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Abstract – Rapid-prototyping plays a critical role in the
design of antennas and related planar circuits for wireless
communications, especially as we embrace the 5G/6G
protocols going forward into the future. While there are
a number of software modules commercially available
for such rapid prototyping, often they are found to be
not as reliable as desired, especially when they are based
on approximate equivalent circuit models for various cir-
cuit components comprising the antenna system. Conse-
quently, it becomes necessary to resort to the use of more
sophisticated simulation techniques, based on full-wave
solvers that are numerically rigorous, albeit computer-
intensive. Furthermore, optimizing the dimensions of
antennas and circuits to enhance the performance of the
system is frequently desired, and this often exacerbates
the problem since the simulation must be run a large
number of times to achieve the performance goal—an
optimized design. Consequently, it is highly desirable to

develop accurate yet efficient techniques, both in terms
of memory requirements and runtimes, to expedite the
design process as much as possible. This is especially
true when the antenna utilizes metamaterials and meta-
surfaces for their performance enhancement, as is often
the case in modern designs. The purpose of this paper is
to present strategies that address the bottlenecks encoun-
tered in the generation of Green’s Functions for layered
media, especially in the millimeter wave frequency range
where the dimensions of the antennas and the platforms
upon which they are mounted can be several wavelengths
in size.

The paper is divided into two parts. Part-I cov-
ers the topics of construction of layered medium
Green’s Function for millimeter wavelengths; the
Equivalent Medium Approach (EMA) which obviates
the need to construct Green’s Function for certain
geometries; and the T-matrix approach for hybridizing
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the finite methods with the Method of Moments
(MoM).

In Part-II of this paper, we go on to discuss three
other strategies for performance enhancement of CEM
techniques: the Characteristic Basis Function Method
(CBFM); mesh truncation for finite methods by using a
new form of the Perfectly Matched Layer (PML); and
GPU acceleration of MoM as well as FDTD (Finite Dif-
ference Time Domain) algorithms.

The common theme between the two parts is the
“performance enhancement” of CEM (Computational
Electromagnetics) techniques, which provides the syn-
ergistic link between the two parts.

Index Terms – 5G/6G Communication, Antenna Design,
Computational Electromagnetics (CEM), Equivalent
Medium Approach (EMA), Layered medium Green’s
Functions, Metamaterials, Method of Moments (MoM),
Microwave Circuits, Millimeter-Waves.

I. INTRODUCTION
It is well known that Computational Electromagnet-

ics (CEM) is a mature field with a long history. Some
of the pioneering contributors to the field are Harring-
ton [1] who introduced the Method of Moments (MoM);
Silvester [2] who did pioneering work on the applica-
tion of the Finite Element Method (FEM) to electro-
magnetic problems; Yee [3] who is credited for bringing
us the Finite-Difference Time-Domain (FDTD) method;
and, Keller [4] and his colleagues who are recognized for
introducing to us asymptotic methods for solving elec-
tromagnetic scattering problems at high frequencies that
are too large to handle by using the three numerical tech-
niques we have mentioned above.

It’s worthwhile to mention at this point that much
of the CEM activity in the past focused on Radar Cross-
Section (RCS) computation, as may be readily verified
by referring to the existing CEM literature. Although
this field is still regarded as quite important, the focus
has appeared to have shifted to other CEM applica-
tions that have come to the fore in recent years because
of increasing interest in the design of microwave cir-
cuits and antennas for communication applications. Even
more recently, the advent of 5G/6G in the communica-
tion scene has created interest in the millimeter wave fre-
quency range, as for instance in the 24 to 27 GHz band,
or even higher, such as the 60 GHz band. It is worth-
while to point out that it is not always just a matter of
scaling the design of an antenna, or a microwave cir-
cuit, or the way they are numerically modeled, then we
go up to millimeter waves from microwave frequencies.
Given this background, one of the goals of this work is
to present innovative techniques for handling the CEM
modeling problems at millimeter waves in a numerically

efficient manner without compromising the accuracy of
the results.

Figure 1 shows a variety of microwave circuit and
antenna problems, some of which will be discussed in
this work to illustrate the application of the techniques
that we will describe below. A common thread that binds
these problems is that they are all printed-circuit types
and the first step in the conventional approach for mod-
eling such circuits and antennas is to derive the Green’s
Function for a layered medium upon which they are
printed.

In the next section, we examine this problem and
point out the difficulties encountered in generating these
Green’s Functions for layered media when the operating
frequency is in the millimeter frequency range. Next, we
present a technique for successfully resolving the diffi-
culties that we have identified earlier. The presentation
in this section is based on a recent work by the authors
and the interested reader is referred to Ozgun et al. [5]
for additional details.

II. LAYERED MEDIUM GREEN’S
FUNCTION FOR MILLIMETER WAVES

In this section, we introduce an efficient method
for evaluating Sommerfeld integrals, which are essential
in calculating spatial-domain Green’s Functions in pla-
nar multilayered media. The proposed technique effec-
tively overcomes the challenges posed by the highly
oscillatory and slowly decaying nature of these inte-
grals, particularly at high frequencies such as millime-
ter waves—frequencies that are increasingly critical for
advanced technologies like 5G and beyond. By employ-
ing a strategic interpolation and extrapolation scheme,
the method reduces the number of sample points required
to accurately represent the integrand, enabling the use
of analytical integration. This simplification significantly
accelerates the evaluation process. Extensive testing
across various Green’s functions validates the accuracy
and efficiency of the method.

Planar multilayered structures are prevalent in mod-
ern technology, with applications ranging from platform-
mounted antennas to microstrip printed circuits. Accu-
rate analysis of these structures often relies on the MoM,
which is based on the Mixed-Potential Integral Equa-
tion (MPIE). A critical component of this method is
the Green’s Functions, which are initially derived in the
spectral domain via the Fourier transform and subse-
quently converted into the spatial domain through an
inverse Fourier transform [6, 7]. This process results in a
one-dimensional integral known as the Sommerfeld Inte-
gral (SI), defined over a semi-infinite interval of the com-
plex spectral variable.

Evaluating these SIs is challenging due to two pri-
mary factors: (i) the presence of singularities on or
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Fig. 1. Various microwave circuits and antenna structures: (a) microstrip line filter, (b) microstrip directional coupler,
(c) Hairpin microstrip filter, (d) four-stage bandstop filter, (e) small patch array, (f) large bow-tie patch array, (g)
Wilkinson power divider, (h) patch antenna with a wideband matching circuit, (i) packaging board with a single trace,
(j) typical package layer, (k) Luneburg lens cross-section, (l) 3D cutout of the interior, and (m) spiral inductor on a
multilayer dielectric.
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near the integration path and (ii) the highly oscillatory
and slowly decaying nature of the integrand. Traditional
approaches often handle singularities by deforming the
integration path in the complex plane, but the oscilla-
tory behavior remains a significant obstacle. The Dis-
crete Complex Image Method (DCIM) has been widely
employed to address this issue [8]. The authors previ-
ously developed a Green’s Function module for com-
mercial electromagnetic software using DCIM to com-
pute SIs. While this module performed effectively at
microwave frequencies, it faced substantial computa-
tional challenges at higher frequencies, such as those
used in millimeter-wave applications for 5G technol-
ogy. The core issue stems from the increased oscillatory
nature of the SIs as the radial distance between the source
and observation points becomes electrically large, a com-
mon scenario at millimeter-wave frequencies. Under
these conditions, accurately representing the integrand
with a few complex exponentials becomes increasingly
difficult, leading to inefficiencies and numerical instabil-
ity in the DCIM.

Recently, the authors introduced an innovative
approach that addresses the inherent challenges of con-
ventional DCIM [5, 9, 10]. Our method not only
improves the efficiency and accuracy of SI evaluations
across a broad frequency range but also simplifies the
computational process without sacrificing precision. The
key advancement lies in isolating the oscillatory com-
ponent of the integrand as a cosine function while rep-
resenting the remaining smooth envelope function using
function approximation techniques such as Prony [11] or
the Generalized Pencil of Function (GPOF) method [12].

A. Mathematical formulation
When simulating antennas and printed circuits on

layered media using the MPIE within the MoM frame-
work, the evaluation of SIs is critical. Solving the MPIE
for a general multilayered media problem involves evalu-
ating 16 spectral domain GFs and a total of 22 SIs [6, 7].
These SIs are expressed as:

Sn
{

G̃
(
kρ , z|z′

)}
=

1
2π

∞∫
0

G̃
(
kρ , z|z′

)
Jn
(
kρ ρ

)
kρ

n+1dkρ ,
(1)

where the kernel G̃ represents the spectral-domain
Green’s Function, Jn is the Bessel function of order n =
0,1, kρ is the complex spectral variable, z′ and z are the
vertical coordinates of the source and observation points
respectively, and ρ is the lateral distance between these
points. These parameters collectively form the founda-
tion of this computational process.

To address the computational challenges, our
approach partitions the integration interval into multi-
ple distinct regions (as illustrated in Fig. 2), each han-

Fig. 2. Illustration of the proposed integration method.

dled separately with a novel integration strategy that
facilitates closed-form analytical solutions. In Region 2,
where the singularity occurs, we deform the integration
path and apply a standard numerical method to accu-
rately manage this small but crucial region. Conversely,
Regions 1 and 3, which are characterized by an oscil-
latory integrand due to the Bessel function, are treated
differently. In these regions, the integrand behaves as
a damped sinusoidal function with a smooth envelope.
This behavior is effectively captured using the large-
argument form of the Bessel function. Eventually, the
integrand (denoted by I) is expressed as follows [5]:

I = f
(
kρ

)
cos

(
kρ ρ − nπ

2
− π

4

)
, (2)

where f (kρ) is the smooth envelope function, which is
given by

f
(
kρ

)
=

M

∑
i=1

aie−bikρ , (3)

where ai and bi are the poles and residues, respectively,
and M is the number of poles/residues.

These parameters are determined through interpo-
lation methods such as Prony or the GPOF method. In
our tests, combining the Prony method with the Total
Least Squares (TLS) technique, we found that using just
a few terms (e.g., M = 3 or 4) along with a limited num-
ber of envelope samples yielded highly accurate results.
The proposed method’s ability to reduce the integrand to
a few terms enables the use of straightforward closed-
form analytical integration techniques. While traditional



377 ACES JOURNAL, Vol. 40, No. 05, May 2025

DCIM shares this feature, our method is significantly
more efficient, particularly when handling the highly
oscillatory integrands encountered at millimeter-wave
frequencies. This increased efficiency arises because our
approach focuses on the smooth envelope function rather
than directly dealing with the oscillatory integrand in its
original form, as done in traditional DCIM.

B. Numerical results
In this section, we present numerical examples to

validate and demonstrate the effectiveness of our pro-
posed approach. We consider a dielectric medium with
a permittivity of 3.5, a loss tangent of 0.001, and a thick-
ness of 1 mm, backed by a conducting plane, with an
operating frequency of 20 GHz. The integrand corre-
sponding to Green’s Function G̃AJ

zz is analyzed, as shown
in Fig. 2. Figures 3 and 4 illustrate the envelope func-

Fig. 3. Original and reconstructed envelope functions in
Region 1.

Fig. 4. Original and reconstructed envelope functions in
Region 3.

Fig. 5. SI values as a function of radial distance for two
different source point positions (z′ = 1 mm and z′ = 0.1
mm) when the observation point is z = 1 mm.

tions, assuming a lateral distance of ρ = 16λ0 (where λ0
is the free-space wavelength) with the source and obser-
vation points located within the same layer (z′ = 1 mm,
z = 1 mm). It is important to note that our method is
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Fig. 6. SI values as a function of vertical distance for two
different lateral distances (ρ = 16λ0 and ρ = λ0) when
the source point is z′ = 0.1 mm.

versatile and can also handle scenarios where the source
and observation points are in different layers. For this
example, we use M = 4 terms in the summation. The
envelope function is sampled and interpolated using 20
samples in Region 1 and 45 samples in Region 3. Figures
5 and 6 show the SI values as functions of the radial and
vertical distances, respectively. These results are com-
pared with those obtained using MATLAB’s numerical
integration function, which is significantly more time-
consuming than our method. For a single simulation
in Fig. 5, the computation times on an Intel i9-10885
CPU are 1.6 seconds and 4.6 seconds using the proposed
method and MATLAB’s integration routine, respectively.
Similarly, for a single simulation in Fig. 6, the computa-
tion times are 0.26 seconds and 1.6 seconds using the
proposed method and MATLAB’s integration routine,
respectively. These results demonstrate that the proposed
approach significantly accelerates the solution process,
which could potentially reduce the matrix fill-time in
MoM.

It is also worth noting that, to further enhance com-
putational efficiency, an interpolation scheme can be
employed to approximate the SI values along the verti-
cal (z) direction as well. Details of this scheme can be
found in [5].

III. EQUIVALENT MEDIUM APPROACH
A. EMA for printed circuits and antennas

In this section, we present a novel technique for
numerical modeling of planar circuits and antennas
printed on layered media, typical examples of which
have been presented earlier in Fig. 1. The novelty of
this approach stems from the fact that it totally obvi-
ates the need for the construction of the layered medium
Green’s Function; hence, it is not only less tedious but
also far more numerically efficient to use than construct-
ing the more rigorous Green’s Function for the layered
media. Although empirical, the numerical results gen-
erated by using this approach are remarkably accurate
as we will see from the results for the S-parameters
presented later in this section. In fact, often the dif-
ference between the S-parameter results generated by
the two different commercial codes, such as CST and
HFSS, is of the same order (or larger) than the differ-
ence between the numerical results derived by using the
complex image method described in the previous section,
and the EMA. We note that in HFSS [13], a 3D full-wave
frequency-domain electromagnetic (EM) field solver uti-
lizing the FEM is employed, while in CST [14], a time-
domain EM field solver based on the FDTD method is
used.

The basic strategy of the EMA is relatively sim-
ple. We begin with a planar transmission line, such as a
microstrip line, printed on a substrate (typically a single-
layer dielectric) backed by a ground plane, as shown
in Fig. 7 (a). Next, we replace the layered medium
with a homogeneous medium in the entire half-space
above the ground plane, as shown in Fig. 7 (b). The
effective epsilon (εe f f ) of the homogeneous medium is
obtained by using the equations (4)-(8) that were origi-
nally derived in [15], for a microstrip line whose trace
width is w, substrate thickness is h, and whose relative
permittivity of the substrate is εr. Our strategy is to use
these effective epsilons to replace the original geome-
tries of the microstrip circuits and antennas with their
equivalent geometries (see Figs. 7 (a) and 7 (b)). Another
reliable way of doing this is to determine εe f f of the
homogeneous medium such that the propagation con-
stant along the original microstrip line in Fig. 7 (a) is the
same as that of the transmission line shown in Fig. 7 (b),
which is embedded in a homogeneous half-space.

We present two options for determining the εe f f .
The first of these is to use the quasi-analytical formu-
las given in [15], which express the effective epsilon
directly in terms of the parameters of the transmission
line shown in Fig. 7. The formulas are given in equations
(4)-(8):

εe f f ( f ) =

[√
εr −

√
εe f f

1+4F−1.5
1

+
√

εe f f

]2

, (4)



379 ACES JOURNAL, Vol. 40, No. 05, May 2025

(a)

(b)

Fig. 7. Comparison of the original geometry in a layered
medium and the equivalent geometry in a homogeneous
medium: (a) side view of the original geometry with free
space above the patch and a dielectric substrate below
and (b) side view of the equivalent geometry with an
equivalent dielectric above and below the patch.

√
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εr +1
2

+
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2
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1
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(
1+

w
h

)}2
]

,
(8)

where w is width of the microstrip, h is thickness of the
substrate, c is the speed of light in vacuum, f is the
frequency of operation, εr is dielectric constant of the
substrate in Fig. 7 (a), εe f f is equivalent dielectric con-
stant of the homogeneous medium of the half-space in
Fig. 7 (b). The second option, referred to herein as the
short-circuit method, first terminates the line with a short
circuit and then extracts the wave number β from the
resulting standing waves on the line by measuring the

distance between the minima of the standing waves. The
latter approach is more accurate but is also more time-
consuming because it requires a numerical simulation
of the microstrip transmission line. In any case, the two
results for the εe f f are very close to each other.

Let us consider an example to illustrate the extrac-
tion procedure of the effective epsilon (εe f f ). We begin
with an original geometry of a microstrip line whose
width w is 4.84 mm, the relative permittivity (εr) of its
substrate is 2.2, while its thickness h is 1.57 mm. The
first method, based on the formula given in equations (4)-
(8), provides εe f f = 1.89, at the frequency of interest
2.4 GHz. The second method, based on short circuit ter-
mination, yields εe f f = 1.9, for which the propagation
constant (γ = jβ = j157.08 rad/m) of the line embed-
ded in a homogeneous medium is identical to the propa-
gation constant (γ = j157.08 rad/m) of the original line
in a layered medium at the frequency of 2.4 GHz. We
observe that both the methods are reliable and accurate,
and we subsequently use the simpler ‘equivalent’ geom-
etry to model the microstrip circuit, which obviates the
need for the construction of the layered medium Green’s
Function altogether; hence the EMA is numerically
efficient.

Fig. 8. Top view of the geometry of MPA (backed by full
ground plane). The green area shows substrate and the
orange area shows copper.

Next, we proceed to illustrate the use of the EMA by
considering the example of a microstrip patch antenna
(MPA) fed by a stepped transmission line geometry
designed to provide the antenna with a wideband match.
The antenna configuration is shown in Fig. 8. The rela-
tive permittivity (εr) of the substrate is 2.2, and its thick-
ness (h) is 1.57 mm. The reason we choose this example
is that the width (w) of the trace in this geometry changes
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three different times; hence, it brings up an important
question that we must resolve before proceeding to sim-
ulate this geometry, regardless of which method we use–
the formula or the short-circuit termination–to extract the
effective epsilon (εe f f ). Since this geometry has three
different widths, we would generate three different val-
ues for the εe f f , two for the two transmission lines with
different trace widths, and the third for the patch, which
we are still treating as a microstrip line for the purpose of
extracting the εe f f . The quasi-analytical formulas, given
in equations (4)-(8) generated three different values for
the εe f f viz., 1.73, 1.89, and 2.14 for the three trace
widths, w = 0.72 mm, 4.84 mm, and 35 mm, respec-
tively, at the frequency of interest 5.5 GHz. (Note: We
can apply the same procedure for other frequencies of
interest equally well.) The problem is that an MoM code
can only deal with a single εe f f , and not with different
epsilons in different sub-regions. To address this issue,
we propose two different approaches.

In the first approach, we define a composite repre-
sentation of the εe f f as a weighted average which reads:

Composite εe f f =

A1εe f f 1 +A2εe f f 2 +A3εe f f 3

A1 +A2 +A3
,

(9)

Modi f ied Composite εe f f =(
A1εe f f 1 +A2εe f f 2 +A3εe f f 3

A1 +A2 +A3

)
F ,

(10)

where A1 represents the area of the patch (w = 35 mm),
A2 corresponds to the area of the thin line (w = 0.72 mm),
and A3 denotes the area of the feed line (w = 4.84 mm).
The effective permittivities associated with these regions
are denoted as εe f f 1 for the patch, εe f f 2 for the thin line,
and εe f f 3 for the feed line. Using equation (9), the com-
posite effective permittivity εe f f is computed as 2.11.

This composite εe f f is then used to simulate the
antenna, including both the patch and its stepped feed-
line, and the results are compared with those obtained
from a commercial solver for the original layered-
medium geometry. Figure 9 presents this comparison,
showing the S-parameter (S11) of the antenna as a func-
tion of frequency, derived using the HFSS simulator. The
results indicate a slight shift in the resonant frequency of
the antenna when employing the numerical simulation
based on the EMA, using the HFSS simulation as the
reference.

To further improve the agreement between the two
methods, an empirical factor F is introduced (see equa-
tion (10)), which scales down the composite εe f f to 2.02.
Through numerical experiments, F is determined to be
0.96. Figure 9 illustrates that the S11 plot of the orig-
inal MPA in a layered medium (substrate permittivity
εr=2.2) closely matches the S11 plot of the equivalent

MPA geometry when the modified composite εe f f is
set to 2.02. The S-parameter results obtained using this
adjusted composite permittivity demonstrate the effec-
tiveness of the empirical factor in enhancing the accu-
racy of the EMA. The agreement achieved through this
correction is often comparable to or even better than that
obtained by using two different commercial solvers to
simulate the same problem geometry.

Fig. 9. Comparison plot of S11 versus frequency for the
MPA geometry between layered medium and homoge-
neous medium. Terminating impedance, Zin = 50 Ω for
both mediums. The simulator used: HFSS.

It is evident that indeed using a modified compos-
ite εe f f yields a result that compares very favorably with
the one obtained from a rigorous numerical simulation
that employs a commercial code such as the HFSS or
CST, for instance, and its use provides an obvious time-
saving advantage. We now present two other examples to
demonstrate the versatility of the EMA utilizing the for-
mula method to derive the effective epsilon of the equiva-
lent geometry of the problem at hand. As an example, we
show the results of the geometry of four elements MPA
utilizing, as shown in Fig. 10, for the frequency range 2
– 3 GHz. The relative permittivity (ε f ) of the substrate
is 2.2 in a layered medium, and its thickness (h) is 1.57
mm. The composite εe f f of the homogeneous medium is
calculated to be 2.11 and the empirical factor, F as 0.97,
scales down the composite εe f f to 2.05. The comparison
is shown in Fig. 11, which plots the S-parameter (S11) of
the antenna array as a function of frequency, using HFSS,
at the frequency of interest 2.4 GHz. We observe that the
S11 plot of the original MPA array in a layered medium
(substrate εr = 2.2) matches well with the S11 plot of
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Fig. 10. Top view of the geometry of four elements MPA
array (backed by full ground plane). All dimensions are
in millimeters (mm). The green area shows substrate and
the orange area shows copper.

Fig. 11. Comparison of S11 as a function of frequency
for the MPA array geometry in both layered and homo-
geneous media. The terminating impedance Zin is 50 Ω

in both cases. Simulations were performed using HFSS.

the equivalent geometry of the MPA array in a homoge-
neous medium, when the modified composite εe f f of the
homogeneous medium is 2.05.

Next, we present the results for the two-port stepped
filter geometry, shown in Fig. 12, for the frequency range
5–6 GHz. The relative permittivity (εr) of the substrate is
4.0, and its thickness (h) is 1 mm. Figures 13 and 14 plot

Fig. 12. Top view of the geometry of stepped filter
(backed by full ground plane). All dimensions are in mil-
limeters (mm). The green area shows substrate and the
brown area shows copper.

(a)

(b)

Fig. 13. Comparison of S-parameters as a function of fre-
quency for the stepped filter geometry in both layered
and homogeneous media: (a) S11, (b) S12. The termi-
nating impedance Zin is 50 Ω in both cases. Simulations
were performed using HFSS.

the S-parameters (S11, S12) as functions of frequency
obtained by using the HFSS and CST. The S-parameters



MITTRA, OZGUN, KAIM, NASRI, CHAUDHARY, ARYA: NOVEL STRATEGIES FOR EFFICIENT CEM SIMULATION 382

(a)

(b)

Fig. 14. Comparison of S-parameters as a function of fre-
quency for the stepped filter geometry in both layered
and homogeneous media: (a) S11, (b) S12. The termi-
nating impedance Zin is 50 Ω in both cases. Simulations
were performed using CST.

plots of the original geometry of the stepped filter in a
layered medium (substrates εr = 4.0) match with the S-
parameters plot of the equivalent geometry of the stepped
filter embedded in a homogeneous medium, at the fre-
quency of interest 5.5 GHz; when the modified compos-
ite εe f f of the homogeneous medium is 3.25.

It is worthwhile to mention here that although we
have only presented results based on the use of the ‘for-
mulas’ to obtain the effective epsilons of the microstrip
lines, we could have also employed the short-circuit ter-
mination method with a slightly different empirical fac-
tor F to achieve essentially the same S-parameter results

for the problem at hand that agree with the reference
results for the same parameters when the simulation is
carried out by using the commercial CEM codes. As
mentioned before, the ‘formula’ option is more efficient
and, hence, is our preferred choice.

Before closing this section, we would like to men-
tion a novel strategy, which enables us to use multiple
effective ε ′s, as opposed to a single composite one, by
combining the EMA with the T-matrix approach. This
approach begins with a domain decomposition of the
original geometry into several blocks, each of which has
its own effective ε that depends on the width of the trace
as we have explained earlier. The next step is to extract
the S-parameters of each of these blocks by using the
EMA. Finally, we generate the S-parameters of the orig-
inal geometry by cascading the S-parameters of the dif-
ferent blocks by using the T-matrix algorithm [16]. This
algorithm will be discussed more fully in section IV,
where hybrid CEM methods with finite methods will be
presented.

To illustrate the proposed procedure for handling
geometries with multiple trace widths, let us consider the
case of double-step discontinuity in a 50Ω−100Ω−50Ω

microstrip line, shown in Fig. 15. The three blocks for
this microstrip line geometry are shown in Fig. 15 printed
on a substrate εr = 4 of thickness 1.5mm. The Line-
1, length = 25mm, width = 2.4mm, Line-2, length =
25mm, width = 0.4mm, and Line-3, length = 25mm,
width = 2.4mm. Note that the S-parameters of the indi-
vidual blocks, each of which in this example is a sim-
ple uniform transmission line, can be readily derived on
paper without having to run any numerical simulation at
all. We have verified that the accuracy of this approach
is very high, as the numerical results to be presented in
section I [17] readily demonstrate.

Fig. 15. A 50Ω−100Ω−50Ω discontinuous microstrip
line. All dimensions are in millimeters (mm).

A similar strategy can be used to simulate the pack-
aging problem shown in Figs. 1 (i) and 1 (j).

B. Equivalent medium approach for metasurfaces
and metamaterials

In recent years, there has been an increase in the
use of metamaterials (MTMs) and metasurfaces (MTSs)
as performance enhancers of communication antennas.
Typically, MTMs and MTSs are truncated periodic or
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quasi-periodic structures, designed to control the reflec-
tion, transmission, or propagation characteristics of a
material slab (or a surface) in a desirable manner. How-
ever, an extensive search of the literature reveals that very
rarely we are provided a clue that explains how to choose
the particular shape, size, or material parameters of an
element of the quasi-periodic MTS to realize the desired
performance of the antenna utilizing the MTS. Designing
the MTS typically requires extensive numerical simula-
tions, which can be tedious as well as time-consuming,
especially when the antenna, which is typically an array
for millimeter wave applications, is several wavelengths
in size.

A common strategy for dealing with MTSs is to
extract their material parameters, as a first step to numer-
ically modeling them. A number of authors [15, 18–
20] have presented techniques for extracting the mate-
rial parameters (ε,µ) of the unit cell of an MTM slab.
The present technique differs from the existing methods
for characterizing MTMs and MTSs in two ways. First,
it works with ε-only parameters, by assuming that µ is
either µ0 or constant. Second, it extracts the parameters
of the ε tensor in a very different way than has been pub-
lished in the existing literature. The method of extraction
proposed herein is not only simple but is also tailored
for typical antenna applications, which depend upon the
reflection, transmission, and propagation characteristics
of MTSs, for instance.

In the previous section, we have presented the
details of the EMA for efficient numerical simulation of
microstrip circuits and antennas bypassing the genera-
tion of Green’s Function for layered media. Computa-
tional bottleneck also arises when dealing with MTSs
and MTMs, in combination with antennas, used to
enhance the performance of the antenna or to realize the
antenna itself by employing MTMs because the requisite
material is unavailable off-the-shelf.

The basic strategy is still to replace the metamaterial
– which often has fine or multi-scale features – with an
equivalent dielectric, which is much simpler to deal with
numerically. The use of this tactic renders the simulation
numerical simulation much more efficient than it would
be if we were to deal with the original MTM directly,
as we would when using a commercial EM simulator.
In this section, we provide the details of this procedure,
based on the EMA by considering the example of a MPA
(or array) covered with an MTS superstrate to enhance
its performance.

The EMA to deriving the equivalent dielectric slab
is based on matching the phase of the transmission coef-
ficient of the original metasurface and the equivalent
dielectric slab based in a unit cell, as shown in Fig. 16.

The first step in this EMA-based procedure is to
replace the unit cell of the metasurface with a permittiv-

Fig. 16. Original MTS (left) and its equivalent dielectric
slab (right).

ity tensor by using the procedure described below. The
procedure is general and is applicable to both isotropic
and anisotropic metasurfaces.

By using this approach, we can calculate the ε of
the metasurfaces in each direction of propagation. Gen-
erally, the metasurface is an anisotropic slab and is char-
acterized by using an ε tensor as follows:

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 , (11)

where x, y, and z are the three propagation directions.
After deriving the equivalent epsilon (εeq) represen-

tation of the original metasurface, we replace it just by
the dielectric slab for the numerical simulation of the
antenna plus metasurface combination.

For an example of MTS material (shown in Fig.
17 (a)), the diagonal elements in the above matrix are
identical for x and y directions and the ε of the dielectric
slab can be represented by:

ε =

ε 0 0
0 ε 0
0 0 εzz

 , (12)

However, the equivalent epsilon of the dielectric
slab for the MTS in Fig. 17 (b), is represented by a uni-
axial representation (13):

ε =

εxx 0 0
0 εyy 0
0 0 εzz

 , (13)

where the εxx and εyy are not the same.
For certain anisotropic materials, we only need the

diagonal matrix to characterize the permittivity of the
material, but for accurately characterizing a chiral mate-
rial [21], we need to include the off-diagonal terms of
the ε tensor as well. Figure 17 (c) shows the layout of the
example unit cell of a chiral metasurface, for which the ε

for the anisotropic off-diagonal matrix is represented by:

ε =

εxx εxy 0
εyx εyy 0
0 0 εzz

 , (14)

It is worthwhile to mention here that the EMA is
very versatile. It is not just limited in its application to
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(a)

(b)

(c)

Fig. 17. Geometries of the example unit cells: (a) MTS
material, (b) anisotropic MTS, and (c) chiral MTS.

planar circuits, examples of which have been presented
in Fig. 1, but also to other non-planar and inhomoge-
neous geometries to efficiently simulate other types of
geometries such as Luneburg lenses fabricated by using
artificial dielectrics (see Figs. 1 (k) and 1 (l)), and spi-
ral inductors printed on multi-layer substrates, shown
in Fig. 1 (m). Numerically modeling lens is very time-

consuming, especially when the lens diameter is sev-
eral wavelengths, as it typically is for millimeter wave
applications, and the lens is fabricated by using artificial
dielectrics as shown in Fig. 1 (l). Similarly, numerically
simulating the inductor to extract its circuit parameters
is very time-consuming as well as memory-intensive,
because the thicknesses of the dielectric layers are very
small – in the micron range – which calls for the use
of a very fine mesh to represent the geometry under con-
sideration accurately. However, we can obviate this prob-
lem by replacing the multi-layered dielectric with one (or
two) εe f f layers of moderate thickness, thus rendering
the problem very manageable from the numerical simu-
lation point of view.

Additionally, the method is well suited for hybridiz-
ing the Integral equation and finite method by using
a novel approach which overcomes the roadblock pre-
sented by the fact that the MoM deals with induced cur-
rents whereas the finite methods work with fields, mak-
ing the problem of merging the two algorithms to handle
a given problem very challenging indeed.

In summary, we have presented the EMA in this
section which is very powerful as well as versatile, and,
hence, is a very useful tool for numerical simulation of a
wide class of problems.

C. Application of EMA to metasurfaces-based
antennas

Next, we explain how we use the EMA to first char-
acterize the MTS, and then simulate an antenna (or an
array) that utilizes the MTS as a superstrate to enhance
its performance, such as its gain. The simulation time
for such an antenna plus superstrate combination can be
very long when the operating frequency is in the millime-
ter wave range. Our goal is to replace the original MTS,
shown in Fig. 18 (a).

To demonstrate the efficacy of the proposed method,
we compare the CPU times and memory burdens when
we simulate an array of three microstrip patches covered
by a metasurface superstrate, shown in Fig. 18 (a), versus
when the superstrate is replaced by an isotropic dielectric
as shown in Fig. 18 (b). The dielectric constant of the
material and the FSS thickness are, respectively, 17 and
0.6mm, while the remaining dimensions of the unit cell
of the MTS Superstrate are shown in Fig. 19.

Table 1 presents the comparison time and memory
requirement for the patch array covered with metasur-
faces and with equivalent dielectric. We observe a rel-
evant reduction in the utilized RAM and in the CPU
time by using the EMA. The CPU time simulation and
the RAM requirement are reduced by a factor of 5 and
5.5, respectively. The advantage of using the EMA over
a direct simulation of the original geometry comprising
of the antenna array and the MTS superstrate is clearly
evident from Table 1.
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(a)

(b)

Fig. 18. Three-element MPA with different superstrates:
(a) metasurface superstrate and (b) equivalent dielectric.

(a)

(b)

Fig. 19. Dimensions of the unit cell of the MTS super-
strate presented in Fig. 18: (a) top view and (b) bottom
view.

Table 1: Comparison of CPU runtimes and required
RAM values for the Equivalent Medium approach and
the original array covered with the metasurface super-
strates (Fig. 18)

Design
Max
RAM
(GB)

Real Time
(hh:mm:ss)

CPU Time
(hh:mm:ss)

Three-element
patch 1.04 0:14:04 0:13:59

Three element
patch+

Metasurface
91.3 72:55:04 95:51:09

Three element
patch+

Equivalent
Dielectric

24.4 14:56:47 16:57:22

IV. THE T-MATRIX APPROACH FOR
CASCADED TWO-PORT NETWORKS
In this section, we present the T-matrix approach

to show how to use it in conjunction with the domain
decomposition technique to handle a wide variety of
printed circuits and antenna geometries, illustrated in
Fig. 10 in section III, in a numerically efficient manner.

We start by choosing the geometry of an open-ended
stub in a microstrip line, and dividing the original prob-
lem into three blocks, as shown in Fig. 20, to detail the
T–matrix procedure. The relevant equations for deriving
the S-parameters of the original geometry, by utilizing
the S-parameters of the three blocks in which the geom-
etry is subdivided, are given below:[

S11 S12
S21 S22

]
−−−−→

[
T11 T12
T21 T22

]
= T1[

S11 S12
S21 S22

]
−−−−→

[
T11 T12
T21 T22

]
= T2[

S11 S12
S21 S22

]
−−−−→

[
T11 T12
T21 T22

]
= T3

Tt = T1 ∗T2 ∗T3 =

[
Tt11 Tt12
Tt21 Tt22

]
−→

[
St11St12
St21St22

]
,

(15)
where the starting S parameters are for the three blocks
and the St parameters are for the total stub line. The
details of the principle of the T-matrix approach were
discussed in section III, part A.

One of the 3D geometries, shown in Fig. 21, is a
via, which connects transmission lines from the top to
the bottom layer by using the through-hole via. This
problem is not amenable to convenient simulation using
integral equation methods, not only because of the 3D
nature of its geometry but also because it is difficult to
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Fig. 20. Example of a stub divided into three blocks.

construct Green’s Function for the region in the neigh-
borhood of the through–hole via. However, the T-matrix
approach, presented in this section, enables us to han-
dle this problem by using a hybrid algorithm comprised
of a combination of finite methods, such as the FEM or
FDTD, and integral equation techniques based on the
Green’s Function that we have discussed previously in
section III. The hybrid method is not only powerful and
versatile, but it is also numerically more efficient than
either the finite method or the integral-equation-based
approach when directly applied to the problem at hand,
namely the through-hole via with microstrip feed lines
printed on top and bottom layers of the configuration.

Fig. 21. Example of 3D geometry.

Although not included here, the method has been
thoroughly tested and proven to be accurate when
applied to a wide variety of problems, including not only
planar circuits but also 3D and 2D circuits, as well as
antennas, such as those shown in Fig. 22. The MPA
arrays with a corporate feed, described in Fig. 22, have
the following dimensions and substrate parameters: L =
10.08 mm, W = 11.79 mm, d = 1.3 mm, d = 3:93 mm,

L1 = 12:32 mm, L2 = 18.48 mm, D1 = 23.58 mm, D2 =
22.40 mm, εr=2.2, d=1.59mm, operating at 9.13 GHz.
The T-junction is handled separately using the circuit
method.

Fig. 22. Microstrip patch antenna array.

In summary, in this section we have presented the
EMA which is very powerful as well as versatile, and,
hence, is a very useful tool for a wide class of prob-
lems. In Part-II [17] of this paper we will go on to dis-
cuss three other strategies for performance enhancement
of CEM techniques, viz., Characteristic Basis Function
Method (CBFM), Mesh Truncation for Finite Methods
by using a new form of the Perfectly Matched Layer
(PML), and GPU acceleration of MoM as well as FDTD
algorithms.
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