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Abstract – Motivated by the demonstrated success of
artificial intelligence (AI) in wireless communications
systems, this paper proposes a deep learning-based
approach for generating a desired radiation pattern with
sidelobe level (SLL) control in active electronically
scanned array (AESA) antennas. Recent works in this
direction are mostly limited to generating radiation pat-
terns with only beam scanning capability, inhibiting their
wide-scale applicability. In this work, we propose a
unified deep neural network (DNN) model that enable
simultaneous control over both beam scanning angles
and SLLs across a range of operating scenarios. To
accomplish this task, the DNN model efficiently pre-
dicts the phase and amplitude of each array element.
To learn the DNN model’s parameters, we construct a
training dataset comprising amplitude values and phases
as labeled outputs and corresponding 181-point radia-
tion patterns as input features. The training and valida-
tion process of the proposed DNN model reveals high
accuracy in terms of R2 score and mean square error
(MSE). For prediction, the desired radiation pattern con-
sisting of 181 points is fed to the trained DNN model
to yield optimized weights of antenna elements. The
numerical results on a 1×8 linear phase antenna array,
using an assortment of beam scanning angles and SLLs,
demonstrate the effectiveness of the proposed model.
The numerical results presented in MATLAB and CST
simulators are validated by measurements on a 1×8
microstrip prototype array.

Index Terms – AESA antennas, array pattern, deep
learning, deep neural network, sidelobe level control.

I. INTRODUCTION
The overall radiation pattern of an antenna array is

dictated by phases and amplitudes of individual array
elements. The phases of the array elements are used for
beam scanning, and sidelobe level (SLL) is controlled by
amplitudes [1, 2]. Though traditional methods (such as
numerical, windowing techniques and optimization) [3–
6] of beam scanning and SLL control offer advantages
such as simplicity and low complexity, but they are less
adaptive in dynamic operating environments and under
more sophisticated practical applications.

Recently, artificial intelligence (AI), machine learn-
ing (ML), and especially deep learning-based radiation
pattern synthesis have emerged as strong alternatives that
offer novel solutions [7–15]. Although various deep neu-
ral network (DNN) models have been proposed for beam
scanning of linear antenna arrays, the problem of SLL
reduction using deep learning has received limited focus
in current research. This paper aims to fill this gap, where
we introduce a novel unified approach using DNN for
radiation pattern synthesis that simultaneously achieves
beam scanning and SLL control. The proposed approach,
therefore, generalizes the previously developed DNN-
based techniques [14, 15], which are applicable for beam
scanning only, enabling the antenna arrays to generate
arbitrary radiation patterns with desired main lobe direc-
tion and SLLs.

In this work, we consider an eight-element linear
antenna array to develop and train a DNN model to
predict the phases and amplitudes of each array ele-
ment for generating radiation patterns with desired scan-
ning directions and SLL. The unified DNN model can
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accurately predict the amplitudes and phases of all eight
elements from a single input radiation pattern consist-
ing of 181 points. The results are compared by plotting
radiation patterns based on actual and learned antenna
weights in MATLAB and CST simulators, which are also
validated by actual measurements on a prototype array
inside an in-house anechoic chamber. Our results show
the efficacy of the proposed DNN approach for synthe-
sizing an arbitrary array pattern.

The key advantages of the proposed unified DNN
model are as follows.

(i) The proposed design offers simultaneous SLL con-
trol and beam scanning, thereby supporting a
greater verity of applications.

(ii) Leveraging DNN’s capabilities, the proposed
design offers high accuracy and fast convergence.
Also, it can learn complex radiation patterns and its
performance improves with increasing data due to
the scalability of DNN.

(iii) Once trained, the DNN model can instantly evaluate
the complex weights (both amplitudes and phases)
of the antenna elements for any input radiation pat-
tern.

II. DNN ARCHITECTURE DESIGN
The architecture of our proposed unified DNN

model is shown in Fig. 1. The radiation pattern of the
linear antenna array, consisting of 181 points from 0 to
180 degrees, is fed as input features to the DNN model,

Fig. 1. Proposed DNN model architecture.

resulting in 181 neurons in the input layer, each corre-
sponding to one angular point in the radiation pattern.
The model is designed by using five fully connected hid-
den layers, each with ascending neuron count: starting
at 2048 in the first hidden layer, followed by 1536, 1024,
and 800 nodes in the intermediate layers and culminating
at 600 in the last layer. In order to reduce the size of the
dataset, the amplitudes of the antenna elements are con-
sidered symmetrical, with the central element weights
set to one. Therefore, it is only necessary to determine
the amplitudes of the first three elements and the phases
for the seven elements. Note that the phase of the first
element is taken as a reference and set to zero. Conse-
quently, the output layer of DNN consists of 10 neurons
i.e., three for the amplitudes and seven for the phases. In
non-symmetric scenarios with N antenna elements, the
size of the output layer would be 2N − 1, comprising of
N amplitudes and N − 1 phases. An Adam optimizer is
used to reduce the mean square error (MSE) between the
actual and DNN estimated array weights.

III. DATASET GENERATION WITH
REDUCED COMPUTATIONAL

COMPLEXITY
For radiation pattern synthesis, our dataset contains

equally spaced 181 points of the radiation patterns as fea-
tures, which are used by the model to map their relation-
ship with amplitudes and phases of each antenna element
acting as output labels of the data. The amplitudes range
from 0 to 1 and phases vary from 0◦ to 360◦ for each
antenna element (0◦ for the first element).
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A. Amplitudes dataset
We use a structured approach that successively

reduces the amplitudes dataset to a tractable size. This
approach involves three steps.

1. Symmetry
To reduce the dataset size, we first exploit the sym-

metry of the radiation pattern about the main lobe which
also implies symmetric amplitudes [16] across the array
elements. It means if the model can predict the ampli-
tudes of the first four elements in the eight-element array,
the remaining four amplitudes can simply be mirrored.
This significantly reduces the number of amplitude sam-
ples from 100 million to just 1000 (100,000-fold reduc-
tion) and with a reduced step size of 0.1 allowing us
finer resolution in amplitude that improves model train-
ing accuracy.

2. Tapering
In this technique, the amplitudes of the array ele-

ments are generated by a suitable window function [3]
to achieve the desired SLL. The effect of tapering on the
radiation pattern would be that the main lobe remains
high, the second sidelobes are smaller than the first,
the third sidelobes are smaller than the second, and so
on [17, 18]. The tapering step creates a highly relevant
dataset and establishes a strong relationship between all
the inputs and the desired radiation pattern.

3. Data cleaning
Tapering introduces redundancy in the dataset as it

may result in many samples being repeated in the dataset.
Thus, it is necessary to discard the recurring samples
from the dataset by performing data cleaning. To effi-
ciently generate the training dataset, tapering and data
cleaning can be performed jointly in a single step. For the
eight-element antenna array, again considering a step-
size of 0.1, an additional up to 84% reduction in dataset
size is possible by using both these steps.

The overall computational complexity for training
the neural network can be expressed using big-O notation
as O(E ·D · I ·H) as demonstrated in [19, 20], where E is
the number of epochs, D is the size of training dataset,
I is the size of the input layers and H is the number
of hidden units. As the number of antenna elements N
increases, a higher angular resolution is often required,
leading to a proportional increase in the size of the input
layer and hidden layers. For linear arrays, this results in
a complexity that scales linearly with N. However, tran-
sitioning from a linear to a planar antenna array signifi-
cantly increases the dimensionality of the radiation pat-
tern, causing the complexity to scale quadratically with
N [21].

B. Phases dataset
Since phases vary over a wide range 0◦ to 360◦, the

constant step size strategy is impractical here as it will
generate a very large data set. To cope with this problem,
we adopt a method proposed by the authors in [15] for
reducing the dataset in array beamforming. The method
in [15] uses uniformly spaced values of the phase dif-
ference (not the absolute phases) to generate the dataset
This significantly reduces the dataset size without com-
prising phase diversity. The dataset is generated using
MATLAB software and is publicly accessible for down-
load as referenced in [22].

It should be noted that a dataset of reduced com-
plexity can also be generated for planar arrays with the
same number of antenna elements by under sampling
their radiation patterns in two dimensions. The proposed
DNN model predicts the antenna weights with high accu-
racy. However, these results have not been included due
to space constraints.

IV. TRAINING AND VALIDATION
In our experiments, we considered 80% of the

dataset for training, 10% for validation, and 10% for test-
ing. Initially, the number of epochs is set to 250. Then,
to speed up the training process, we incorporated early
stopping, which halts the training if the validation loss
does not improve or begin to increase. The patience for
early stopping was set to 10, meaning that if the valida-
tion loss does not improve over 10 consecutive epochs,
training will stop. The patience for reducing the learning
rate, a technique to reduce the learning rate when the val-
idation loss plateaued, was set to five epochs. This means
that if the loss did not improve after reducing the learn-
ing rate and met the early stopping criteria, the training

Table 1: Hyperparameters of the proposed DNN model
Hyperparameters Values

Total data 2,011,100
Training data 80%

Validation data 10%
Testing data 10%

Input layer neurons 181
Number of hidden layers 5

Hidden layer neurons (per layer) 2048, 1536,
1024, 800, 600

Activation function in hidden
layer

ReLu

Output layer neurons 10
Activation function in output

layer
Linear

Optimizer Adam
Number of epochs 250

Learning rate 0.001
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would stop. This approach ensures that the training pro-
cess is efficient and helps the model converge towards a
lower error or loss. Compared to other methods where
training continues for the full number of epochs even
if the loss increases or remains unchanged, this method
optimizes training time and prediction performance. The
hyperparameters of the proposed DNN model are given
in Table 1.

V. NUMERICAL RESULTS
This section presents a detailed numerical analysis

of the proposed DNN model, including training, vali-
dation, and prediction results for radiation pattern syn-
thesis of an eight-element linear antenna array. In all
these results, R2 score and MSE serve as performance
metrics. The numerical results are generated using
Python but plotted in MATLAB, which are also verified
using CST software. These results are validated through
actual measurements on the prototype antenna array in
section VI.

A. Training and validation results
The training was performed on a system with an

NVIDIA L4 GPU, CUDA 12.2, and 24 GB of GPU

Fig. 2. Training and validation of the proposed DNN model: (a) loss curves and (b) R2 score.

Fig. 3. Measured and predicted-simulated radiation pattern results of a 1×8 prototype array with SLL -30 dB and main
beam at scan angles θs = 90◦(left), θs = 60◦(center), and θs = 120◦(right).

memory. Given the large dataset, we utilized Dask, a par-
allel computing library in Python, to efficiently handle
and process large datasets. After the initial processing
with Dask, we converted the data into a format com-
patible with TensorFlow for model training. Addition-
ally, Joblib was employed to save the model weights and
trained scaler to disk for later use. The training process
was optimized by the ModelCheckpoint callback, which
allowed us to save the best-performing model parame-
ters, based on the lowest validation loss during training.

Figure 2 shows the results, in terms of MSE loss
function for training and validation. Specifically, the
MSE loss curve quickly converges to 0.000048391 indi-
cating that the proposed method significantly reduces the
model loss. Figure 2 also shows an average R2 score of
nearly 1.0 across all epochs, indicating that our model
faithfully captured the underlying patterns in the training
data.

B. Prediction results
After completion of training and validation, the

model’s performance on entirely new data that is not
part of the dataset needs to be evaluated. To this end,
we generate optimal array patterns of the desired main
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beam direction and/or side lobe level (SLL), which are
then fed to the DNN model to predict the amplitudes and
phases of each array element. To test the robustness of
the model, we perform a critical analysis by testing the
predictions in the following scenarios: SLL of -30 dB.
with main beam scanning at 60◦, 90◦, and 120◦ observa-
tion angles. These three scenarios are illustrated in Fig. 3,
which compare the desired and predicted radiation pat-
terns. The results in Fig. 3 show the desired and predicted
radiation patterns generated in MATLAB (blue) and CST
(red) by using the complex weights learned by the pro-
posed DNN model. The complex weights computed with
the proposed DNN model are given in Appendix A.

VI. MEASUREMENT VALIDATION
To validate the predicted amplitude-phase compos-

ite DNN model, a 1×8 linear patch antenna array operat-
ing at 2.45 GHz and with an inter-element spacing of λ /2
was manufactured and is shown in Fig. 4 in the in-house
anechoic chamber. The individual patch elements are
excited through commercially available phase shifters
(part no. HMC928LP5E) and voltage variable attenua-
tors (part no. ZX73-2500-S+) to set the complex weights
(see Appendix A) on the individual antenna elements in
the array. These measured results are also shown in Fig. 3
for comparison with simulated results. The differences
in peak gain and SLLs between simulated and measured

Fig. 4. A 1×8 prototype array (left) with integrated attenuators and phase shifters (right) in an in-house anechoic
chamber measurements facility.

Table 2: Comparison between predicted, measured, and simulated results of a 1×8 prototype array with integrated
attenuators and phase shifters

Peak Gain (dB) Sidelobe Level (dB)
Scan Angle (θs) Simulated

(MATLAB)
Simulated

(CST)
Measured Simulated

(MATLAB)
Simulated

(CST)
Measured

90◦ 14.23 14.62 13.87 −29.78 −31.7 −29.32
60◦ 14.23 14.25 12.43 −29.83 −30.36 −31.03

120◦ 14.36 14.25 12.38 −30.06 −28.86 −27.18

radiation patterns using the predicted array weights with
the proposed DNN model are given in Table 2. The theo-
retical complex weights obtained with DNN model were
quantized to the values achievable with available attenu-
ators and phase shifters for the measurement validation.
The quantized values obtained from measured datasheets
of the attenuator and phase shifter reported in [23] are
added in Appendix A. These quantized values were set
through voltage-controlled attenuators and phase shifters
and the resulting measured radiation patterns are shown
in Fig. 3. As can be seen, there are differences in the
measured and simulated radiation patterns due to quan-
tized and theoretical weights feeding, however they are
still within the acceptable range.

Based on the results in Fig. 3 and Table 2, several
observations can be drawn: (a) the overall behavior of the
predicted radiation patterns is similar to desired (ideal)
patterns. This indicates the accuracy of the estimated
composite amplitude-phase DNN model for phased array
antennas; (b) there are acceptable small differences in
phased array performance parameters of gain and SLLs,
which shows that the proposed amplitude-phase DNN
model can be used generically in SLL-controlled phased
array applications, such as in massive MIMO and radar
systems, to reject the interferes and clutters; and (c)
the deviations in the measured and simulated patterns
are mainly due to limitations of achieving the exact
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amplitudes and phases with the microwave components
(attenuators, phase shifters) and possibly imperfect mea-
surement environment.

VII. CONCLUSION
In this paper, we proposed a DNN model that is

capable of synthesizing the radiation pattern of an eight-
element antenna array with precise control over SLL
and main beam direction. We also proposed a structured
way of generating the training data set that could speed
up the learning of DNN model parameters. The model
uses 181 points of the radiation pattern as input features
set against the amplitudes and phases of array elements
as labeled data. The prediction results carried out using
MATLAB, CST, and measurements proved to be in close
agreement with actual values showing the accuracy of
the proposed DNN model with R2 scores approaching 1.
In conclusion, deep learning models, especially DNNs,
have proven their ability to learn and effectively be uti-
lized in phased arrays. This work not only provides an
innovative solution to current challenges in synthesiz-
ing radiation patterns but also paves the way for future
developments. The success of DNN has opened the door
to incorporating more advanced versions of deep learn-
ing, such as transformers and specialized transformers,
to solve more complex real-world problems in phased
array design and optimization.
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Desired
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Amplitude-only
scenario

SLL: –20 dB 0.5799∠0o, 0.6603∠0o, 0.8751∠0o,
1∠0o, 1∠0o, 0.8751∠0o, 0.6603∠0o,

0.5799∠0o

0.5964∠0.00o, 0.6417∠0.00o, 0.8822∠0.00o,
1∠0.00o, 1∠0.00o, 0.8822∠0.00o, 0.6417∠0.00o,

0.5964∠0.00o

SLL: –30 dB 0.2622∠0o, 0.5187∠0o, 0.8119∠0o,
1∠0o, 1∠0o, 0.8119∠0o, 0.5187∠0o,

0.2622∠0o

0.2619∠0o, 0.5146∠0o, 0.815∠0o, 1∠0o, 1∠0o,
0.8157∠0o, 0.5187∠0o, 0.2622∠0o

SLL: –40 dB 0.1460∠0o, 0.4179∠0o, 0.7594∠0o,
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0.9809∠539.86o, 0.9568∠629.88o

Amplitude-
Phase scenario

SLL: –30 dB
θs = 60

◦
0.2622∠0o, 0.5187∠90o, 0.8119∠180o,

1∠270o, 1∠360o, 0.8119∠450o,
0.5187∠540o, 0.2622∠630o
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1∠0o, 1∠0o, 0.8119∠0o, 0.5187∠0o,

0.2622∠0o

Theoretical: 0.2619∠0o, 0.5146∠0o, 0.815∠0o,
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