Table 3). Consequently, the imple-
mentation time for APOI-SVR is shorter than that for
POI-SVR. Regarding prediction time, the well-trained
APOI-SVR and POI-SVR show negligible differences
(less than 1.0 second). Finally, in terms of total time cost,
APOI-SVR is less expensive than POI-SVR. Therefore,
APOI-SVR surpasses POI-SVR in terms of overall effi-
ciency.

C. Application of APOI-SVR

Having established the superior accuracy and effi-
ciency of APOI-SVR in the previous subsections, we
now apply APOI-SVR to analyze the RCS characteris-
tics of a real-world target. Figure 8 depicts the aircraft
model under consideration. Given its geometric symme-
try, training data are sampled within the region where θ
is in [0◦,90◦] and ϕ is in [0◦,180◦]. In total, 1296 training
samples are collected, preprocessed and subsequently
used to train APOI-SVR. The well-trained APOI-SVR
is ultimately applied to analyze the aircraft’s RCS char-
acteristics in the upper half space.

The frequency of the incident electromagnetic wave
is set to 1.0 GHz. Figure 9 depicts the aircraft’s RCS fea-

Fig. 7. Time cost comparison between POI-SVR and
APOI-SVR.

Table 3: Time costs and optimization iterations of hyperparameter optimization in the model implementation stage
Target APOI-SVR POI-SVR

Optimization
Time Cost (s)

Optimization
Iteration

Time Cost per
Iteration (s)

Optimization
Time Cost (s)

Optimization
Iteration

Time Cost per
Iteration (s)

Cube 1171.6 60 19.5 1617.6 100 16.2
SLICY 920.9 50 18.1 1224.7 80 15.3

Fig. 8. Aircraft model for the illustration of efficient RCS
modeling and analysis applying APOI-SVR.

Fig. 9. RCS feature map of the aircraft obtained by
APOI-SVR.

ture map, a 91×361 matrix, obtained by APOI-SVR. For
comparison, the results acquired by MLFMA are given in
Fig. 10. It can be observed that the results obtained by the
two methods are highly consistent, indicating the reliabil-
ity of APOI-SVR. However, it is worth noting that there
is a significant difference in time cost (see Table 4). The
total time cost of our APOI-SVR, containing data sam-
pling, hyperparameter optimization, model training, and
RCS prediction, is one-twelfth of that demanded by using
MLFMA. This demonstrates the practicality of APOI-
SVR for efficient RCS modeling of real-world targets.

Fig. 10. RCS feature map of the aircraft acquired by
MLFMA.
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Table 4: Time costs of acquiring the RCS feature map by APOI-SVR and MLFMA
Method Sampling/Simulation

Time Cost (s)

Optimization

Time Cost (s)

Training Time

Cost (s)

Prediction Time

Cost (s)

Total Time Cost

(s)

APOI-SVR 92738.9 1124.8 18.7 1.5 95509.6
MLFMA 1178628.5 — — — 1178628.5

IV. CONCLUSION

This paper proposes an advanced physical optics-
inspired support vector regression (APOI-SVR) for the
efficient modeling of a complex target’s RCS. Two angu-
lar frequency parameters are introduced into the phys-
ical optics-inspired kernel function to address the var-
ious fluctuation patterns of RCS for complex targets,
and a physics-based data preprocessing method is pro-
posed to enable the model to efficiently learn the directly
related physical quantity, i.e., the normalized electric
field. Numerical validations conducted on both a sim-
ple Cube model and a complex SLICY model have con-
firmed that, compared with POI-SVR, the new-proposed
APOI-SVR effectively reduces the RMSE in RCS pre-
diction by over 24.7%. Moreover, it maintains high pre-
dictive efficiency, capable of completing the prediction
of 10,000 samples in the test dataset within 5.0 seconds.
Notably, although the introduction of two angular fre-
quency parameters slightly increases the training time
for each iteration in the hyperparameter optimization
process, the proposed physics-based data preprocessing
method reduces the required number of optimization iter-
ations. As a result, in terms of overall efficiency, APOI-
SVR outperforms POI-SVR.

Additionally, the application of APOI-SVR to an
aircraft model has illustrated its practical efficacy in gen-
erating RCS feature maps with high precision and effi-
ciency compared to the well-known MLFMA. This prac-
tical application indicates that APOI-SVR may be a valu-
able tool in the field of electromagnetic scattering analy-
sis. Future research will commit to expanding the appli-
cability of APOI-SVR, including the enhancements tai-
lored for complex targets with coatings.
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Abstract – It is of great significance to obtain the electro-
magnetic field radiated by an antenna or scattered by an
object over a frequency band. But this data often occu-
pies so large a memory that cannot be applied readily.
This paper proposes to compress the field based on the
spherical harmonic transformation (SHT) and rational
interpolation. First, the tangential electric field over a
sphere surrounding the antenna is obtained by simula-
tion or measurement. Then, this field is converted into
the spherical harmonic coefficients, which are sparse dis-
crete spectra. Finally, these coefficients are interpolated
over the whole frequency band with only a few sampling
points. Numerical examples show that the proposed algo-
rithm can compress the data of the near field of a rect-
angular waveguide antenna by about 17278 times, and
those of the far field scattered from an UAV by about
103 times.

Index Terms – Antenna, data compression, rational inter-
polation, spherical harmonic transform.

I. INTRODUCTION

The data of the electromagnetic field radiated by an
antenna or scattered from an object is widely applied
in many engineering scenarios, such as radar imag-
ing, antenna measurement and base station deployment.
As shown in Fig. 1, the field often varies rapidly as
frequency and scanning angle changes. Therefore, one
needs to sample quite densely in both frequency and
angle to accurately represent the field. Many compres-
sion techniques have been developed to reduce this large
amount of data.

The method introduced by Burnside et al. is based
on radar imaging technology [1-3]. It extracted the scat-
tering centers according to the radar images. The scat-
tering field from an individual scattering center can be
expressed as a complex exponential function of fre-

quency and angle. As a result, the radar cross section
(RCS) is compressed drastically. There are some addi-
tional methods based on the theory of scattering centers,
such as the matrix pencil method [4] and the CLEAN
algorithm [5, 6].

Regarding the data of the electromagnetic field as a
matrix, one can make use of the well-established image
compression algorithms. These algorithms often exploit
the low-rank property of a particular matrix. In order
to compress the near field data, Wu et al. proposed the
CUR decomposition [7] and Zhao et al. proposed the
skeletonization-scheme [8]. Guo et al. applied the but-
terfly scheme [9] to compress the system matrix gener-
ated by the combined-field integral equation. The most
widespread ones are the threshold discrete Fourier trans-
form (TDFT) method [10, 11] and the truncated singular
value decomposition (SVD) method [12, 13].

Another type of compression method applies com-
pressive sensing (CS) [14–19] to reconstruct the antenna
radiation pattern in the antenna measurements. The CS
process often uses a transform, such as discrete cosine
transform or discrete Fourier transform, that renders the
data of the field to be a sparse vector in the trans-
form domain. Minimizing the l1-norm of this vector
will reconstruct the field data with much fewer random
measurements. This method sheds some light on the
proposed method, which transforms the electromagnetic
fields into the spherical harmonic spectra in Fig. 2 by
spherical harmonic transformation (SHT). Fortunately,
the spherical harmonic spectra are low-pass, discrete
and sparse. Furthermore, the l1-norm minimization in
CS may be time-consuming if the iterative procedure
diverges, whereas SHT is a deterministic algorithm with
O(N3) operations, where N is the truncation order.

Some use SHT to compress the pattern of an
antenna. Reference [20] expanded the field by SHT
and Slepian decomposition. Reference [21] applied the
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sparse spherical harmonic expansion with compressed
sensing to expand the far field of an antenna. None of
them discussed the frequency-sweeping technique, thus
the compression ratio for a frequency band will be lim-
ited. Reference [22] applied the 2-D scalar SHT and
the windowed interpolation for compression. As is dis-
cussed in [22], this commonly used rational interpolation
method is numerically unstable as the number of sam-
pling points increases. Therefore, the interpolated func-
tion may have some spikes in the curve, called “Froissart
doublets” [23].

Since the data of the field is also a function of fre-
quency, we need to implement frequency sweeping effi-
ciently. Reference [24] considered the field radiated by
an antenna at a specific angle as a function of frequency,
which is expanded by the Chebyshev polynomials. Actu-
ally, most of the physical quantities in an electronic
system are not polynomials, but rational polynomials.
Therefore, this paper applies the rational interpolation
based on the Loewner matrix as the frequency sweeping
tool.

In summary, the proposed method combines two
techniques to compress the data of field in Fig. 1. On
the one hand, the field at a specific frequency is con-
verted into spherical harmonic spectra in Fig. 2. On the
other hand, the spherical harmonic spectra over a fre-
quency band are approximated by the rational interpo-
lation, which requires the spectra at only a few sampling
frequencies.

This paper is organized as follows. Section II intro-
duces the theory of SHT and rational interpolation, and
gives the flowchart of the proposed algorithm. Section
III validates the proposed algorithm with two numerical
examples. Finally, conclusions are drawn in section IV.

Fig. 1. Electric field varies with frequency.

Fig. 2. Spherical harmonic spectra vary with frequency.

II. FORMULATION OF THE ALGORITHM
A. Spherical harmonic transform

Spherical harmonic transform is a well-established
algorithm in near-field antenna measurement. The time-
harmonic electromagnetic field in a source free space
generated by the antenna can be expanded by the spheri-
cal harmonics as in [25]:

E =−
N

∑
n=1

n

∑
m=−n

(an,mMn,m +bn,mNn,m), (1)

H =
−1

120π

N

∑
n=1

n

∑
m=−n

(an,mNn,m +bn,mMn,m), (2)

where N is the truncation order of the spherical harmon-
ics, an,m and bn,m are the spherical harmonic coefficients
and the range of subscripts is 1≤n≤N, −n≤m≤n. The
vector spherical harmonics in the spherical coordinate
system are:

Mn,m=Cn,m·
[

jm
sinθ Zn (kr)P|m|

n (cosθ ) θ̂
−Zn (kr) d

dθ P|m|
n (cosθ ) ϕ̂

]
·e jmϕ , (3)

Nn,m=Cn,m·

⎧⎪⎨⎪⎩
Zn(kr)

kr n(n+1)P|m|
n (cosθ ) r̂

+Wn (kr)

[
d

dθ P|m|
n (cosθ ) θ̂

+ jm
sinθ P|m|

n (cosθ ) ϕ̂

]⎫⎪⎬⎪⎭ ·e jmϕ ,

(4)
where θ and ϕ are the elevation angle and the azimuth
angle respectively, n is the degree, m is the order,
P|m|

n (cosθ ) is the associated Legendre function, Zn(kr)
is the spherical Bessel function, k is the wave number of

free space, Cn,m = (−1)m
√

(2n+1)(n−|m|)!
4πn(n+1)(n+|m|)! , W n (kr) =

1
kr

d
dr [rZn (kr)].

In the spherical near-field antenna measurement, we
acquire the tangential near electric field on a sphere sur-
rounding the antenna by a mechanical scanning proce-
dure:

E tan = Eθ θ̂ +Eϕ ϕ̂, (5)
where Eθ and Eϕ are the components of E tan in the θ
and ϕ direction. The unknown spherical harmonic coef-
ficients can be evaluated by the following integrals:

an,m=− Cn,m

Zn (kr0)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ π
0

[∫ 2π
0 Eθ (r0,θ ,ϕ)e− jmϕ dϕ

]
· jmP|m|

n (cosθ )dθ
+
∫ π

0

[∫ 2π
0 Eϕ (r0,θ ,ϕ)e− jmϕ dϕ

]
· d

dθ

[
P|m|

n (cosθ )
]

sinθ dθ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(6)

bn,m=− Cn,m

Wn (kr0)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ π
0

[∫ 2π
0 Eθ (r0,θ ,ϕ)e− jmϕ dϕ

]
· d

dθ

[
P|m|

n (cosθ )
]

sinθ dθ

+
∫ π

0

[∫ 2π
0 Eϕ (r0,θ ,ϕ)e− jmϕ dϕ

]
· jmP|m|

n (cosθ )dθ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(7)
The above double integral consists of an inner inte-

gral and an outer integral. The inner integral is just a
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Fourier integral respect to , which can be evaluated effi-
ciently by the Fast Fourier Transform (FFT). The outer
integral is usually calculated by a Gaussian Quadrature.
Given the near fields of the antenna, acquiring the spher-
ical harmonic coefficients by (6) and (7) is referred to as
the forward SHT. Given the spherical harmonic coeffi-
cients of the antenna, evaluating the near fields by (1) is
called the inverse SHT. Owing to the FFT, both forward
SHT and inverse SHT have the computational complex-
ity of O(N3), which can be reduced to O(N2logN) by a
novel fast SHT [26].

The expansion coefficients an,m and bn,m are also
termed the spherical harmonic spectra of the electro-
magnetic field. These are low-pass and discrete spectra
which can be stored easily. Because 1≤n≤N, −n≤m≤n,
the number of coefficients an,m is N×(N+2), and it
also applies for bn,m. According to [26], we often take
N=kd+10, where d is the size of the antenna; the mem-
ory requirement for this spectrum is trivial.

Furthermore, among all the 2N×(N+2) coeffi-
cients, only a small portion are relatively large quanti-
ties, whereas the rest are so small they can be neglected.
Therefore, if we only store the non-zero coefficients, then
the memory requirement could be reduced significantly.
The sparsity pattern of these coefficients is shown in
Figs. 12 and 13.

Obviously, (6) and (7) are applied to represent the
near field at a single frequency. Often we need the field
over a wide frequency band, which will be addressed by
a frequency sweeping algorithm called rational interpo-
lation based on Loewner matrix [27, 28].

B. Rational interpolation respect to frequency

Consider only one of the coefficients an,m and bn,m.
This coefficient is denoted by x(s), where s represents
the frequency. Suppose 2p−1 sampling data have been
obtained by the forward SHT for the near field of an
antenna:

x(si)=xi, i= 1,2,3,· · ·,2p−1, (8)

where s1<s2<· · ·<s2p−1 are the sampling frequenci-es.
We partition these data into two groups:

x(λi)=wi, i= 1,2,3,· · ·,p, (9)
x(μ j)=v j, j= 1,2,3,· · ·,p−1. (10)

With (9), x(s) can be expressed by the following
rational approximation in barycentric form:

xL (s)=
p

∑
i=1

αiwi

s−λi
/

p

∑
i=1

αi

s−λi
, (11)

where αi (i= 1,· · ·,p) are unknown coefficients to be
determined by (10). Evaluating xL (s) at the points in the
second partition (10) leads to:

xL (μ j)=
p

∑
i=1

αiwi

μ j−λi
/

p

∑
i=1

αi

μ j−λi
=v j. (12)

Subsequently, we have:
p

∑
i=1

v j−wi

μ j−λi
αi= 0, (13)

which is written in compact matrix form as:⎡⎢⎢⎢⎣
v1−w1
μ1−λ1

· · · v1−wp
μ1−λp

... v j−wi
μ j−λi

...
vp−1−w1
μp−1−λ1

· · · vp−1−wp
μp−1−λp

⎤⎥⎥⎥⎦
⎡⎢⎣ α1

...
αp

⎤⎥⎦= 0. (14)

The system matrix on the left side of (14) is the so-
called Loewner matrix based on the adopted partition of
the samples, and the unknown coefficients αican be read-
ily evaluated by the SVD of the Loewner matrix. Then,
the rational polynomial (11) goes through all the 2p−1
points, and can be viewed as an approximation of the
unknown function x(s).

C. Compressing the field of an antenna or scatterer

The above rational interpolation is suitable for the
scalar function, and can be generalized to interpolate
a vector function, such as the vector containing all the
coefficients an,m and bn,m, for a frequency band s∈[sa,sb].
More details are given in [3].

The flowchart Fig. 3 presents the algorithm to com-
press the field of an antenna. It mainly includes four com-
ponents. The first one is to obtain the tangential near
electric field over a sphere surrounding the antenna by

Fig. 3. Flowchart of the compression algorithm.
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computational electromagnetic algorithms or measure-
ments. The second one is the forward SHT in part A.
The third one is the rational interpolation in part B. And
the last one is the inverse SHT in part A. All together, we
can compress the field into the spherical harmonic coef-
ficients and retrieve the field at any frequency efficiently.

III. NUMERICAL RESULTS

The proposed method is validated with the field radi-
ated by a waveguide antenna and the field scattered from
an UAV. As the frequency changes, the field of the former
varies slightly, while those of the latter varies rapidly.
Therefore, we investigate the former over a wide band
and the latter over a narrow band. In order to evaluate
the accuracy of the compression methods, we define the
relative error as:

ε =

√√√√∑M
j=1 ∑N

i=1

∣∣Ec (θi,ϕ j)−Er (θi,ϕ j)
∣∣2

∑M
j=1 ∑N

i=1

∣∣Er (θi,ϕ j)
∣∣2 , (15)

where θi,ϕ j are the sampling points along the two angles
in the spherical coordinate, M and N are the correspond-
ing number of points, Ec represents the electric field
obtained by a compression method, and Er represents
the reference field, which is obtained by MoM directly.
Furthermore, the definition of compression ratio (CR)
is [28]:

CR =
size o f the original data

size o f the compression data
. (16)

A. Rectangular waveguide antenna

Figure 4 shows the structure of a WR187 rect-
angular waveguide antenna, which has an aperture of
47.55×22.15 mm, and is 180 mm in length. This antenna
operates at C-band between 4 GHz and 6 GHz. The pro-
posed algorithm is implemented to compress and restore
the near field. It is pointed out that the tangential electric
field E tan over the enclosing sphere is obtained by MoM,
which is the second step of the algorithm. The radius of
the sphere is 150 mm, and the truncation order in SHT is
N= 14.

Subsequently, the near field is converted into spheri-
cal wave expansion coefficients. Among all the 448 coef-
ficients, there are only 102 non-zero ones, as shown in
Figs. 5 and 6. These coefficients are fitted by the rational
interpolation with only 11 frequencies and the tolerance
in Fig. 3 is τ = 0.03. In other words, the MoM simu-
lation is implemented 11 times. Figures 7 and 8 show
that the real and imaginary parts of the interpolated a1,1
and b14,7 are almost identical to the reference. There-
fore, the spherical wave expansion coefficients at an arbi-
trary frequency in the band can be predicted by (10). For
example, we compute the coefficients at 5.33 GHz, then
restore the near electric field on the enclosing sphere by
inverse SHT. Figures 9 and 10 show that the near-field is
in good agreement with the reference result.

Fig. 4. Waveguide antenna and enclosing sphere.

Fig. 5. Sparsity of spherical harmonic spectra an,m.

Finally, the compression ratio of the near-field is
considered. First, we evaluate the memory requirement
of the near field without compression. Suppose there are
200 uniformly distributed frequencies from 4 GHz to 6
GHz, and the field at each frequency has 360 azimuthal
points and 180 elevational points on the surrounding
sphere. Then the memory requirement of the near-
field complex vectors is 200×360×180×3×16≈622
MB. Thus, the proposed method needs only 11 fre-
quencies over the whole band, and each frequency has
only 102 non-zero spherical wave expansion coefficients.
The memory requirement is 11×102×2×16≈0.036 MB,
which is negligible. Therefore, the compression ratio is
about 17278.
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Fig. 6. Sparsity of spherical harmonic spectra bn,m.

Fig. 7. Rational interpolation of the coefficient a1,1.

Fig. 8. Rational interpolation of the coefficient b14,7.

Fig. 9. Near-field of waveguide antenna at 5.33 GHz.

Fig. 10. Near-field of waveguide antenna in XOY cut at
5.33 GHz.

B. UAV RCS

Figure 11 shows the model of a UAV, which is about
5 m in length. The UAV is illuminated by a plane wave
E inc=ẑe− jky, and the operating frequency band is from
1180 MHz to 1220 MHz. The proposed algorithm will be
applied to compress the bistatic RCS of the UAV. Simi-
larly, the second step of the algorithm is computing the
tangential near-field E tan of the UAV over the enclosing
sphere by MoM. The radius of the sphere is 5 m, and the
truncation order in SHT is N= 139.

Then, the near-field is converted into spherical wave
expansion coefficients. There are 15761 non-zero coef-
ficients among all the 39198 coefficients, as shown in
Figs. 12 and 13. These non-zero coefficients are interpo-
lated over the frequency band with only 19 frequencies.
Figures 14 and 15 show that the real parts and imagi-
nary parts of the interpolated a125,0 and b2,−1are in good
agreement with those of the reference. Also, we compute
the coefficients at an arbitrary frequency, say 1216 MHz,
by (10), and then restore the far-field or RCS by inverse
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Fig. 11. Structure of a UAV.

Fig. 12. Sparsity of spherical harmonic spectra an,m.

Fig. 13. Sparsity of spherical harmonic spectra bn,m.

SHT. Figures 16 and 17 show that the restored far-field
is almost the same as the reference result.

Then, the compression ratio is considered. First, we
evaluate the memory requirement of the RCS without
compression. Suppose there are 40 uniformly distributed

Fig. 14. Rational interpolation of coefficient a125,0.

Fig. 15. Rational interpolation of coefficient b2,−1.

Fig. 16. Normalized bi-static RCS of UAV at 1216 MHz.

frequencies from 1180 MHz to 1220 MHz, and each fre-
quency has 720 azimuthal angles and 360 elevational
angles. The memory requirement of the complex vectors
will be 40×720×360×3×16≈498 MB. The proposed
algorithm needs only 19 frequencies over the whole
band, and each frequency has 15761 non-zero spherical
wave expansion coefficients. The memory requirement is
19×15761×16≈4.78 MB, and the compression ratio is
about 103.
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Fig. 17. Normalized bi-static RCS of UAV in XOY cut at
1216 MHz.

Finally, the efficiency of the proposed algorithm is
compared to TDFT [10, 11] and SVD [12, 13] in Fig. 18.
Figure 19 shows the spectrum obtained by TDFT, which

Fig. 18. Efficiency of three methods at 1216 MHz.

Fig. 19. Spectrum of the RCS obtained by TDFT.

converts a dense matrix into a sparse one by dropping
the small elements in the spectrum matrix. If the rela-
tive error is set to be 0.1, the compression ratio of the
proposed method is 64.13, while those of TDFT and
SVD are 8.71 and 5.21, respectively. Thus, the proposed
method is more efficient than the other two methods.

IV. CONCLUSION

This paper gives a novel method to compress the
field data of an antenna or a scatterer by SHT and rational
interpolation. On the one hand, SHT converts the vectors
of near field on a sphere into spherical wave expansion
coefficients, which are low-pass sparse discrete spectra.
On the other hand, rational interpolation fits these spec-
tra over a frequency band with only a few sampling fre-
quencies. As a result, the data of field are compressed
dramatically, and we can readily restore the field data at
an arbitrary frequency. This method can efficiently com-
press both far field and near field.

The proposed method will be improved in the
future. First, the spherical wave expansion process will
be replaced by FaVeST [24] or the spherical-multipole
expansion [29]. Then, the proposed method will be
revised to compressing the monostatic RCS, which is
more useful in radar imaging and target recognition.
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Abstract – This paper introduces a 3-bit reconfigurable
intelligent surface (RIS) design characterized by its
unique angle-insensitive properties for 5G communica-
tion systems. The proposed configuration provides eight
distinct phase states enabled by the states of two var-
actors with an applied bias voltage. The design of the
unit cell with double centric square split ring resonators
and the formation of the RIS with a 5x5 array have
been presented. A detailed analysis of the RIS perfor-
mance has been conducted using the CST 3D electro-
magnetic simulator to study the reflection amplitude and
phase responses. It is demonstrated that the results show
a phase range of up to 315 degrees, along with eight dis-
tinct states exhibiting a stable interval of 45 degrees. This
effectively covers incidence angles ranging from 0 to 60
degrees.

Index Terms – 3-bit RIS, 5G, angular insensitivity, quan-
tization, reconfigurable intelligent surface, split ring res-
onator, SRR, varactor.

I. INTRODUCTION

The wireless communication landscape is currently
undergoing a transformative phase with the emergence
of the reconfigurable intelligent surface (RIS) [1]. These
innovative platforms are gaining widespread recognition
for their ability to effectively manipulate signal propaga-
tion environments, thereby significantly enhancing wire-
less network performance. The traditional challenges
associated with uncontrolled interaction of radio waves
environmental elements, which often lead to signal qual-
ity deterioration, are being addressed through the deploy-
ment of RIS [2]. These surfaces play a pivotal role in
optimizing wave reflections, refractions, and scattering,
which in turn facilitates the reduction of multipath fading
while maintaining low hardware costs and energy effi-
ciency [3–4].

At the core of RIS technology is the metasurface, a
crucial component renowned for its remarkable capabil-

ity to manipulate electromagnetic (EM) waves through
meticulously designed and strategically arranged meta-
atoms [5]. The concept of digital coding metasurfaces
has revolutionized the design process, allowing for real-
time programmability and reconfigurability. The inte-
gration of tunable components like PIN diodes, varac-
tor diodes, and field-programmable gate arrays (FPGA)
has further enhanced the functional diversity of metasur-
faces, paving the way for high-performance multifunc-
tional metasurfaces in RIS-assisted wireless communi-
cation [6].

This paper introduces a 3-bit programmable RIS to
address the challenges arising from angular sensitivity
and phase control in RIS. Such sensitivity may lead to
issues that can result in the failure of RIS-assisted wire-
less communication networks such as the ones that rely
on the reciprocity of wireless channels [7–8]. The pro-
posed design in this paper features a unit cell which
has double centric square split ring resonators (SRRs)
with two varactors for phase control, aiming to enhance
angular insensitivity [9–10]. The unit cell is then used
to form RIS with 5×5 array configuration. The results
demonstrate a phase range of up to 315 degrees, with
eight distinct states exhibiting a stable interval of 45
degrees, effectively covering incidence angles from 0 to
60 degrees [11–12].

II. DESIGN OF SRR UNIT CELL

The square SRR unit cell in the design is imple-
mented on a Teflon-based substrate, as depicted in Fig. 1
(a). Each SRR unit cell comprises a square loop with a
side length (a) of 5 mm, a split width (d) of 0.5 mm,
and a metal width (c) of 0.2 mm, m represents the side
length of the SRR unit cell and is equal to 5 mm. The
spacing (s) between adjacent SRRs is maintained at 0.5
mm, optimizing the coupling effect and resonance char-
acteristics. A detailed analysis has been conducted and
verification using the 3D EM simulator CST. The varac-
tor diode model used is the MAVR-00020-141100 from
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MACOM. The capacitances of this varactor diode range
from 0.75 pF to 2.60 pF.

(a) (b)

Fig. 1. Layout of SRR unit cell with varactor diodes: (a)
single element unit cell and (b) 5x5 array with final unit
cell.

III. SIMULATION RESULTS AND
DISCUSSION

Figure 2 illustrates the normalized reflection coeffi-
cient amplitude across a frequency range from 20 GHz
to 30 GHz for various varactor capacitance values. Each
curve represents the response for a specific capacitance
value and its corresponding phase shift, demonstrat-
ing the shift in the resonant frequency of the element
with changes in capacitance. The peak amplitude val-
ues in Fig. 2 indicate the resonant points where max-
imum reflection occurs. These characteristics demon-
strate the ability to control the phase of reflected signals
by adjusting the varactor capacitance, a key characteris-
tic for beam-steering applications.

Figure 3 displays the linear phase shift progression
of a SRR unit cell at 26 GHz, with the reflection phase
angle increasing in 45◦ increments across eight configu-
ration states, ranging from 0◦ degrees at state 1 to 315◦

Fig. 2. Frequency response of a varactor-tuned RIS.

Fig. 3. Progressive phase shift characteristics of SRR unit
cell at 26 GHz.

degrees at state 8. In Fig. 4, the variation of the normal-
ized scattering pattern for different incident angles over
an 180◦ degree range is given, with each curve represent-
ing the scattering intensity at a specific incident angle.

RIS angular reciprocity is investigated to identify
the angular sensitivity of the proposed RIS structure.
Sets of simulations have been conducted for the pre-
determined incident angles and corresponding reflected
angles have been measured and illustrated in Table 1.

Fig. 4. Normalized 2D scattering pattern vs. angle.

Table 1: Angular sensitivity

Simulation I Incident Angle - Θi 90
◦

112.5
◦

Reflected Angle - Θr 112.5
◦

90.5
◦

The normalized 2D scattering parameter responses
for each incident angle are illustrated in Fig. 4. The sim-
ulation results affirm that plane waves are reflected back
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toward the incidence direction on the RIS, thereby vali-
dating the concept of angular reciprocity.

The DC biasing circuit for the varactor is given in
Fig. 5. Figure 6 gives the capacitance of the varactor ver-
sus applied reverse voltage. The complete system with

Fig. 5. DC biasing circuit for the presented unit cell
reconfigurable diode.

Fig. 6. Capacitance of the varactor versus reverse bias
voltage.

Fig. 7. Integrating the SRR unit cell with the DC circuit
and SPICE representation for varactor diodes.

the varactor bias circuit is integrated and simulated as
shown in Fig. 7. The return loss for the unit cell when
the applied reverse voltage is between 0.5 V and 5.6 V is
plotted in Fig. 8. Figure 8 illustrates how the return loss
varies with the frequency for each bias setting, indicat-
ing the varactor’s performance and tenability within this
range.

Fig. 8. Simulated return losses with different reverse bias
voltages.

Figure 9 illustrates the insertion loss for the applied
reverse voltages. Figure 10 gives the group delay for
the unit cell when reverse bias voltages vary. The phase
characteristics of the insertion loss is given in Fig. 11.
Figure 12 shows two color-coded plots representing
phase distributions for a RIS. The top plot is labeled
“Continuous phase distribution” and shows a gradient
of colors, indicating a smooth transition of phase val-
ues across the surface. The bottom plot is labeled “2-

Fig. 9. Insertion losses with different reverse bias
voltages.
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Fig. 10. Simulated group delay for different reverse bias
voltages.

Fig. 11. Simulated phase characteristics of S21 with dif-
ferent DC reverse bias voltages.

bit phase distribution” and displays four distinct colors,
representing discrete phase states achievable with 2-bit
quantization.

Figure 13 illustrates the RIS array factor for beam
steering, comparing continuous and 2-bit phase con-
trol methods. It displays the amplitude in decibels (dB)
against the angle theta in degrees. The continuous phase
control (blue line) results in a smoother, more precise,
steering profile, while the 2-bit phase control (red line)
shows a more discretized pattern with higher side lobes,
indicating less precise beam control.

Figure 14 displays four plots that compare the per-
formance of an RIS array factor at 26 GHz with the dif-
ferent quantization levels such as 1-bit, 2-bit, and 3-bit.
The top left plot indicates the mean quantization phase
error which measures the average phase error due to
quantization at various reflected angles. The top right

Fig. 12. Comparative displays of continuous and 2-bit
phase distribution.

Fig. 13. Comparison of continuous and 2-bit phase con-
trol for RIS beam steering at 26 GHz.

plot represents the quantization loss. This plot indicates
the power loss associated with phase quantization. The
bottom left plot represents the beam pointing error which
shows the deviation of the actual beam direction from
the intended direction due to quantization. The bottom
right plot shows the side lobe level. This plot represents
the relative power level of side lobes compared to the
main lobe, a critical factor in beamforming performance.
Figure 15 contains two graphs depicting the performance
of an RIS array at 26 GHz based on the different unit cell
sizes (0.1λ , 0.25λ , and 0.5λ where λ is the wavelength).
The left graph shows the pointing error in degrees as a
function of the reflected angle. It demonstrates how the
beam’s actual direction deviates from the targeted direc-
tion for each unit cell size. The right graph illustrates the
level of the side lobes in dB relative to the main lobe,
also as a function of the reflected angle, indicating how
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unit cell size impacts the prominence of the side lobes
during beamforming.

Fig. 14. Performance metrics of RIS array factor with
phase quantization at 26 GHz.

Fig. 15. Impact of unit cell size on RIS beam pointing
accuracy and side lobe levels at 26 GHz.

IV. CONCLUSION

In this paper, we have designed and simulated a
3-bit reconfigurable intelligent surface (RIS). The pro-
posed design incorporates a unit cell with angular reci-
procity, aiming to enhance uplink and downlink mis-
alignment. This improvement addresses the potential risk
of failure in RIS-assisted wireless communication net-
works caused by misalignment issues. It is shown that
the RIS presented in this paper achieves a comprehen-
sive phase shift range from 0◦ to 315◦, enabling eight
distinct digital states with stable 45◦ intervals. This has
been accomplished by incorporating two varactors and
enabling eight distinct phase states by changing the
applied voltage. The outcomes of this research can be

used for communication systems that rely on precise
angular sensitivity and critical phase control.
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Abstract – This paper presents a beam-reconfigurable
antenna design adopting distributed inductors, Mn-Zn
ferrite, and static magnetic fields. The proposed antenna
consists of one driven patch, two parasitic patches, and a
full ground plane. Each parasitic patch is loaded with a
distributed inductor with positive inductance. The patch
antenna has a symmetric configuration and a broadside
pattern. A Mn-Zn ferrite slab is added to one inductor to
reduce its self-resonant frequency and change its induc-
tance from positive to negative which results in unsym-
metric field distributions and a tilted radiation beam. A
static magnetic field is applied to the ferrite material fur-
ther to adjust the tilted angle of the radiation beam. The
proposed antenna works at five modes with reconfig-
urable beams of θ =0◦ (φ =0◦), 15◦ (φ =90◦, 270◦) and
28◦ (φ =90◦, 270◦).

Index Terms – Magnet, Mn-Zn ferrite, negative induc-
tances, reconfigurable beams.

I. INTRODUCTION

Beam-reconfigurable antennas provide interference-
free, power-saving, and highly secured end-to-end
communication making them attractive in 5G and satel-
lite communication systems [1–4]. Extensive research
has been conducted on beam reconfigurable antenna
design [3–13], in the design of which PIN diodes [3–9],
varactors [10, 11], and phase shifters [12, 13] are adopted
to control feeding networks, connections among metallic
portions, or phase shifting between antenna elements.
Table 1 compares the published beam reconfigurable
antennas. A common characteristic of these designs is
the need to introduce a DC power supply for control. This
requires the design of DC bias circuits, which involves
a large number of lumped components, increases design
complexity, occupies space on the circuit board, and
potentially introducing losses that lead to gain reduction
during the soldering of these lumped components.

To address these issues, this article presents a novel
technique of beam reconfiguration using tunable induc-
tors. The inductors are loaded with magnetic material
and controlled by a magnetic field to tune both the induc-
tance and the antenna beam. Compared to traditional

beam reconfigurable antennas, the proposed design does
not require a DC bias circuit, and the fabrication only
involves grounding the inductor, simplifying the manu-
facturing process, and reducing design complexity. Mag-
netic materials and magnetic fields have been adopted in
inductors to improve [14–19] and tune [20–23] induc-
tance. To the best of the authors’ knowledge, this arti-
cle presents the first design of a beam-reconfigurable
antenna by using magnetic field control.

Table 1: Comparison of the published beam reconfig-
urable antennas

Ref. Freq.

(GHz)

Tunable and

Lumped Components

Beam

States

Gain

(dB)

[3] 3.5 4 PIN, 4 L, 4 R, 4 P 8 4.9
[4] 3.8 8 PIN, 16 L, 32 C, 8 R,

8 P
3 3.8

[5] 3.6 8 PIN, 8 L, 8 C, 8 R, 8
P

5 11.85

[6] 3.7 12 PIN, 4 L, 12 P 12 4.61
[7] 5.3 8 PIN, 9 L, 12 C, 1 R,

8 P
4 7.04

[10] 3 2 Var, 2 C, 2 P 5 N.A.
[11] 5.8 3 Var, 3 L, 3 C, 3 R, 3

P
3 6.5

[12] 11.75 Phase shifter 6 20
[13] 4.8 28 PIN, 12 C, 28 P 9 7.8§

This

Work

2.4 0 5 6.02

PIN is PIN diode, L is inductor, C is capacitor, R is resis-
tor, P is power, Var is varactor, §unit is dBic

The proposed antenna is a patch antenna with two
parasitic patches. Two tunable inductors are loaded in the
two parasitic patches. A Mn-Zn ferrite slab and magnet
are adopted to tune each inductor’s inductance. The pro-
posed antenna beam works at five states with main beam
points to θ =28◦ (φ =270◦), 15◦ (φ =270◦), 0◦ (φ =0◦),
15◦ (φ =90◦), and 28◦ (φ =90◦), respectively.

II. ANTENNA DESIGN

Figure 1 shows the configuration of the proposed
antenna. The antenna consists of three rectangular
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(a)

(b)

Fig. 1. Configuration of the proposed antenna: (a) top
view (without magnet) and (b) side view (with magnet).

patches and a full ground (GND) printed on a 0.8
mm thick Rogers RO4003 substrate with εr =3.55 and
tanδ =0.0027. The three patches are identical in size
and shape. The center patch is directly fed through a
microstrip line, while the other two patches (P1 and P2)
are fed by coupling, with each loaded with a meander-
shaped inductor shorted to the ground plane. The antenna
configuration derives from the one in [10] by replacing
the varactors with tunable inductors. The patch antenna
is symmetric along the y-axis, resulting in a broadside

Table 2: Dimensions of the proposed antenna
Parameter Wsub Lsub WP LP WS Wg y0 l0 s
Value (mm) 150 53 41.5 32.8 1.8 3.7 10.6 11 5.5
Parameter H WFe LFe HFe WL LL SL Wf Wk
Value (mm) 0.8 5 9 0.5 0.4 3 0.5 5.5 1.9

Table 3: Radiation patterns of the proposed antenna

Mode Left Inductor Right Inductor
Measurement Simulation

Main Beam (θ ,ϕ) Gain (dB) Main Beam (θ ,ϕ) Gain (dB)

1 - - (0◦, 0◦) 6.82 (0◦, 0◦) 6.84
2 - With ferrite (15◦, 90◦) 6.22 (15◦, 90◦) 6.58
3 With ferrite - (15◦, 270◦) 6.22 (15◦, 270◦) 6.58
4 - With ferrite and

magnet
(28◦, 90◦) 6.07 - -

5 With ferrite
and magnet

- (28◦, 270◦) 6.07 - -

radiation pattern. A piece of Mn-Zn ferrite slab, with a
thickness of 0.5 mm, is mounted on top of one inductor
to realize negative inductance, while the other inductor,
which has no ferrite slab, exhibits positive inductance.
The discrepancy in inductance values between the two
inductors results in a tilted beam. Furthermore, applying
a magnetic field with a magnet results in a larger scan-
ning beam. The proposed antenna operates at a resonant
frequency of 2.4 GHz. The antenna dimensions are listed
in Table 2.

Table 3 shows the radiation patterns of the proposed
antenna. At Mode 1, both inductors are without a fer-
rite slab or magnet, resulting in equal inductance values
and broadside patterns. At Mode 2, the inductance on the
right side is loaded with a ferrite slab, resulting in a beam
tilted θ =15◦ and φ =90◦. At Mode 3, the antenna beam
tilts to the opposite direction of Mode 2 (θ =15◦ and
φ =270◦) with the ferrite slab loaded on the left inductor.
At Mode 4/5, the ferrite slab on the right/left inductor is
subjected to a magnetic field from a magnet, and a larger
tilted beam is obtained at θ =28◦ and φ =90◦, 270◦.

A. Reconfigurable beam design with lumped inductor

Two lumped inductors are used to replace the two
meandered line inductors (L1 connected to P1 and
L2 connected to P2) to evaluate the inductance values
required to obtain beam reconfiguration. Antenna per-
formance was simulated using the Ansys high-frequency
structure simulator (HFSS) software.

Table 4 presents 14 states with different beams and
Fig. 2 illustrates the corresponding radiation patterns. As
shown in Table 4 and Fig. 2, at State 1, L1=L2=10 nH,
the antenna beam points to the +z direction (θ =0◦ and
φ =0◦). At State 2, L1 and L2 are both positive with a
great difference in value (9999 nH), and a small tilted
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angle of 1◦ is obtained in the elevation plane. This indi-
cates that loading inductors with different values in the
two parasitic patches introduces a beam tilted to the side
of the smaller inductor. However, a minimal tilted angle
is obtained when both inductors are positive. In the cases
of States 3-6, one of the two patches is directly shorted
to the ground plane without loading an inductor, while
the other patch is loaded with an inductor. A negative
inductor (-10 nH) achieves a larger tilted angle com-
pared to a positive inductor (100 nH), indicating that
negative inductors are more effective in achieving larger
tilted beams than positive ones. The comparison of States
7-10 indicates that when the inductance values of the
two inductors have opposite signs, a smaller absolute
value of the negative inductance leads to a larger tilted
angle in the radiation pattern. In States 9-10, a signifi-
cant tilted angle was achieved, θ =32◦, where one induc-
tor is a positive inductance of 260 nH and the other is a

Table 4: States of proposed antenna with lumped induc-
tors
State L1 (nH) L2 (nH) Beam direction (θ ,ϕ)

1 10 10 (0◦, 0◦)
2 1 10000 (1◦, 270◦)
3 0 100 (4◦, 270◦)
4 100 0 (4◦, 90◦)
5 -10 0 (10◦, 270◦)
6 0 -10 (10◦, 90◦)
7 -20 260 (13◦, 270◦)
8 260 -20 (13◦, 90◦)
9 -3 260 (32◦, 270◦)
10 260 -3 (32◦, 90◦)
11 160 -3 (30◦, 90◦)
12 360 -3 (32◦, 90◦)
13 460 -3 (33◦, 90◦)
14 260 -1 (33◦, 90◦)

Fig. 2. Normalized radiation patterns for different states
of yoz.

negative inductance of -3 nH. Comparing State 10 with
States 11-14, it can be seen that the titled beam angle
increases with the increase of the positive inductor’s
inductance value or the negative inductor’s inductance
absolute value. It seems that the beam angle reaches a
stable value at State 9-10, since the beam angle only
increases by 1◦ when the positive inductor increases
from 260 to 460 nH or the negative inductor decreases
from -3 to -1 nH. In section IIB, a distributed inductor
with an inductance around 260 nH will be designed using
meandered lines, and the inductance is tuned to a nega-
tive value around -3 nH by loading a ferrite slab.

B. Design of distributed inductors

Based on the discussion above, different tilted
beams are obtained by loading different inductors in P1
and P2. Meandered lines are utilized to design a posi-
tive inductor, avoiding the need for via holes or metal-
lic bridges that would be required for a spiral-shaped
inductor [17]. In the proposed inductor, shown in Fig. 1,
one terminal is directly connected to the parasitic patch,
while the other terminal, located at the edge of the
board, connects to the ground plane via a soldered cop-
per wire. Figure 3 shows the inductor’s characteristics
varying with dimensions. As shown, the inductor reaches
its maximum positive value at its self-resonant frequency
and decreases to a negative value dramatically with the
increase in frequency. Furthermore, the inductor’s reso-
nant frequency decreases with the increase of the line’s
length of LL, width of WL, and spacing of SL. The induc-
tor resonates at the working frequency of 2.4 GHz when
LL =3 mm, WL =0.4 mm, SL =0.5 mm, with its peak
inductance of 260 nH which meets the requirement of
positive inductor’s inductance value at States 9-10 in
Table 4. A negative inductor with an inductance around
-3 nH is required based on the meandered line-shaped
configuration working at States 9-10.

Based on the inductors designed above, this paper
presents an approach of using magnetic material to
change the inductance from positive to negative by
reducing the inductor’s self-resonant frequency [17, 24].
Mn-Zn ferrite is chosen to be loaded onto one inductor as
shown in Fig. 1 (a), due to its high magnetic permeability
and sensitive response to magnetic fields. Figure 4 shows
the inductor’s inductance with/without the ferrite slab
with WL =0.4 mm and SL =0.5 mm. When LL =3 mm,
with a loaded ferrite slab, the self-resonant frequency of
inductors decreases from 2.4 GHz to 2.1 GHz, while its
inductance changes from 260 nH to -20 nH. When LL =2
mm, both resonate frequencies are higher than 2.4 GHz,
resulting in two positive inductances of the cases with-
out/with ferrite slab. When LL =4 mm, both resonate fre-
quencies are lower than 2.4 GHz, resulting in two neg-
ative inductances of the cases without/with ferrite slab.



335 ACES JOURNAL, Vol. 40, No. 04, April 2025

(a) (b)

(c)

Fig. 3. Impact of parameter dimensions on inductance:
(a) LL, (b) WL, and (c) SL.

Fig. 4. Changes of inductance by adding ferrite slab.

In conclusion, an inductor resonating at its working fre-
quency (2.4 GHz) is an ideal choice to obtain negative
inductance by adding a ferrite slab.

Figure 5 gives a simulated magnetic field distribu-
tion on the inductor with/without ferrite slab. As shown,
the magnetic fields increase significantly with the loaded
ferrite slab, which leads to a decrease in self-resonant
frequency and an increase in inductance at frequencies
below resonant frequencies, which agrees with the trend
shown in Fig. 5.

C. Reconfigurable beam design with distributed
inductors

By adopting the two distributed inductors with
meandered line shapes and loading with a ferrite slab (as
shown in Fig. 1), beam reconfiguration is obtained with
three modes given in Table 2. At Mode 1, both inductors
are unloaded with a ferrite slab, resulting in the same

(a) (b)

Fig. 5. Simulation of H-field distribution of the proposed
inductor: (a) without ferrite and (b) with ferrite.

inductance and broadside pattern. At Mode 2, the right
inductor has negative inductance by loading with a ferrite
slab, and the left one has positive inductance without fer-
rite loading, resulting in the main beam being tilted 15◦
to the negative inductor. At Mode 3, the antenna beam is
tilted to the left side when a ferrite slab is loaded on the
left inductor.

S11 plots of the proposed antenna in the three
modes are given in Fig. 6. The antenna resonates at
2.4 GHz with an overlapping bandwidth of 2.39-2.42
GHz in the three modes. Figure 7 presents the proposed
antenna’s simulated electric field distributions and radia-
tion patterns at different modes. At Mode 1, the electric
field distributions and radiation patterns show symme-
try about the antenna’s middle axial due to its symmetric
configuration. At Mode 2/3, the electric field is more
concentrated around the patch loaded with a ferrite slab,
resulting in the antenna beam being tilted to the same
side.

Table 5 illustrates the impact of varying the fer-
rite slab’s dimensions on the antenna’s radiation pattern.
Specifically, as the thickness (HFe) of the ferrite slab
increases, the tilted beam angle increases while the gain
decreases. To achieve an optimal balance between the
beam angle and gain, an HFe of 0.5 mm was selected.

Fig. 6. S11 plots of the proposed antenna.
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(a)

(b)

(c)

Fig. 7. E-field distribution and radiation pattern: (a)
Mode 1, (b) Mode 2, and (c) Mode 3.

Additionally, the maximum beam angle and gain were
observed when WFe =5 mm and LFe =9 mm.

Table 5: Ferrite slab’s size influence on antenna pattern
Parameter Value (mm) Beam (θ ,ϕ) Gain

(dB)

HFe 0.45 (13◦, 90◦) 5.0
0.5 (18◦, 90◦) 4.9

0.55 (20◦, 90◦) 4.6
WFe 4.5 (13◦, 90◦) 4.8

5 (18◦, 90◦) 4.9

5.5 (15◦, 90◦) 4.6
LFe 8.5 (15◦, 90◦) 4.7

9 (18◦, 90◦) 4.9

9.5 (16◦, 90◦) 4.6

Based on the discussion of section IIA, an increase
in the value of negative inductance will lead to a larger
tilted beam angle. A permanent magnet was adopted
to enforce static magnetic fields on the Mn-Zn fer-
rite. Magnetic fields distributions in the ferrite slab
with/without the magnet have been simulated by using
ANSYS Maxwell and are given in Fig. 8. As shown, by
applying static magnetic fields, the magnetic induction
intensity increases more than two times. The effect of
the magnet on the inductor’s inductance and the tilted
beam cannot be simulated by ANSYS Maxwell or HFSS
directly due to the limitations of each software. Maxwell
can only model the impact of static magnetic fields on the
magnetic properties but cannot account for the dynamic
behavior of the inductor or antenna at higher frequencies.
HFSS can accurately model the inductor’s inductance

(a) (b)

Fig. 8. Simulated B-field distribution of the magnet: (a)
with ferrite and magnet and (b) with magnet.

and antenna patterns. However, it does not support the
simulation of static magnetic field’s effect on the induc-
tor. The enhancement of tilted beam angle through the
use of a magnet will be validated through measurement
in section III.

III. FABRICATION AND MEASUREMENT

The proposed antenna was fabricated and measured
to validate the simulation results. Figure 9 shows pho-
tographs of the fabricated antenna. Figure 10 shows mea-
sured and simulated S11 plots. As shown, measurements
agree well with the simulation. The overlapped measured
bandwidth of the five modes covers 2.39-2.42 GHz.

Figure 11 shows the measured and simulated radia-
tion patterns. As shown, measurements agree well with
the simulation except for a slight reduction of measured
gain which the mounting of the ferrite slab might intro-
duce.

(a) (b)

(c) (d)

Fig. 9. Photographs of proposed antenna: (a) top layer of
Mode 1, (b) top layer of Mode 3, (c) top layer of Mode
5, and (d) bottom layer.
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The measured angles align closely with the simu-
lated angles. Specifically, Mode 1 shows a steering angle
of 0◦ with a measured gain of 6.82 dB, while Modes 2/3,
with steering angles of 15◦, both display nearly identical
measured gains of 6.22 dB. In Modes 4 and 5, the deflec-
tion angles induced by the magnetic field attain 28◦,
with both configurations demonstrating nearly equiva-
lent measured gains of 6.07 dB. There is little differ-
ence in the maximum gain of Modes 2 and 3 between
measurement and simulation. The measured gain is a bit
lower than the simulated one. This might be caused by

Fig. 10. Measured and simulated S11 of the proposed
antenna.

(a) (b)

(c) (d)

Fig. 11. Measured and simulated radiation patterns for
different modes of yoz: (a) Mode 1, (b) Mode 2, (c)
Mode 3, and (d) Modes 4 and 5.

the errors introduced in fabrication, such as dimension
errors of ferrite slab and roughness at soldering points.

IV. CONCLUSION

This paper presents a beam-reconfigurable antenna
based on a patch antenna loaded with two distributed
inductors with the same positive inductances. Adding
a ferrite slab to one inductor changes its inductance to
negative, resulting in a radiation beam tilted to the neg-
ative inductor’s side. A larger tilted beam is obtained
by applying static magnetic fields on the ferrite slab.
The proposed antenna works at five beam states with
the largest tilted angle of 28◦. Compared with traditional
beam reconfigurable antennas using switches or phase
shifters, our design doesn’t involve DC power or lumped
components. It has the potential to find applications in
several specialized fields, such as implantable devices
with low/no DC power supply. It can also be used in a
high-power system since the distributed inductors have
higher power capacity than switches and the lumped
components.
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Abstract – Microwave network parameters are preva-
lently used in the modeling of transmission lines. It
can characterize the interconnection of ports and is sup-
ported by most SPICE software. However, traditional
microwave network parameters cannot characterize the
role of external fields; this is a common concern in elec-
tromagnetic compatibility or electromagnetic interfer-
ence analysis. In this paper, external excitation is treated
as an additional port in the circuit. An extended net-
work parameter is proposed to model the transmission
lines excited by the external field. The extended network
parameters can be used easily in the SPICE solver to
analyze responses on linear or nonlinear loads. The pro-
posed method is suitable for evaluating the electromag-
netic interference of complex transmission line networks
or PCBs, and it can use the advantages of circuit solvers
for tuning or optimization with less computational bur-
den.

Index Terms – Black-box modeling, electromagnetic
coupling, network parameters, transmission line.

I. INTRODUCTION

With the rapidly growing complexity of the elec-
tromagnetic environment, the survivability of electronic
devices or modules exposed to it should be valued.
In a complex electromagnetic environment, those man-
made high-power electromagnetic (HPEM) interference
sources are undoubtedly the most threatening, such as
high-power microwaves (HPM), which are defined as
microwave sources that can be operated in 300 MHz
to 300 GHz, and their power is more than megawatts
[1, 2]. Transmission lines (TLs), such as micro-strip lines
(MSLs), are widely employed in high-frequency circuits
and systems. When exposed to electromagnetic radia-
tion, an induced voltage or current is generated on the
TL and transmitted to the load. Due to the widespread

presence of nonlinear loads in susceptible systems, high-
power signals may alter the operating state of these
devices. The resulting effects include device-level recti-
fication [3, 4] and system-level interference [5, 6], which
can lead to improper functioning of the system. More
seriously, when the induced voltage exceeds the capac-
ity of the device, it may burn out [7–9]. Therefore,
accurately and effectively predicting the induced voltage
is of great significance for electromagnetic interference
(EMI) evaluation, as it involves solving the field-line
coupling problem.

Generally, field-to-line problems can be solved
using multi-conductor transmission line theory (MTLT).
However, it will not perform well at high frequen-
cies because it is based on the quasi-TEM assump-
tion [10, 11]. Full-wave and hybrid methods initially
adopt techniques such as the finite-difference time-
domain method [12], finite-element method [13], par-
tial element equivalent circuit [14], and time-domain
integral equation [15] to solve electromagnetic cou-
pling issues. The response of terminations is then deter-
mined using corresponding circuit analysis methods,
including transient convolution-based techniques, har-
monic balance, and the envelope tracking method [16].
Although these methods can produce accurate results,
they require significant resource consumption due to
the need for discretizing both time and space. These
approaches necessitate self-consistent solving of electro-
magnetic and electrical problems. Any changes in load
or excitation waveform require a re-performance of the
full-wave analysis. Consequently, if parameter tuning or
statistical analysis is required, repetitive full-wave cal-
culations can be laborious [17, 18]. Another approach
involves decomposing the field-line coupling problem
into a linear electromagnetic coupling problem and a
circuit-solving problem through the Thevenin’s equiv-
alent network approach [19]. In [20], the response of
linear and nonlinear loads inside a perforated metallic
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enclosure to HPEM irradiation was investigated, and
vector fitting (VF) is used to fit the Thevenin’s equiv-
alent impedance obtained from finite difference delay
modeling.

Microwave port analysis is a fundamental tech-
nique in high-frequency circuit design and microwave
engineering. It involves defining input and output ports
to measure and analyze parameters such as scattering
parameters (S-parameters), impedance parameters (Y-
parameters), and admittance parameters (Z-parameters).
These parameters are essential for modeling TLs such
as cable bundles and PCB interconnects. Various tech-
niques can integrate these network parameters into cir-
cuit solvers, whether in the time domain [21, 22] or
frequency domain [23], enabling engineers to perform
mixed-signal circuit analysis in complex systems such
as high-density interconnect PCBs. However, traditional
microwave network parameters do not account for exter-
nal field effects, critical in EMI analysis. In [24], a hybrid
S-parameter approach is proposed to address the field-
to-line problem by decoupling the excitation signal into
forced and modal waves using the generalized pencil
of functions. In this paper, we introduce a similar but
more general approach. Field-line coupling issues are
decomposed into a linear electromagnetic problem and
a circuit-solving problem through Thevenin’s theorem.
Electromagnetic results can be derived from measure-
ment or full-wave simulation data, in contrast to [24],
which does not require special decomposition of the
external field. A black-box model involving (N+1)-port
Z-parameters is directly derived, and the plane wave is
introduced to the network as an additional port. The
rest of this paper is organized as follows. In section II,
the theory is developed by analyzing an N-port TL net-
work illuminated by a plane wave. The (N+1)-port net-
work parameters are derived, and its equivalent circuit
is implemented using VF. In section III, we validate the
concept with three examples: nonlinear loads, TL net-
works, and TL in an enclosure. Further details are dis-
cussed in section IV, and the conclusions are presented
in section V.

II. THEORY ANALYSIS

Figure 1 (a) illustrates a typical scenario of an N-
port TL network illuminated by a plane wave. Using
Thevenin’s theorem, this can be translated into the prob-
lem shown in Fig. 1 (b).

In Fig. 1 (b), Vm
OC represents the open-circuit volt-

age at port m due to plane-wave illumination. Since cou-
pling is a linear process, we can use the circuit shown in
Fig. 2 to establish a connection between the external field
and the open-circuit voltage. This circuit consists of an
input impedance and a current-controlled voltage source.
The voltage source VEMI has the same waveform as the

(a) (b)

Fig. 1. TL networks subject to (a) plane wave illumina-
tion and (b) its equivalent representation.

external excitation field. The input impedance at port m
can be expressed as:

Zinm(s) = r · V oc
m (s)

VEMI(s)
. (1)

In (1), r represents the transresistance of the current-
controlled voltage source, which is typically set to 1.
However, to prevent Zin from becoming numerically too
small, the transresistance may be scaled to minimize
numerical errors.

Fig. 2. Circuit connected VOC and VEMI .

Once we have established the connection between
the VOC in Fig. 1 (b) and the external field with the circuit
shown in Fig. 2, we will then get the circuit as shown in
Fig. 3.

Network parameter analysis is widely used in circuit
analysis. In this paper, we will treat the external field as
an additional port. The open-circuit impedance represen-
tation of Fig. 3 is expressed by:

V (s) = Z (s) I (s) . (2)
Then, the elements of the impedance matrix can be

obtained with all the other ports left open-circuit:

Zij (s) =
Vi (s)
Ij (s)

, Ik (s) = 0,∀k 
= j. (3)

Suppose the intrinsic Z-parameter of the TL network
under consideration is:

ZIntr. =

⎡⎢⎣ ZIntr.
1,1 · · · ZIntr.

1,N
...

. . .
...

ZIntr.
N,1 · · · ZIntr.

N,N

⎤⎥⎦ . (4)
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Fig. 3. Extended (N+1)-port network, and external fields
are fed from the (N+1)-port.

(1) When i≤N and j≤N, since the (N+1)th port is
open circuit, the network parameters at these locations
remain consistent with the intrinsic part.

(2) When i=N+1 and j≤N, the external fields are
not affected by the parameters of the TL network, so the
parameters for these positions are set to 0:

ZExtd.
i,j = 0. (5)

(3) When i≤N and j=N+1, which means all the
ports are open-circuited except for the external one, then
Zi, j

Extd can be obtained through a simple circuit analy-
sis:

ZExtd.
i,N+1 =

Vi

IN+1
=−ri

Zin1Zin2 · · ·ZinN

Zini

riZini

N

∑
m=1

Zin−1
m . (6)

(4) When i=N+1 and j=N+1, then ZExtd
N+1,N+1 can

be determined through a straightforward circuit analysis:
ZExtd.

N+1,N+1 =
VN+1
IN+1

= Zin1Zin2 · · ·ZinN . (7)

For N-port network illuminated by plane-wave, the
extended Z-parameters can be expressed as:

ZExtd. =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− r1
Zin1 ∑N

m=1 Zin−1
m

ZIntr. ...
− rN

ZinN ∑N
m=1 Zin−1

m

0 0 0 1
∑N

m=1 Zin−1
m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ZIntr.
1,1 · · · ZIntr.

N,1 − r1
Zin1 ∑N

m=1 Zin−1
m

...
. . .

...
...

ZIntr.
1,N · · · ZIntr.

N,N − rN
ZinN ∑N

m=1 Zin−1
m

0 · · · 0 1
∑N

m=1 Zin−1
m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

When N=2, the network extends to a three-port net-
work, and the Z-parameter is written as:

ZExtd. =

⎡⎢⎢⎢⎢⎢⎣
ZIntr.

1,1 ZIntr.
1,2 −r1

Zin2
Zin1+Zin2

ZIntr.
2,1 ZIntr.

2,2 −r2
Zin1

Zin1+Zin2

0 0 Zin1Zin2
Zin1+Zin2

⎤⎥⎥⎥⎥⎥⎦ . (9)

So far, we have derived the extended Z-parameter.
This can be translated into other network parameters,
such as the Y-parameter or the S-parameter, which are
typically presented in textual form. If the electromag-
netic designer only needs to provide the results of the
field analysis to the circuit designer, their task is con-
sidered complete at that point. As a black-box modeling
method, most circuit solvers can identify network param-
eters, but they do not necessarily support the use of net-
work parameters for circuit analysis directly, so it is nec-
essary to introduce its circuit implementation.

As a robust numerical fitting method, VF employs
N-order rational functions to fit transfer functions in the
frequency domain [25–27], which denotes:

F(s) =
N

∑
k=1

rk

s− pk
+ se+d, (10)

where s=jω signifies the complex frequency; rk and pk
denotes the k-th residue and pole, respectively, with both
being real or conjugate complex numbers; e and d repre-
sent linear and constant coefficients, respectively.

When residues and poles appear as conjugate com-
plex numbers, the transfer function can be expressed as:

f (s) =
r

s− p
+

r
s− p∗

=
2R(r)s−2(R(p)R(r)+J(p)J(r))

s2 −2R(p)s+(R(p)2 −J(p)2)
(11)

where ℜ and ℑ denote the real and imaginary parts of a
complex number, respectively. Figure 4 illustrates a cir-
cuit implementation of the transfer function expressed in
the impedance domain.

Fig. 4. Equivalent circuit for conjugated residue and pole.

The impedance in Fig. 4 is given by:

Z(s) =
1

1
R+sL + sC+G

=
1
C s+ R

LC

s2 +
(R

L + G
C

)
s+ 1+GR

LC

. (12)
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By comparing (11) and (12), the value of the lumped
elements in Fig. 4 can be determined:

C = 1
2ℜe(r)

G =−ℑ(p)ℑ(r)+ℜ(p)ℜ(r)
2ℜ(r)2

L = 2ℜ(r)3

ℑ(p)2(ℑ(r)2−ℜ(r)2)

R = 2ℜ(r)2(ℑ(p)ℑ(r)−ℜ(p)ℜ(r))
ℑ(p)2(ℑ(r)2−ℜ(r)2)

.

(13)

Although VF can be used to model multi-port net-
works, we recommend fitting the TL network and Zin
in Fig. 3 separately. This approach is more straightfor-
ward and allows for equivalent circuit modeling of TLs
through alternative methods. For a more comprehensive
understanding of TL network modeling methods, readers
can refer to [28, 29].

A brief description of the (N+1)-port black-box
modeling is:

(1) Obtain the transfer function from full-wave sim-
ulation or measurement.

(2) Building an extended network incorporates
external excitation interaction with the process in (2) to
(10).

(3) Fitting the network parameters uses VF, while
implementing the circuit employs lumped components.

(4) Performing the field-line coupling analysis in
circuit solver.

III. VALIDATION STUDIES
A. Microstrip line terminal with nonlinear load

The first example involves a two-port network, with
the detailed geometry shown in Fig. 5. It consists of a
single MSL with a width of 1.5 mm, situated on a sub-
strate with a dielectric constant of 2.2 and a thickness of
0.8 mm. The overall dimensions of the board are 80×60
mm, and the thickness of the conductor layer is 35 μm.
A plane wave propagates along the −z-axis, and the elec-
tric field is oriented along the x-axis.

Fig. 5. MSL section geometry diagram.

The excitation waveform is double exponential
pulses, which is defined as the early time high-altitude
electromagnetic pulse waveform in IEC 61000-2-9 [30],
which is denoted as:

s(t) = E0k
(

e−αt − e−β t
)
. (14)

In this study, the parameters are set as E0 =50 kV/m,
k=1.3, α =4×107 s−1, and β=6×108 s−1, with the
waveform shown in Fig. 6.

Fig. 6. High-altitude electromagnetic pulse waveform in
time domain.

To obtain the extended network parameters for this
study, full-wave simulations were conducted to deter-
mine each element in the matrix. Subsequently, the input
impedance Zin and TL networks were fitted from 10
MHz to 10 GHz using VF. Figure 7 illustrates the fitting
results of Zin, while Fig. 8 presents the full-wave calcu-
lations and the fitting results of the S-parameters of the
TL, demonstrating good agreement between them.

(a)

(b)

Fig. 7. (a) Amplitude and (b) phase of the input
impedance (Zin) of port 1, with the dashed line repre-
senting the VF results.

After the network parameters are determined and
the circuit is implemented, their effectiveness is verified.
In the validation example, port 1 is connected to a 50Ω
resistor, while port 2 is connected to a nonlinear diode,
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(a)

(b)

Fig. 8. (a) Amplitude and (b) phase response of the MSL
corresponding to the geometry shown in Fig. 5. The
dashed lines represent the vector fitting (VF) results.

with its equivalent circuit depicted in Fig. 9, and the non-
linear I−V equation of the diode is:

I =
{

0, U < 0
I0(exp

e
kT U −1), U ≥ 0

, (15)

where I0 = 5×10−5A signifies the reverse saturation cur-
rent, T=300 K, e denotes the elementary charge, and k
represents the Boltzmann constant.

Fig. 9. Equivalent circuit of the diode.

Figure 10 shows the calculation results of the full-
wave and extended network parameters, and the two
agree well. Note that the peak occurrence time of the
induced voltage does not coincide with that of the exci-
tation voltage.

B. MSLs with multi-ports

In general, TL networks are more of a concern in the
EMC community or industry. In this example, a network
with five-port is studied. Figure 11 shows the detailed
geometry, four-port are connected between the MSL ter-
mination and the reference ground plane, with one-port

(a)

(b)

Fig. 10. Induced voltage on (a) resistor and (b) diode.

Fig. 11. Pair of microstrip lines exposed to plane-wave
illumination.

spanning MSLs. This configuration is more realistic and
closely resembles a typical PCB layout.

The impressed electric field, as shown in Fig. 11,
consists of a plane wave incident normal to the ground
plane, with the electric field aligned along the TL axis.
The incident waveform is considered as a narrowband
HPM [31], illustrated in (16):

Einc(t) =

⎧⎪⎨⎪⎩
E0

t
tr

sin(2π f0t) 0 < t < tr
E0 sin(2π f0t) tr < t < tr + τ
E0

(
τ+tr+tf

tf
− t

tr

)
tr + τ < t < tr + tf + τ

,

(16)
where E0 denotes the peak electric field strength; τ sig-
nifies the pulse width; tr and t f represent the rise time
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and fall time, respectively; f 0 is the carrier frequency of
the HPM pulse. In the following example, E0 =10 kV/m,
τ =4 ns, tr =t f =0.5 ns.

Once again, we need to extract the extended network
parameters and implement the circuit. For the sake of
brevity, we will not present this section in detail. Instead,
we will show the results obtained from both full-wave
simulations and this method when the port is terminated
with various loads. Figure 13 shows the induced volt-
age for each load in the circuit configuration shown in
Fig. 12. It can be observed that the full-wave calculations
are consistent with the method presented in this paper.
The value of the induced voltage depends on the type
and value of the load. Due to the presence of the energy
storage element, the induced voltage does not immedi-
ately return to zero after the pulse ends, as discussed in
detail in [3].

Fig. 12. Schematic of port configuration.

(a)

(b)

Fig. 13. Continued.

(c)

(d)

(e)

Fig. 13. Induced voltage at different loads: (a-e) repre-
sent the induced voltages on ports 1-5, respectively.

C. MSL in perforated metallic enclosure

To resist the threat of HPEM, designers often use
metal enclosures to protect the internal circuitry, how-
ever, due to the need for ventilation or wiring, there will
be some slots or apertures in the cavity, which degrades
the shielding ability of the cavity. Therefore, we need to
evaluate the immunity of circuits in a perforated metal-
lic enclosure. In this example, a two-port TL located in a
perforated enclosure as shown in Fig. 14 is considered.

In this example, the enclosure dimensions L×W×H
are 22×17×5 mm, and the dimensions of the perfo-
rated rectangular aperture are cx×cy=5×1 mm. The sub-
strate measures a×b×c=20×15×0.8 mm with a dielec-
tric constant of 2.2. The length and width of the MSL
are 20 mm and 1 mm, respectively. The TL is then illu-
minated by a plane wave with the propagation direction
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Fig. 14. Schematic of the two-port circuit illuminated by
IEMI source.

k=(0, 0.154, -0.988), which deviates slightly from the
−z-axis. The waveform is a Gaussian waveform, as
shown in Fig. 15.

Fig. 15. Time domain representation of incident Gaus-
sian waveform.

The expression for the waveform is given as:

Einc(t) = E0 cos(2π f0t)e−
(

1
2σ2 (t−td)

)2

, (17)

where E0 =20 kV/m, σ=1 ns, f 0 =2 GHz and td =5
ns. Port 1 is connected to a 2 GHz rectangular pulse cur-
rent source, and port 2 is connected to a 50 Ω resistor.
It can be regarded as a clock signal in a digital system.
Figure 16 shows the signal on the resistor. The method
described in this paper is consistent with the full-wave
results. Additionally, we observe that the signal under-
goes significant distortion under the illumination of an
external field.

Fig. 16. Induced voltage on the resistor.

IV. DISCUSSION

In this work, we have developed an extended net-
work parameter to model TL under external field illumi-
nation. The following discussion highlights several key
issues that need to be addressed.

(1) In general, the coverage of network parameters
should cover the frequency band we are interested in. In
the case of the presence of nonlinear loads, the influence
of harmonics should also be considered. The extraction
range of network parameters should cover as many har-
monics as possible.

(2) The simulation may encounter convergence
issues due to the model being established within a finite
bandwidth, which can result in non-causal responses.
Relevant solutions can be found in [19]. Additionally,
circuit convergence can be affected by the violation of
passivity in the macromodel. Thus, during vector fitting,
the passivity of the model should be ensured.

(3) In this paper, we have introduced the Z-
parameters, through which we observe the clear influ-
ence of external fields. However, S-parameters are sup-
ported by a broader range of circuit solvers. Certain sim-
ulation software, like ADS, facilitates direct frequency
domain analysis using S-parameters. In some instances,
using a circuit file, such as a SPICE netlist, may be more
suitable for compatibility reasons, as it is widely sup-
ported.

(4) The last issue is its applicability. Although this
paper mainly focuses on MSLs, the theory can also be
generalized to other types of TLs, such as cables. In
addition, in the verification section of the paper, electro-
magnetic data primarily originates from full-wave sim-
ulations. As mentioned earlier, electromagnetic data can
also be obtained through measurements using a network
analyzer test in an electromagnetic anechoic chamber or
a transverse electromagnetic cell.

V. CONCLUSION

In this study, extended network parameters were
proposed and applied for the analysis of TLs under



347 ACES JOURNAL, Vol. 40, No. 04, April 2025

external field irradiation. We demonstrated their effec-
tiveness through three examples, involving both shielded
and unshielded scenarios, linear and nonlinear loads,
as well as single TL and TL networks. The simulation
results from the circuit were consistent with the full-
wave simulation results but required less computation
time. The extended network parameters incorporate the
influence of external fields, enabling the analysis of field-
line coupling problems within the circuit solver with-
out the need for repeated field calculations. Furthermore,
this method facilitates a direct connection between the
electromagnetic solver and the circuit solver, allowing
the export of electromagnetic calculation results to the
circuit solver. This approach is particularly suitable for
large-scale projects that necessitate collaborative design
efforts among multiple designers in the realm of electro-
magnetic and circuits.
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Abstract – In this paper, a novel fourth-order bandpass
filter is proposed and fulfilled, which is based on a cross-
coupling structure achieved by etching snake-shaped
slots between vias of adjacent SIW cavities. The gap of
the vias’ wall between adjacent SIW cavities is used to
achieve coupling between the two cavities. The length of
the coupling gap can be adjusted to change the resonant
frequency of TE101 mode to TE201 mode. The offset dis-
tance between the ports and the centerline is disclosed
as a key parameter to suppress undesired modes, achiev-
ing wide stopband characteristics. The snake-shaped slot
is loaded on the vias’ wall between SIW cavities for
the enhancement of the electrical coupling, which pro-
duces a pair of transmission zeros (TZs) on either side of
the passband, enhancing frequency selectivity. The filter
design is validated through simulation, fabrication, and
measurement of a fourth-order SIW filter with TZs. It is
verified that the designed filter shows promising charac-
teristics, with a center frequency of 24.1 GHz, an inser-
tion loss of 0.52 dB, and a return loss exceeding 11.8
dB. It is observed that two TZs appear at 22.82 GHz and
25.15 GHz, respectively, each exhibiting a suppression
level better than 20 dB. The designed filter shows poten-
tial applications in microwave and radio frequency cir-
cuits, as well as in wireless communication systems.

Index Terms – Bandpass filter, cross-coupling, transmis-
sion zeros, wide stopband.

I. INTRODUCTION

The rapid development of wireless communica-
tion systems accelerates the demand for compact, high-
performance, multi-band filters. Modern communication
systems, such as 5G, 6G, Internet of Things (IoTs), and
satellite communication, are associated with increasingly
high-performance requirements for the filter. In particu-

lar, for high-frequency signal transmission, filters with
low insertion loss, high selectivity, and good out-of-band
rejection play a key role in the system. Substrate Inte-
grated Waveguide (SIW) has emerged as an ideal choice
for designing high-end filters due to its advantages such
as low cost, low loss, small size, high Q-factor, and seam-
less integration with other planar microwave circuits [1–
3]. Recently, various SIW filters with different topologies
and filtering characteristics have been proposed [4, 5]. To
achieve sharp frequency selectivity, transmission zeros
(TZs) must be inserted on both sides of the filter’s pass-
band [6–8]. Extensive research has been conducted in the
community on the SIW filter, exploring different geome-
tries and coupling mechanisms to realize TZs. However,
limitations are still faced in balancing high selectivity
and low insertion loss.

In current methods, additional structures are typ-
ically etched on the top layer of the SIW cavity to
form mixed coupling of electric and magnetic fields,
thereby introducing TZs on both sides of the passband
in bandpass filters [9]. However, the adoption of these
hybrid SIW structures may deteriorate the integrity and
the shielding effectiveness of SIW cavities, potentially
increasing radiation losses. Although electrical coupling
is provided by the slot-line structure of the cascaded SIW
cavities, and it can also be used as resonators, the cir-
cuit size of the filter is reduced simultaneously [10–16].
However, it should be noted that the design of these slot-
line structures is very complex and could seriously inter-
fere with the surface current distribution.

To overcome these challenges, attempts have been
made to achieve multi-mode SIW filters by introducing
metallized via perturbations [17–20]. However, parasitic
capacitance and inductance are introduced inevitably by
the vias. These parasitic effects would cause changes
in the distribution of the electromagnetic fields, which
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affect the frequency response of the filter. The resonance
frequency would be shifted, and the bandwidth would be
narrowed due to these parasitic effects. The influences
would be more severe at microwave and radio frequency.
In multi-layer SIW filters, the vertically stacked circuit
structure shows more flexible options for implementing
electrical coupling [21]. However, production costs are
increased, and circuit layout flexibility is limited by the
complexity of designing and manufacturing multilayer
structures. Therefore, a solution that can provide effec-
tive out-of-band suppression and low insertion loss is
urgently needed to keep the filter’s shielding effective-
ness and to simplify its multi-layer structure.

The design of SIW-based filters generally faces sev-
eral challenges, including the balance between low inser-
tion loss and high manufacturing complexity, as well
as the impact of parasitic effects on performance. To
address these issues, a novel filter design is proposed in
this paper, which combines serpentine slots with opti-
mized via configurations. The serpentine slot design is
simple and maintains continuous working currents on the
surface, effectively enhancing the filter’s performance.
By introducing the serpentine slot design based on a
single-layer PCB structure, cross-coupling is success-
fully achieved, and TZs are introduced on both sides of
the passband, effectively suppressing higher-order fre-
quencies.

In [22], a design approach is reported where the cou-
pling slot width of a SIW filter is adjusted to achieve flex-
ible coupling. Through this method, a TZ is introduced in
a half-mode SIW filter, and a bandpass filter is success-
fully constructed by integrating SIW and half-mode SIW
(HMSIW) structures. However, while this design opti-
mizes in-band filter performance, it does not effectively
suppress higher-order modes, leading to spectral leakage
and undesired resonances at higher frequencies. In mod-
ern millimeter-wave systems, unsuppressed higher-order
modes cause severe interference in densely packed fre-
quency bands, degrading signal integrity and system per-
formance. This limitation underscores the need for novel
filter designs that enhance both selectivity and out-of-
band rejection.

To address this issue, this study proposes an inno-
vative strategy that combines a serpentine slot design
with an optimized via configuration. This approach suc-
cessfully introduces multiple TZs, substantially improv-
ing out-of-band rejection on both sides of the passband.
Additionally, by optimizing via spacing and serpentine
slot geometry, the influence of higher-order modes is
effectively mitigated. Unlike the approach in [22], which
does not account for higher-order mode suppression, the
proposed design exhibits significantly improved attenu-
ation performance, particularly in the millimeter-wave
range. This contribution not only addresses the short-

comings of prior SIW-based designs but also provides
a robust and practical foundation for the development of
next-generation high-performance filters.

In the proposed design, the manufacturing process
is simplified with a single layer, with the merits of low
cost and enhanced flexibility of circuit layout. A cou-
pling window is introduced along the centerline of SIW
rectangular cavities, which could facilitate the transition
of the resonance frequency from TE101 mode towards
TE201 mode, thereby forming dual-mode resonant cavi-
ties. Additionally, the adjustment on the offset distance
between ports and the centerline can be used to sup-
press undesired spurious modes. The metallized vias are
placed to perturb TE modes and to extend the stopband.
The fourth-order bandpass filter can be formed by cas-
cading two dual-mode SIW cavities. The snake-shaped
slot etched on the top layer of vias wall of the adjacent
SIW cavities can achieve cross-coupling and generate a
pair of TZs to enhance the frequency selectivity.

The mode characteristics of SIW cavities are inves-
tigated in this paper. Three SIW filters are designed,
demonstrating the design flexibility. Experimentally, a
fourth-order SIW filter with a pair of TZs is fabricated
and characterized. The results validate the effectiveness
of the design and demonstrate its significant applica-
tion potential in the field of high-performance, low-loss
filters, particularly suitable for high-frequency wireless
communication systems such as 5G and IoT applica-
tions. An innovative solution is provided to address the
technical challenges in modern wireless communication
systems.

The paper is organized as follows. Section II demon-
strates the design of a second-order wide stopband SIW
bandpass filter (BPF). The design of a fourth-order wide
stopband SIW BPF is presented in section III. The pro-
totype design, fabrication, and testing of a fourth-order
cross-coupled SIW BPF is discussed in section IV. A
specific discussion is provided in section V. Finally, a
concise conclusion is provided in section VI.

II. SECOND-ORDER SIW BPF

To produce dual-mode characteristic, an isolation
vias wall is added along the centerline AA′ in the struc-
ture, as shown in Fig. 1 (a). A coupling window is opened
on the vias wall to generate perturbation, forming dual-
mode characteristic. The length of the coupling window
is W12.The diameter of all metal vias on the SIW side-
walls in this paper is d = 0.4 mm, with a spacing of p
= 0.8 mm between adjacent vias. The coupling window
placed on the central horizontal line can be used to sup-
press TE102 and TE202 modes. The misaligned Port1 and
Port2 are used to suppress TE301 and TE401 modes in the
resonator. The suppression effect is achieved by adjust-
ing the offset S appropriately. The positions of input and
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output ports of the filter are offset separately in opposite
directions from the horizontal centerline (white dashed
line) of the rectangular cavity, with a displacement S
from the centerline of the metal vias wall. The SIW cav-
ity is transitioned to the input and output ports using
coplanar waveguides.

The resonance frequency of the TEm0n mode in the
proposed SIW cavity can be calculated based on:

fT Em0n =
c

2
√μrεr

√(
m

W1

)2

+

(
n
L1

)2

, (1)

where c is the speed of light in a vacuum, μr and εr are
the relative magnetic permeability and relative permittiv-
ity, respectively, and m and n are the mode indices along
the two directions of the cavity. A Rogers RT/period
5880 substrate is used in SIW cavity design, with thick-
ness h = 0.254 mm, relative dielectric constant εr = 2.2,
and loss tangent tanδ = 0.0009.

(a)

(b)

Fig. 1. (a) Geometric configuration and (b) topological
structure of the dual-mode wide stopband SIW BPF.

The topology of the proposed dual-mode SIW BPF
is shown in Fig. 1 (b). Nodes 1 and 2 represent TE101 and
TE201 modes, respectively. The corresponding coupling
matrix is shown in (2). Nodes S and L denote the input
and the output ports. The electric field distributions of

TE101 and TE201 modes are illustrated in Figs. 2 (a) and
(b). The TE101 mode exhibits even symmetry in the elec-
tric field distribution, whereas the TE201 mode exhibits
odd symmetry. Increasing the offset distance S enhances
the coupling to the TE201 mode (MS2) and reduces the
coupling to the TE101 mode (MS1) because the electric
field intensity of the TE101 mode is the highest at the
centerline, and it decays away from the centerline. Oppo-
sitely, TE201 mode shows zero electric field at the cen-
terline, and is increased away from the centerline. When
MS1 
=MS2, TZs can be introduced outside the passband,
with their position determined by the ratio MS2/MS1. The
ratio can be controlled by the offset distance S. Because
MS1 is always greater than MS2, and f TE101 is always less
than f TE201, TZs are positioned in the upper stopband.
Additionally, node N is a non-resonant node. It is mainly
used for bypass coupling created by TE102 mode and can
generate an additional TZ in the upper stopband:

M =

⎡⎢⎢⎣
0 0.935 −0.935 0

0.935 1.99 0 1.064
−0.935 0 −1.99 0.935

0 1.064 0.935 0

⎤⎥⎥⎦ . (2)

(a)

(b)

Fig. 2. Electric field distributions of (a) TE101 and (b)
TE201 modes.

The coupling between the two mode cavities is
mainly controlled by the width W12. The coupling coef-
ficient can be extracted by the following relation [23]:

k = f 2
1 − f 2

2
f 2
1 + f 2

2
, (3)

where f 1 and f 2 are the high and low resonant frequen-
cies, and k is the coupling coefficient between the dual-
mode cavities.
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The dual-mode cavity, mainly constructed by the
coupling window with width W12, can produce mag-
netic coupling. The coupling coefficient can be extracted
with the dual-mode cavity structure shown in Fig. 1 (a).
Based on HFSS software, the magnetic coupling coef-
ficient design curve is shown in Fig. 3. It can be seen
that the magnetic coupling coefficient is changed with
the increment of W12. With W12 in the range of 0-1.5
mm, little change can be seen on the coupling coeffi-
cient, indicating weak coupling in this region. When W12
is larger than 1.5 mm, a significant rise in the coupling
coefficient is observed, showing a strong increased cou-
pling effect and a more notable interaction between the
dual-mode cavities. Based on the above analysis, W12 is
one of the key parameters for the adjustment of the mag-
netic coupling effect.

Fig. 3. Positive coupling coefficient of coupling struc-
ture.

To demonstrate complete control over the positions
of TZs, an analysis of the offset distance parameter S is
conducted. Figure 4 depicts the transmission character-
istics S21 with various values of S. It can be observed
that two TZs are present in the upper stopband, while
no TZs are found in the lower stopband. With S increas-
ing, TZ1 gradually shifts towards higher frequencies with
minimal variation, whereas TZ2 shifts towards lower fre-
quencies with more noticeable changes. As mentioned
earlier, the position of the first TZ is mainly determined
by the ratio MS2/MS1, which can be controlled by modi-
fying the offset S. The smaller the offset S is, the smaller
the MS2/MS1 is, and the closer TZ is to the passband.
The location of the second TZ depends primarily on the
bypass coupling through the TE102 mode. As the offset
S decreases, the coupling to the TE102 mode increases,
demonstrating that S is a critical parameter for tuning
TZ positions and optimizing stopband suppression.

Figure 5 shows the influences of different L1 on the
stopband of the SIW filter. It is observed that, with fixed

Fig. 4. Effects of different S on the TZ positions of the
SIW filter.

Fig. 5. Effects of different L1 on the stopband of SIW
filters.

W1 and increased L1, the overall frequency response is
shifted towards lower frequencies. When L1 = 8 mm,
the suppression of f TE301 can be reduced to be less than
20 dB, and the coupling of TE301 and TE401 modes is
weak. At 48.2 GHz, the stopband can be extended to be
2.02f 0. When L1 is equal to 7.5 mm or 8.5 mm, the TE301
and TE401 modes are coupled to each other, creating a
parasitic passband.

The perturbed vias are used to further expand the
stopband, as illustrated in Fig. 6. These perturbed vias act
as metal electric walls, without electric field energy pre-
sented. Thus, the electric field distribution of transmis-
sion modes within the resonant cavity can be changed.
The S-parameters of the second-order SIW BPF based
on perturbation via over a wide frequency range and
passband range are shown in Fig. 7. The final dimen-
sions are: W1 = 10.16 mm, L1 = 8 mm, W12 = 2.2
mm, S = 1.64 mm, LS = 1.87 mm, WS = 0.27 mm,
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Win = 1.65 mm, Offset = 1 mm. In Fig. 7, the center
frequency f 0 is 24.1 GHz, with the fractional bandwidth
(FBW) of 4.7%, return loss better than 23 dB, and inser-
tion loss below 0.36 dB. At the stopband frequency of
34 GHz, the TE102/TE202 mode achieves suppression
depth below 28.8 dB. With out-of-band suppression level
below 20 dB, the stopband width reaches 53.5 GHz, cor-
responding to 2.22f 0, thereby achieving significant stop-
band width extension.

Fig. 6. Geometric configuration of second-order wide
stopband SIW BPF with perturbed vias.

Fig. 7. Passband and wideband S-parameters of a
second-order SIW BPF with perturbed vias.

III. FOURTH-ORDER SIW BPF

A fourth-order wide stopband SIW BPF is imple-
mented by cascading two similar dual-mode SIW cavi-
ties, with the structure shown in Fig. 8 (a). The topology
of the proposed fourth-order SIW BPF is shown in Fig. 8

(b). The corresponding coupling matrix is shown in (4).
With the designed structure shown in Fig. 8 (a), Port1
and Port2 are symmetrically positioned relative to the
centerline (white dashed line) of the vertical vias wall.
Internal coupling between the two dual-mode SIW cav-
ities is achieved through a coupling window offset from
the vertical centerline of both cavities. Both left and right
pairs of cavities are excited simultaneously by TE101 and
TE201 modes. The coupling strength of TE101 and TE201
modes in the two cascaded structures is determined by
the width W23 of the coupling window on the vertical
vias wall. The coupling window with a width of W23 is
arranged along the centerline between R2 and R3, which
can suppress higher-order resonance modes:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1.17 0 0.04 0 0

1.17 −0.05 1.06 0 0.1 0
0 1.06 −0.05 0.787 0 0.02

0.04 0 0.787 −0.05 1.06 0
0 0.1 0 1.06 −0.05 1.17
0 0 0.04 0 1.17 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
(4)

(a)

(b)

Fig. 8. (a) Geometric configuration and (b) topological
structure of the fourth-order broadband SIW BPF.

As mentioned earlier, L1 has an impact on the stop-
band of SIW filters. Therefore, in order to achieve a wide
stopband fourth-order SIW filter, L1 is designed to be
8 mm. Figure 9 illustrates the passband and wide stop-
band S-parameters of the fourth-order SIW BPF. The
final dimensions are: W1 = 10.16 mm, L1 = 8 mm,
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W12 = 1.8 mm, W23 = 2.15 mm, S = 1.4 mm, LS =
1.88 mm, WS = 0.27 mm, Win = 1.65 mm. As depicted
in Fig. 9, within the passband, frequency f 0 is 24.1 GHz,
with FBW of 2.32%, return loss better than 26.85 dB,
and insertion loss less than 1.26 dB. Within the stopband,
the TE102/TE202 modes exhibit attenuation greater than
26.3 dB at 33.4 GHz. With the out-of-band suppression
level below 20 dB, the stopband extends to 55.65 GHz,
corresponding to 2.31f 0, demonstrating effective widen-
ing of the stopband.

Fig. 9. Passband and wide stopband S-parameters of
fourth-order SIW BPF.

IV. FOURTH-ORDER CROSS-COUPLED
SIW BPF

To enhance the roll-off characteristics and improve
frequency selectivity, snake-shaped slots are introduced
into the filter design. These slots serve a dual purpose:
they modify the coupling between adjacent resonant cav-
ities and generate TZs near the passband edges.

In conventional SIW filters, resonant cavities are
coupled positively, allowing signals to propagate in
phase. This results in a relatively wide transition band
and limits the filter’s ability to meet the stringent selec-
tivity demands of millimeter-wave applications. By con-
trast, the introduction of snake-shaped slots establishes a
negative coupling structure, which alters the signal prop-
agation path and induces phase inversion near the pass-
band. This phase inversion leads to destructive interfer-
ence with the main transmission path, effectively gener-
ating TZs in the frequency response.

The presence of these TZs significantly improves
the filter’s performance in two key ways. First, they
increase the attenuation rate at the passband edges, effec-
tively sharpening the transition from passband to stop-
band. This steep roll-off helps suppress unwanted inter-
ference from adjacent frequencies, enhancing out-of-

band rejection. Second, the reduced transition bandwidth
improves frequency selectivity, which is particularly cru-
cial in millimeter-wave applications where spectrum
resources are limited and efficient signal isolation is
required.

Compared to designs without TZs, the inclusion of
snake-shaped slots leads to a substantially steeper roll-
off rate and improved frequency selectivity. This makes
the filter better suited for applications demanding high
spectral purity and minimal adjacent-channel interfer-
ence.

Based on the fourth-order wide stopband BPF
shown in Fig. 8 (a), a snake-shaped coupling slot is
etched on the vias wall top layer between SIWs R1 and
R4, thereby introducing negative cross-coupling. The
serpentine slot design is capable of effectively introduc-
ing coupling while ensuring excellent frequency selec-
tivity and low radiation loss without compromising the
integrity and shielding effectiveness of the SIW cav-
ity. This characteristic is especially important in high-
frequency applications, as high selectivity helps to effec-
tively separate signals from interference, ensuring sig-
nal quality and stability. In contrast, other geometries,
such as rectangular and circular slots, while widely
used in certain cases, often face limitations in achieving
TZs, which may result in higher radiation loss or inser-
tion loss. Furthermore, these designs may require more
complex manufacturing processes, thereby affecting pro-
duction efficiency. The geometric configuration and the
topology are illustrated in Figs. 10 (a) and (b). Weak cou-
pling is formed between paths 3 and 4, creating a phase
difference between the two signal paths and generating a
set of TZs.

The corresponding coupling matrix is shown in (5).
A serpentine slot is loaded between the holes of the SIW
cavity connecting the input and output ports to form elec-
trical coupling. HFSS software extracts coupling coef-
ficients based on the serpentine groove structure. The
electrical coupling coefficient design curve is shown in
Fig. 11. It can be seen that the negative coupling coef-
ficient is decreased with We increasing, indicating that
the negative coupling strength is gradually increased. As
We is increased from 0.25 mm to 0.65 mm, the negative
coupling effect between the two cavities is significantly
enhanced, and the coupling strength becomes stronger:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1.17 0 0.02 0 0

1.17 −0.05 1.07 0 0.08 0
0 1.07 −0.05 0.82 0 0.02

0.02 0 0.82 −0.05 −1.06 0
0 0.08 0 −1.06 −0.05 1.16
0 0 0.02 0 1.16 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
(5)

The final dimensions of fourth-order cross-coupled
SIW BPF are: W1 = 10.2 mm, L1 = 7.6 mm,
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(a)

(b)

Fig. 10. (a) Geometric configuration and (b) topological
structure of the fourth-order cross-coupled SIW BPF.

Fig. 11. Negative coupling coefficient of coupling struc-
ture.

W12 = 2.1 mm, W23 = 2.6 mm, S = 1.5 mm, LS = 2.24
mm, WS = 0.1 mm, Win = 2.05 mm, We = 0.35 mm,
Wline = 0.85 mm, Lline = 0.9 mm. The structure dia-
gram of the prototype fourth-order cross-coupled SIW
BPF is shown in Fig. 12. Figure 13 illustrates simulated
and measured responses. The measured results are in
good agreement with the simulation results. The simu-
lated center frequency f 0 is 24.1 GHz with a minimum
insertion loss of 0.75 dB and return loss better than 20.18
dB. Two TZs are observed at 22.7 GHz and 25.14 GHz,
with suppressions of 54.65 dB and 37.95 dB, respec-
tively. The measured center frequency f 0 is 24.1 GHz

Fig. 12. Photograph of the fourth-order cross-coupled
SIW BPF.

Fig. 13. S-parameters of the fourth-order cross-coupled
SIW BPF.

with a minimum insertion loss of 0.52 dB and return
loss better than 11.8 dB, revealing TZs at 22.82 GHz and
25.15 GHz with suppression levels below 20 dB.

The out-of-band suppression is better than 40 dB in
the simulation and better than 20 dB in the actual mea-
surement. Although the measured out-of-band suppres-
sion is lower than the simulated result, the TZ in the
lower stopband is closer to the passband, showing bet-
ter frequency selectivity than the simulation. The inser-
tion loss is further decreased after loading the coupling
slot. The difference of the return loss between the simu-
lation and the measurement in Fig. 13 can be attributed to
manufacturing errors, soldering of SMA connectors, and
parasitic effects from test fixtures, connectors, and mea-
surement equipment. These factors can introduce addi-
tional losses and reflections, which reduce the out-of-
band suppression effectiveness. During the simulation
process, certain physical phenomena may not have been
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fully included, such as the parasitic effects at high fre-
quencies and the non-ideal characteristics of the sub-
strate materials. Additionally, the materials used in actual
measurements may differ from the simulations, such as
variations in dielectric constant and loss factor. The test-
ing environment may also impact the results. Changes in
temperature and humidity, as well as the calibration sta-
tus of the measurement equipment, may lead to errors
in the results. Furthermore, the connection methods and
layout design of the test fixtures may also affect signal
transmission and measurement to some extent:

Qu =
f0

BW ×Qext . (6)

According to (6), when f 0 is 24.1 GHz, the band-
width is 1.133 GHz, Qext is 21.26, and Qu is 452.

After TZs through serpentine slots to optimize the
roll-off characteristics at the passband edges, attention
should still be given to the suppression of higher-order
frequencies. Although TZs effectively mitigate inter-
ference near the passband, their influence is primar-
ily concentrated at specific frequency points, with lim-
ited impact on higher-order resonant frequencies. In
millimeter-wave SIW filters, these higher-order resonant
frequencies can introduce unwanted interference outside
the passband, which may degrade overall system per-
formance, particularly in spectrally dense environments.
Therefore, the suppression of higher-order frequencies is
regarded as an important step in enhancing the overall
performance of the filter.

To more effectively attenuate higher-order frequen-
cies, the design of the serpentine slots can be opti-
mized. Specifically, as shown in Fig. 14, reducing the
diameter of the metal vias above and below the ser-
pentine slots, and increasing the distance between the
vias and the slots, can significantly reduce the coupling
effect of the serpentine slots on higher-order modes. This
design adjustment effectively mitigates the excitation of
higher-order modes, further optimizing the filter’s high-
frequency attenuation characteristics.

The diameter and positioning of the metal vias
around the serpentine slots are shown in Fig. 15, which
presents four distinct configurations. The first configu-
ration represents the initial case, where the via diameter

Fig. 14. Optimization design of the serpentine slot
section.

is d1 = d = 0.4 mm, and the vias are positioned at the
standard distance from the serpentine slot, with We1 =
We2 = 0.35 mm. The second configuration reduces the
via diameter to d1 = 0.3 mm, while maintaining We1 =
We2 = 0.35 mm. The third configuration increases the
distance between the vias and the serpentine slot, with
We1 = 0.53 mm, We2 = 0.84 mm, and the via diame-
ter remaining at d1 = 0.4 mm. The final configuration
combines both optimizations, where the vias are moved
further away from the serpentine slot (We1 = 0.53 mm,
We2 = 0.84 mm), and the via diameter is reduced to d1 =
0.3 mm.

By comparing these four configurations, it can be
observed that both reducing the via diameter and increas-
ing the distance between the vias and the serpentine slot
effectively mitigate the impact of higher-order modes.
Specifically, reducing the via diameter helps weaken the
coupling between higher-order modes, while distancing
the vias from the serpentine slot reduces unnecessary
interference signals. When these two optimization strate-
gies are combined, they significantly suppress the influ-
ence of higher-order frequencies, enhancing the filter’s
ability to reject interference and out-of-band signals at
higher frequencies, thereby improving the overall perfor-
mance of the filter.

However, it is important to note that this optimiza-
tion leads to a decrease in the filter’s selectivity. In other
words, although the suppression of higher-order frequen-
cies is enhanced, the corresponding selectivity worsens.
This trade-off is an inevitable consequence of the atten-
uation process of higher-order frequencies.

Figure 16 shows the passband and wide stopband S-
parameters of a fourth-order SIW BPF with suppressed
higher-order modes. The final dimensions are: W1 =
10.16 mm, L1 = 7.5 mm, W12 = 2.19 mm, W23 = 2.61

Fig. 15. Effect of via hole diameter and position on ser-
pentine slot performance.
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mm, S = 1.99 mm, LS = 2.27 mm, WS = 0.1 mm,
Win = 1.69 mm, We1 = 0.53 mm, We2 = 0.84 mm, d1 =
0.3 mm, Wline = 1 mm, Lline = 0.9 mm. As shown in
Fig. 16, within the passband, the frequency f 0 is 24.1
GHz, with FBW of 4.5%, return loss better than 20 dB,
and insertion loss less than 0.7 dB. In the stopband, the
attenuation of TE102/TE202 modes exceeds 20 dB at 34.2
GHz. The stopband extends to 40 GHz (1.66f 0) when the
out-of-band suppression level is below 20 dB, indicating
an effective widening of the stopband.

Fig. 16. The passband and wide stopband S-parameters
of high-order suppressed fourth-order SIW BPF.

Comparison between the proposed fourth-order
cross-coupled SIW BPF and the published results is
listed in Table 1. It can be seen that the design in this
paper shows more compact size and lower insertion loss
(IL). A filter with narrower bandwidth can provide bet-
ter frequency selectivity, allowing the filter to effec-
tively distinguish the target signal from interference.
This is particularly important in signal processing, espe-
cially in high-frequency communication systems such
as millimeter-wave communication and radar applica-
tions, which typically have high demands for frequency

Table 1: Comparison of this design with other types of filters
Ref. f 0

(GHz)

FBW

(%)

Size

(λ g
2)

IL

(dB)

NP NZ Layers Size

(mm2)

[24] 20.5 4 1.93 0.9 4 2 1 14×13.43
[25] 5 2.9 1.30 6.35 4 2 1 35.9×35.7
[26] 7.5 5.2 1.15 1.5 3 2 1 52.4×16
[27] 10 3.3 2.97 1.55 4 2 1 39.4×30.9
[28] 9.95 3.1 2.09 2.1 4 2 1 30×28.81
[29] 26.8 7 1.74 2.1 4 4 2 10.9×8.52
[30] 5.45 11.2 1.73 4 2 0 1 96.5×49.4

This work 24.1 4.7 2.20 0.52 4 2 1 15.2×10.2
f 0: center frequency; FBW: fractional bandwidth; IL: insertion loss; NP: number of poles; NZ: number of TZs.

selectivity and insertion loss. Additionally, a moderate
bandwidth design is beneficial in reducing insertion loss,
ensuring effective signal transmission and overall sys-
tem performance. Therefore, although modern commu-
nication systems generally pursue wider bandwidths, a
careful balance between the signal quality and the trans-
mission stability is considered in our design at specific
frequencies.

It is noteworthy that the size of the design in [23]
is smaller than our design. However, its insertion loss
is 0.9 dB, with narrower bandwidth. In [24–27], those
designs are limited to lower frequency bands with higher
ILs. Additionally, the miniaturization achieved in [28]
is due to a complex multilayer structure, whereas the
planar layout in the paper is simpler. The inflatable
SIW filter used in [29] can achieve a wide bandwidth
but it has a very high insertion loss of 4 dB and does
not include TZs. Additionally, the manufacturing pro-
cess for inflatable SIW filters is often complex, requiring
strict control over materials and structures, which may
lead to higher production costs. Furthermore, the stabil-
ity of inflatable SIW filters during long-term use also
needs to be considered, particularly in high-frequency
applications where even minor structural changes can
affect the performance. In contrast, the design proposed
in this paper, based on a single-layer PCB structure, is
easy to fabricate, allowing for the realization of a high-
performance filter with low cost. Moreover, the stability
of this design in high-frequency signal transmission is
effectively ensured.

V. DISCUSSION

In SIW filter design, electrical coupling is achieved
by using metal surface slits, which is a common and
effective technique. The surface current of the TE101
mode is significantly suppressed by the open slot-line
structures. As a result, radiation losses are introduced,
with reduced shielding effectiveness and degraded qual-
ity factors.
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Table 2: Comparison of this design with other cross-coupled structures
Ref. f 0

(GHz)

FBW

(%)

Size

(λ g
2)

IL

(dB)

NP NZ Layers Size

(mm2)

[31] 2.2 5.5 0.47 1.55 4 2 4 49.2×46
[32] 26.1 10.5 8.91 2.65 6 2 1 22×21
[33] 12.5 9 7.07 1.3 6 2 1 23.5×17.5
[34] 5.75 2 2.12 2.2 4 2 1 36×35.7
[35] 4.5 3.7 0.51 2.1 4 3 2 25×25
[36] 38.8 5.9 4.38 6.7 6 2 2 13.1×5.75

This work 24.1 4.7 2.20 0.52 4 2 1 15.2×10.2
f 0: center frequency; FBW: fractional bandwidth; IL: insertion loss; NP: number of poles; NZ: number of TZs.

Table 2 shows the comparison between the fourth-
order cross-coupled SIW BPF proposed in this paper
and other reported cross-coupled designs. Significant
advantages are shown by the filter design in this paper,
and it is seen to be more competitive compared to the
designs in other literature. Serpentine slots are intro-
duced on copper pillar walls, which do not cause large
radiation losses. An insertion loss of only 0.52 dB is
achieved, which is much lower than the 2.65 dB reported
in [31] and the 2.2 dB in [34], indicating excellent sig-
nal transmission efficiency. Although the physical size
is 15.2×10.2 mm2, a wavelength area of 2.20λ g

2 is
reached. This is more compact and of greater efficiency
compared to other designs with larger size, e.g. 8.91λ g

2

in [31] and 7.07λ g
2 in [32]. Additionally, a single-layer

structure is used in this paper, which greatly simplifies
the manufacturing process. Compared to the four-layer
structure used in [30], both the complexity and the cost
are reduced, and easier integration into various systems
is achieved. The filter in this paper shows advantage over
the design in [33]. Both the designs in this paper and in
[33] show similar structure, except a low-frequency band
with a narrower bandwidth is applied in [33].

Specifically, two significant transmission zeros (TZ1
and TZ2) are successfully introduced in the filter design
of this paper, located near 22.5 GHz and 25 GHz. These
TZs greatly improve the filter’s frequency selectivity. At
the TZ locations, a suppression depth of over 60 dB is
achieved, which is much better than that of the multi-
layer cross-coupled design shown in [35]. Although
some out-of-band suppression capability is shown by the
multi-layer cross-coupled filters, no clear TZs are exhib-
ited. No TZs are seen in the lower stopband, and the
upper stopband has a TZ that is not very noticeable. The
simulation results of the filter in this paper coincide with
the measured data closely across the entire frequency
range, especially near the TZs, indicating high consis-
tency and reliability in design and manufacturing. In con-
trast, while basic agreement between measurements and
simulations is shown by the multi-layer filters, noticeable
deviations are found in certain frequency ranges (such as

around 37 GHz), particularly in out-of-band suppression.
Additionally, better performance in insertion loss is

shown by the filter in this paper, which maintains low
insertion loss and improves overall signal transmission
quality. In contrast, higher insertion loss is found in
the multi-layer filter design, and out-of-band suppression
has room for improvement. Thus, clear advantages in fre-
quency selectivity, suppression performance, and consis-
tency are demonstrated by the filter design in this paper,
making it more suitable for high-demand communication
systems.

VI. CONCLUSION

In this paper, a novel fourth-order bandpass filter
based on a cross-coupled structure is proposed. The filter
shows a pair of TZs, thereby enhancing frequency selec-
tivity. The resonant characteristics of the first six reso-
nant modes in the proposed single-multi-mode SIW cav-
ity is studied, validating the feasibility of a bandpass fil-
ter in terms of frequency and bandwidth control. Based
on this exploration, three SIW filters are designed and
studied, demonstrating the wide stopband characteristics
of the second-order and the fourth-order SIW bandpass
filters. Furthermore, a fourth-order SIW filter with a pair
of TZs is designed, fabricated, and measured, showing
good agreement between the simulated and the mea-
sured results. This technology stands as a competitive
candidate for developing high-performance SIW filters
in microwave/radio circuit and system applications, par-
ticularly suitable for high-frequency wireless communi-
cation systems such as 5G and IoT applications.
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Abstract – This work proposes the development of a
metamaterial-loaded circularly dual-band cavity-backed
substrate integrated waveguide (SIW) MIMO antenna
designed for the sub-6 GHz, emphasizing sub-6 GHz 5G
and WLAN applications. The creation of dual operating
bands is enabled via a modified dual split ring resonator
(CSRR)-shaped slot that is etched into the SIW cavity-
backed rectangular radiator. Additionally, the antenna
incorporates 6x3 modified SSRR unit cells strategically
located in front of the intended radiators along the y-
axis. This arrangement enables circular polarization and
enhances the gain of the proposed radiator at 3.3 GHz
and 5 GHz. The metamaterial loading of the proposed
antenna yields a gain of 5.5 dB at 2.4 GHz and 5.4
dB at 5 GHz. Further, the implementation of a CSRR
electromagnetic bandgap (EBG) decoupling structure
reduces the mutual coupling between the radiators. The
antenna exhibits an exceptional diversity performance.
The experimental validation of the system confirms its
intended functionality.

Index Terms – 5G sub-6 GHz, circularly polarized, gain
enhancement, metasurface, MIMO antenna, SIW cavity.

I. INTRODUCTION

There is a notable need for improved data trans-
mission capacity and link reliability in the current 5G
age of wireless communication technology, as wireless
devices are progressing at a rapid pace [1]. Among
the several methods proposed by researchers to meet
demand, MIMO technology has emerged as a highly
effective means of improving data rates [2]. Without uti-

lizing extra resources, MIMO antennas (multiple-input
multiple-output) can increase channel capacity and link
dependability [2]. Circularly polarized antennas, in con-
trast, have small propagation losses because they effi-
ciently combat multipath fading [3]. This is why mod-
ern wireless networks can’t function without circularly
polarized MIMO antennas. Although wideband MIMO
antennas with circular polarization have been created,
modern communication systems are better served by
multi-band antennas with circular polarization [3]. The
literature reports a plethora of methods for achieving cir-
cular polarization. Circular polarization can be achieved
by strategically placing a patch on top of differently
shaped slots, as described in [4, 5]. In [6, 7], the cir-
cular polarization is achieved by means of a metama-
terial superstate. Many design considerations also need
to be satisfied in order to achieve compact dimensions,
excellent gain, and minimized mutual coupling.The lit-
erature has been updated with a variety of MIMO anten-
nas that have been introduced by researchers in recent
years [4, 6, 7]. The literature states that in order to
achieve a reduction in mutual coupling, it is necessary
to place an electromagnetic bandgap (EBG), parasitic
elements, a rectangular stub, a various shape decoupling
structure, and metamaterial [8, 9]. Over the past decade,
a novel technology called substrate integrated waveg-
uide (SIW) cavities has emerged, offering an extensive
range of applications and innovative strategies for several
existing applications [10, 11]. The SIW cavity-backing
architecture, positioned near the edge of the ground
plane structure, has significantly reduced back lobe radi-
ation and unwanted surface currents. Thus, it enhances
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antenna gain while maintaining a compact form fac-
tor and providing excellent cost-effectiveness. Conven-
tional SIW cavity-backed slot antennas exhibit signifi-
cant challenges due to their limited operating bandwidth
and substantial size. Researchers have explored many
ways over several years to enhance the bandwidth of
the SIW cavity-backed slot antenna. The enhancement
in bandwidth is achieved by exciting two closely placed
mode combinations, with adjustments made to the cav-
ity modes. This facilitates an enhancement of the band-
width. Tuning of the cavity’s position, dimensions, and
slot size is necessary to optimize the cavity modes [12].
The implementation of shorting vias [12] and the slot
ring [13] aims to enhance the bandwidth of the SIW
antenna.

In environments with significant dispersion, such as
industries, a high-gain antenna is essential. The antenna’s
gain is improved by the utilization of multi-layer sub-
strates [14] and metamaterials [15] as reported in the
literature. A challenge in enhancing gain is the increas-
ing desire for smaller gadgets that occupy less physical
space. Metamaterials have recently emerged as a fea-
sible and economical approach to enhance gain with-
out significantly increasing the physical dimensions of
the antenna. Metamaterials are a unique class of syn-
thetic compounds that exhibit extraordinary properties
that are not found in organic substances. The integra-
tion of metamaterials into various antennas substantially
enhances antenna gain performance [16]. The metama-
terial array is situated in front of the antenna to boost
the gain [16, 17]. Furthermore, the antenna gain is
improved by placing the metamaterial array above the
antenna [18]. The antennas that have been listed above
illustrate a variety of methods for circularly polarized
MIMO antenna implementation, mutual coupling reduc-
tion, bandwidth enhancement, and gain enhancement;
however, there are only a few sub-6 GHz MIMO anten-
nas that are now available that provide a wider band-
width with a higher gain in a compact-sized planar con-
figuration. Further, the mentioned antennas used a meta-
material layer superstate for gain improvement, but this
method makes antennas bulky. In this work, the devel-
opment of a metamaterial-loaded circularly dual-band
cavity-backed SIW MIMO antenna designed for the sub-
6 GHz frequency is emphasized, focusing on sub-6 GHz
5G and WLAN applications.

II. MIMO ANTENNA CONFIGURATION
AND ITS DEVELOPMENT

A. SIW cavity-backed radiator development

Figure 1 (a) illustrates the arrangement of the pro-
posed SIW cavity-backed slot antenna (Antenna-1). The
design incorporates a rectangular SIW cavity, formed by
arranging metal vias in a rectangular pattern, as illus-

trated in Fig. 1 (a). The traditional rectangular SIW
cavity-backed antenna is designed with metallic vias to
prevent electromagnetic energy leakage. The SIW stan-
dards require that the pitch distance (s) and diameter
(d) of metallic vias maintain the ratios d/s ≥ 0.5 and
d/λ0 ≤ 0.1. According to the information presented in
[10], the dimensions of the rectangular cavity resonator
have been estimated using Equation (1), leading to a first-
order mode (i.e., TE110) resonance at approximately 3.4
GHz, as illustrated in Fig. 1 (f):

fr (T Emnp) =
c

2
√

εr

√(m
L

)2
+
( n

W

)2
+
( p

h

)2
, (1)

where L − SIW cavity length, W − SIW cavity width,
and C and εr are the velocity of light and the dielectric
constant, respectively. The m, n, and p are mode indices.

A shorting pin is placed 3 mm from the left side and
8 mm from the top wall of the SIW cavity radiator to
improve its bandwidth, as illustrated in Fig. 1 (a). The
shorting pins establish a short circuit within the current
path, leading to resonance. The increase in bandwidth is
achieved by exciting two hybrid modes: resonance from
the SIW cavity and shorting pins placed in close prox-
imity to one another. The proposed SIW cavity-backed
antenna features two slots designed to produce dual-band
resonant frequencies: the outer ring Circular Split Ring
Resonator(CSRR) slot and the inner ring CSRR slot. The
integration of the inner and outer CSRR slots results in a
reduction in series inductance while concurrently intro-
ducing series capacitance within the cavity circuit.

Antenna-2 has an outer ring CSRR slot positioned
near the center of the side cavity, as illustrated in
Fig. 1 (b). The resonant frequency of the CSRR outer
ring slot can be calculated using the following equation:

fr =
c

2L1
√

εr
=

3×108

2×9×10−3
√

4.4
= 5.1 GHz. (2)

The placement of the CSRR outer ring slot signifi-
cantly influences the current path of the first-order res-
onance mode (TE110), leading to a modified first-order
mode (TE110) that shifts the resonant frequency from
3.4 GHz to approximately 2.5 GHz due to reactive load-
ing, as illustrated in Fig. 1 (f). Consequently, the outer
ring CSRR slot effectively regulates the lower resonance
frequency (2.4 GHz) of the proposed antenna. The inner
CSRR slot is removed from the center of the cavity
within the outer ring CSRR in Antenna-3, as illustrated
in Fig. 1 (c). The resonant frequency of the CSRR outer
ring slot can be calculated using the following equation:

fr =
c

2L2
√

εr
=

3×108

2×18×10−3
√

4.4
= 2.48 GHz. (3)

The placement of the inner CSRR ring slot sig-
nificantly influences the current path of the first order-
resonance mode (TE110), resulting in a slight modi-
fication of the TE110 mode resonant frequency from
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Fig. 1. (a)-(e) Development of the proposed SIW cavity-
backed radiator, (f) Reflection coefficient of the proposed
antenna.

2.5 GHz to 2.41 GHz for WLAN applications. Addition-
ally, the inner ring CSRR slot produces a second-order
resonance mode (TE120) at 3.3 GHz as a result of the
reactive loading from the CSRR slot, as illustrated in
Fig. 1 (f). Ultimately, Antenna-3 exhibits a hybrid mode
(TE110 and TE120) at frequencies of 2.4 and 3.3 GHz,
suitable for WLAN and sub-6GHz 5G applications. The
SIW cavity dual slot antenna is excited by a 50Ω feed-
line to function at frequencies of 2.4 GHz and 3.3 GHz.
The lumped element equivalent circuit of the proposed
SIW cavity-backed antenna is illustrated in Fig. 2 (a).
The equivalent circuit of the SIW cavity, outer CSRR
slot, and inner CSRR slot with conductor is illustrated
in Fig. 2 (a). The equivalent circuit diagram illustrates
that the metallic vias are influenced by inductance. The
connection between the transmission line and the SIW
cavity provides the coupling capacitance and coupling
inductance. Additionally, the parasitic capacitance and
inductance of the transmission line are represented by Cr
and Lr. The outer CSRR ring slot is governed by the par-
allel lumped elements R, L, and C, while the inner CSRR
ring slot is similarly governed by the parallel lumped ele-
ments R, L, and C.

The proposed SIW cavity-backed slot antenna is
analyzed through the simulation of its lumped equiva-
lent circuit using NI AWR Microwave Office software.
The S-parameter of the lumped equivalent circuit of the
proposed SIW cavity antenna is compared with the S-
parameter of the CST model of the proposed SIW cavity
antenna in Fig. 2 (b). Figure 2 (b) indicates that the pro-
posed antenna operates at frequencies of 2.4 and 3.3 GHz
for both the CST model and the equivalent circuit model.

Fig. 2. Lumped equivalent circuit of proposed SIW cav-
ity antenna, (b) Reflection coefficient of the proposed
antenna for CST model and equivalent circuit model.

Thus, the performance of the CST model and the lumped
equivalent circuit model is equivalent.

B. Metamaterial for gain enhancement and circular
polarization conversion

The proposed antenna is intended for industrial
WLAN and sub-6GHz 5G applications. Therefore, an
antenna with standard gain and polarization is insuffi-
cient for this type of factory environment due to the
high path loss. Therefore, an antenna with high gain and
circular polarization is necessary for environments with
significant path loss. This work introduces the metama-
terial loading method to achieve high gain and circu-
lar polarization. The proposed Square Split Ring Res-
onator(SSRR) metamaterial unit cells are illustrated in
Fig. 3 (a). The proposed SSRR metamaterial unit cell
comprises an outer square ring stub and an inner square
ring stub, which together provide an inductive effect, as
depicted in Fig. 3 (a). Additionally, a 0.5 mm slot is
removed at each corner of the outer square ring stub
to generate a capacitive effect. As depicted in Fig. 3
(a), a 0.5-thickness stub is connected at the midpoint
of both the inner and outer square ring stubs in ver-
tical and horizontal orientations, which produces an
inductive effect. The rectangular stub intersects both
the inner and outer ring stubs at the center, as illus-
trated in Fig. 3 (a). In order to conduct the performance
study of the metamaterial, the unit cell of the metamate-
rial is positioned between two waveguide ports. Addi-
tionally, multiple boundary conditions, including perfect
electric conductor (PEC) and perfect magnetic conduc-
tor (PMC), were applied along the xz axis. The complete
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characterization is conducted using CST Microwave Stu-
dio software. The incident electromagnetic waves typ-
ically propagate along the y-axis. The placement of the
antenna regulates the y-axis stimulation of the metamate-
rial structure, subsequently influencing the transmission
of electromagnetic waves via metamaterial.

The permeability, permittivity, and refractive index
are essential parameters for accurately assessing the per-
formance characteristics of the suggested SSRR meta-
material unit cell. The permittivity, permeability, and
refractive index of the proposed metamaterial unit cell
are illustrated in Figs. 4 (a-c). Figures 4 (a-c) demon-
strate that the proposed metamaterial shows a nega-
tive real near-zero refractive index (NZRI) and epsilon-
negative (ENG) characteristics at frequency ranges of 2.4
GHz and 3.3 GHz. The results clearly demonstrate that
the proposed SSRR metamaterial shows near-zero prop-
erties within the operational bands (2.4 and 3.3 GHz).
As a result, the designated operating frequency range
(2.4 and 3.3 GHz) can be employed to enhance gain and
adjust the polarization of the proposed antenna. The 6 ×
3 array of modified Square Split Ring Resonator (SSRR)
is depicted in Fig. 3 (b). The proposed design incorpo-
rates a metamaterial comprising a 6 × 3 array of mod-

Fig. 3. (a-b) Proposed SSRR metamaterial unitcell.

Fig. 4. (a) Permittivity, (b) Permeability, and (c) Refrac-
tive index of SSRR unitcell.

ified Square Split Ring Resonator (SSRR) unit cells. It
is printed in front of the antenna in the y-direction as
depicted in Fig. 1 (d). The periodic distance of 0.5 mm
is maintained in both the x and y directions between
two SSRR unit cells.The y-axis is the orientation of an
electromagnetic wave that is propagating normally. The
y-axis corresponds to the normal path of the electro-
magnetic wave’s incidence. Electromagnetic interactions
within the modified SSRR metamaterial unit cell, trig-
gered by the incident waves, produce resonance in the
transmitted and reflected waves. Since the electromag-
netic wave enters the modified SSRR metamaterial unit
cells via the SIW cavity-supported antenna and travels
in that direction, the y-axis makes it easier to excite the
modified SSRR metamaterial unit cell.

The antenna’s gain, with and without metamaterial,
is illustrated in Fig. 5 (a). Figure 5 (a) reveals that the
suggested antenna demonstrates gains of 3.2 dB and 2.6
dB at frequencies of 2.4 GHz and 3.3 GHz, respectively.
The suggested antenna demonstrates a gain of 6.1 dB
at 2.4 GHz and 6.5 dB at 3.3 GHz, following the inte-
gration of the metamaterial unit cells. The gain of the
proposed antenna with SSRR metamaterial loading has
been significantly improved without modifying the reso-
nant frequencies, as illustrated in Fig. 5 (a). Moreover,
the metamaterial generally has the capacity to modify
polarization. The suggested metamaterial unit cells are
situated in the y-direction in front of the antenna, facil-
itating the conversion of linear polarization into circu-
lar polarization. The suggested metamaterial functions as
a linear-to-circular polarization converter at the 2.4 and
3.3 GHz bands, as evidenced by the axial ratio charac-
teristic illustrated in Fig. 5 (b). The axial ratio of the
proposed antenna exceeds three decibels at all opera-
tional frequencies (2.4 and 3.3 GHz), as illustrated in
Fig. 5 (b).

Fig. 5. (a) Gain of the the proposed radiator with and
without metameterial, and (b) Axial ratio of the proposed
radiator with and without metamaterial.
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Fig. 6. Proposed MIMO antenna without and with SIW
cavity backed parasitic stub decoupling structure (a)
Front side, and (b) Back side of the substrate.

C. Two-port SIW cavity-backed high-gain circularly
polarized MIMO antenna design

For the purpose of facilitating communication in
an environment that has a considerable path loss due
to scattering, the antenna ought to have a high chan-
nel capacity, a high gain, and a good link reliabil-
ity. This led us to propose the two-port SIW cavity-
backed gain improved circularly polarized metamaterial-
loaded dual-band MIMO antenna as a potential solu-
tion for usage in WLAN and sub-6GHz 5G applications
in industrial environments. As depicted in Fig. 6, the
SIW cavity-backed gain increased the circularly polar-
ized metamaterial-loaded dual-band MIMO antenna that
has been presented is designed by positioning two SIW-
based metamaterial-loaded radiators in close proxim-
ity to each other so that they share a common ground
plane. The adjacent positioning of the proposed radiator
enhances the mutual connection between the suggested
SIW cavity-backed radiators. Nevertheless, the mutual
coupling among the radiators requires further enhance-
ment to optimize MIMO performance. There is a neces-
sity for a distinct decoupling structure between the pro-
posed SIW cavity-backed radiators. An EBG structure
can inhibit the transmission of electromagnetic waves
within specific frequency ranges, termed the band gap.
The EBG exhibits band stop filter characteristics across
the band gap, enabling its application as a decoupling
structure in MIMO antennas. Therefore, to diminish the
reciprocal coupling between the radiators in the proposed
MIMO antenna, a unique EBG decoupling structure is
presented in Fig. 7 (a). The unit cell of the proposed mod-
ified CSRR EBG structure is seen in Fig. 7 (a). The pro-

posed EBG decoupling structure is constructed by using
modified CSRR ring stubs as depicted in Fig. 7 (a). As
depicted Fig. 7 (a), two T-shaped stubs are connected
along with modified CSRR of the EBG unit cell.

Fig. 7. (a) Proposed modified Circular Split Ring Res-
onator EBG unit cell, and (b) Dispersion diagram of the
proposed CSRR EBG unit cell.

The characterization of the proposed EBG unit cell
is conducted using CST Studio software. To effectively
analyze the features of the proposed EBG unit cell, the
dispersion diagram of the EBG can be utilized. The dis-
persion diagram of the proposed EBG unit cell is illus-
trated in Fig. 7 (b). Figure 7 (b) indicates that the pro-
posed EBG unit cell functions as a stop band within
the frequency range of 2.2 to 4 GHz. Consequently,
throughout the 2.2-4 GHz frequency range, the EBG unit
cell functions as a stop-band filter. The electromagnetic
waves propagate from one radiator to another while both
radiators are simultaneously energized. To alleviate this
issue, the suggested 7x2 EBG unit cells are positioned
on the rear side of the substrate, above the ground plane,

Table 1: Dimension of the proposed antenna
P=D P=D P=D P=D

L=40 LG2=1.9 W2=1 WG1=3
L1=12.1 LG3=12.1 W3=2.3 WG2=1.5
L2=5.5 LG4=1 W4=7.3 WG3=5
L3=1.8 LG5=1.2 W5=7.5 WG4=3.5
L5=5 LG6=18 W6=3 WG7=12

L6=8.3 LG7=y2 W7=1 WG8=y20
L7=1.5 LG8=2 W8=1.5 WG10=y1
L8=1.4 LG9=1 W9=1.5 G=1

LG=24.5 W=35 W10=1.5 R=0.4
LG1=1.4 W1=y10 WG=44 D1=2
D3=1.2 D4=0.5 D5=y1.2 D6=1

D7=y0.5 D8=0.5 D9=0.5 D10=0.5
D11=3 E1=2.1 E2=2.1 E3=0.6
E4=0.6 E5=0.5 E6=0.5 E7=y0.3
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situated between the two SIW cavity-backed radiators,
as illustrated in Fig. 6 (b). The positioning of the EBG
unit cell facilitates the absorption of surface current by
the EBG unit cells when both radiators are simultane-
ously activated. This leads to a substantial decrease in
mutual coupling among the radiators in the proposed
MIMO antenna at the 2.4 and 3.3 GHz frequencies. The
dimension of the proposed MIMO antenna is depicted in
Table 1.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

A. Reflection coefficient and mutual coupling

The reflection coefficient and mutual coupling of the
proposed MIMO antenna are measured using a VNA,
as illustrated in Fig. 8. The simulated and measured
reflection coefficients of the proposed MIMO antenna
are compared in Fig. 9 (a).

Fig. 8. Photograph of the fabricated antenna and mea-
surement setup of the proposed MIMO antenna.

Figure 9 (a) indicates that the suggested MIMO
antenna has a reflection coefficient of less than -10 dB at
2.4 and 3.3 GHz. The mutual coupling of the proposed
MIMO antenna, both simulated and measured, is com-
pared in Fig. 9 (b). Figure 9 (b) indicates that the sug-
gested MIMO antenna exhibits mutual coupling of less
than -15 dB at 2.4 and 3.3 GHz. A high degree of agree-
ment can be found between the results of the simulated
and measured reflection coefficients as well as the mutual
coupling studies.

B. Radiation pattern and efficiency

The radiation pattern of the proposed MIMO is
assessed in an anechoic room, as depicted in Fig. 8.
The cross and co-polarization in E- and H-planes at
2.4 and 3.3 GHz is seen in Figs. 10 (a-d). Figures
10 (a-d), illustrates that the proposed antenna exhibits

Fig. 9. (a)-(b) Simulated and measured reflection coef-
ficient and mutual coupling of the proposed MIMO
antenna.

Fig. 10. (a)-(d) Radiation pattern of the proposed antenna
at 2.4, and 3.3 GHz in E- and H-plane, and (e) Efficiency
of the proposed antenna at 2.4 and 3.3 GHz.

an omnidirectional radiation pattern at 2.4 and 3.3 GHz.
Due to the metamaterial loading and the SIW cav-
ity, cross-polarization and backlobe radiation are sup-
pressed, resulting in the proposed antenna exhibiting an
excellent co-polarization radiation pattern at 2.4 and 3.3
GHz. There is a high degree of concordance between
the results of the simulated and measured radiation
patterns.

A representation of the simulated and observed effi-
ciency of the proposed MIMO antenna can be found in
Fig. 10 (e). According to the data presented in Fig. 10 (e),
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the suggested MIMO demonstrates an efficiency that sur-
passes 90% at all operational bands (2.4 and 3.3 GHz).

IV. DIVERSITY PERFORMANCE OF
PROPOSED MIMO ANTENNA

A. Diversity gain

Diversity gain, which quantifies the improvement in
system performance due to the application of diversity
techniques, is a critical metric calculated using equa-
tion (4). The performance of an enhanced system is indi-
cated by an increased diversity gain value. The opti-
mal number for MIMO antenna performance should be
approximately 10 to achieve expected results.

DG = 10
√

1−|ECC|2. (4)

The diversity gain of the proposed MIMO antenna
is illustrated in Fig. 11 (a). From Fig. 11 (a), it is evident
that the proposed MIMO antenna demonstrates a diver-
sity gain value of approximately 10 at frequencies of 2.4
and and 3.3 GHz.

B. Envelope Correlation Coefficient (ECC)

The ECC, is a statistical measure that is used to
quantify the degree of correlation that occurs between
the components of the MIMO antenna:

ECC =

∣∣∣∫∫ −→F1(θ ,φ)
−→
F2(θ ,φ)dΩ

∣∣∣2∫∫ ∣∣∣−→F1(θ ,φ)
∣∣∣dΩ2

∫∫ ∣∣∣−→F2(θ ,φ)
∣∣∣dΩ2

(5)

ECC =
|S11

∗S12 +S21
∗S22|2(

1−
(
|S11|2 + |S21|2

))(
1−
(
|S22|2 + |S12|2

)) .
(6)

The determination can be achieved through scatter-
ing parameters by applying equation (5) in a lossless
environment, characterized by a uniform distribution of
power across antenna elements. This equation is appli-
cable solely in scenarios where there is no loss present.
Consequently, the ECC can be estimated based on the
emitted far-field by utilizing equation (6). For uncorre-
lated MIMO antennas, the optimal value of the ECC is
zero. However, for practical MIMO antennas, the ECC
value must not exceed 0.5. Figure 11 (b) illustrates the
proposed MIMO antenna based on the ECC design. The
data presented in Fig. 11 (b) indicates that the proposed
MIMO antenna demonstrates an ECC value of less than
0.04 at frequencies of 2.4 and 3.3 GHz.

C. TARC

An accurate evaluation of the correlation between
the components of the MIMO antenna can be accom-
plished with the use of a statistical measure known as
TARC. It is possible to compute the TARC of the MIMO
antenna system for two ports by utilizing equation (7).
In order to get optimal performance, the TARC of the

Fig. 11. (a) ECC, (b) DG, (c) TARC, (d) CCL, and
(e) MEG of the proposed MIMO antenna.

MIMO antenna must be lower than 0 dB:

TARC =

√
|(S11 +S12e jθ )|2 + |(S21 +S22e jθ )|2

2
(7)

Figure 11 (c) illustrates the TARC of the MIMO
antenna. The data presented in Fig. 11 (c) indicates that
the proposed MIMO antenna achieves a TARC of less
than -15 dB. As a result, the proposed MIMO antennas
demonstrate a reduced correlation between the radiating
elements.

D. CCL

The primary function of MIMO antennas is to
enhance the capacity of the communication channel.
Nevertheless, losses are a consequence of the correla-
tion that exists between the elements of the antenna. For
the purpose of estimating the highest practical limit for
signal transmission while simultaneously reducing sig-
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Table 2: Comparison of the proposed work with existing
work

P = D P = D P = D P = D
L = 40 LG2=1.9 W2=1 WG1=3

L1=12.1 LG3 = 12.1 W3=2.3 WG2 = 1.5
L2 = 5.5 LG4=1 W4 = 7.3 WG3 = 5
L3 = 1.8 LG5 = 1.2 W5 = 7.5 WG4 = 3.5
L5 = 5 LG6=18 W6 = 3 WG7 = 12

L6 = 8.3 LG7 = 2 W7 = 1 WG8 = 20
L7 = 1.5 LG8=2 W8 = 1.5 WG10=1
L8 = 1.4 LG9 = 1 W9 = 1.5 G = 1

LG = 24.5 W = 35 W10 = 1.5 R = 0.4
LG1=1.4 W1=10 WG=44 D1=2
D3 = 1.2 D4 = 0.5 D5 = 1.2 D6=1
D7 = 0.5 D8 = 0.5 D9 = 0.5 D10 = 0.5
D11=3 E1 = 2.1 E2 = 2.1 E3 = 0.6

E4 = 0.6 E5 = 0.5 E6 = 0.5 E7 = 0.3

nificant loss, a metric known as channel capacity loss
(CCL) is utilized. The calculation of CCL can be car-
ried out by utilizing equation (8). In real applications,
the CCL should be kept at a level that is lower than 0.4
Bits/Hz/Sec:

CCL =− log2 det
(
ψR) ,(

ψR)= [ ρii ρi j
ρ ji ρ j j

]
.

(8)

Figure 11 (d) illustrates a representation of the CCL
of the MIMO antenna. The data presented in Fig. 11 (d)
indicates that the proposed MIMO antenna achieves a
CLL of less than 0.4 Bit/Hz/Sec at frequencies of 2.4
and 3.3 GHz.

E. MEG

The MEG statistic is another important statistic that
is used to evaluate the performance of MIMO antennas.
This statistic calculates the average signal strength that is
received by each radiator within the antenna. The math-
ematical expression known as MEGi represents the ratio
of the mean power that is received by the ith element to
the mean power that is incident on the jth element from
the same source. It is possible to calculate MEG by using
equation (9), and the MEG value ought to be lower than
3 dB in order to achieve the best possible MIMO perfor-
mance:

MEGi = 0.5

[
1−

N

∑
i=1

∣∣ Sij
∣∣2] . (9)

The MEG of the MIMO antenna is depicted in
Fig. 11 (e). The data presented in Fig. 11 (e) indicates
that the proposed MIMO antenna exhibits a MEG of less
than -3 dB at frequencies of 2.4 GHz and 3.3 GHz.

V. COMPARISON OF THE PROPOSED
WORK WITH EXISTING WORK

Table 2 illustrates a comparison of the performance
metrics between the proposed MIMO antenna and the
existing MIMO antennas. The data presented in Table 2
indicates that the recommended MIMO antenna out-
performs the currently utilized antennas regarding size,
innovative methodology, and gain.

VI. CONCLUSION

In this work, a SIW cavity-backed gain-enhanced
circularly polarized metamaterial-loaded dual-band
MIMO antenna is designed for WLAN and sub-6
GHz 5G applications. The dual operating bands are
enabled by placing a modified CSRR-shaped slot at the
center of the SIW cavity-backed rectangular radiator.
Additionally, the antenna incorporates 6 × 3 modified
SSRR unit cells strategically located in front of the
intended radiators along the y-axis. This arrangement
enabled circular polarization and enhanced the gain
of the proposed radiator at 2.4 GHz and 5 GHz. The
metamaterial loading of the proposed antenna yields a
gain of 5.5 dB at 2.4 GHz and 5.4 dB at 5 GHz. The
cavity-backed configuration of the suggested antenna
yields a unidirectional radiation pattern, contributing
to its efficiency surpassing 90% at frequencies of 2.4
and 5 GHz. Further, the implementation of a CSRR
EBG decoupling structure reduces the mutual coupling
between the radiators. The antenna exhibits exceptional
diversity performance, as evidenced by various per-
formance metrics: an ECC of 0.001, a DG of 9.98, a
CCL of < 0.4 bits /S/Hz, a MEG of < 3 dB, and a
TARC of < −20 dB. The experimental validation of the
system confirms its intended functionality, showing a
strong correlation between the simulated and measured
results.
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