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Abstract – As mentioned in Part-I [1], rapid prototyping
plays a critical role in the design of antennas and related
planar circuits for wireless communications, especially
as we embrace the 5G/6G protocols going forward into
the future. Existing commercial software modules are
often inadequate for this task in the millimeter-wave
range since the memory requirements and runtimes are
often too high for them to be acceptable as design tools.
Using approximate equivalent circuit models for various
components comprising the antenna and the feed sys-
tem is not the answer either, because these models are
not sufficiently accurate. Consequently, it becomes nec-
essary to resort to the use of more sophisticated sim-
ulation techniques based on full-wave solvers that are
numerically rigorous, albeit computer-intensive. Further-
more, optimizing the dimensions of antennas and cir-
cuits to enhance the performance of the system is fre-
quently desired, and this often exacerbates the prob-
lem since the simulation must be run a large number
of times to achieve the performance goal, namely an
optimized design. Consequently, as pointed out earlier,
it is highly desirable to develop accurate yet efficient
techniques, both in terms of memory requirements and
runtimes, to expedite the design process as much as
possible.

In the first part of this paper [1], we presented
three strategies to address these issues, mostly related to
Green’s Functions of layered media. We have shown that
the proposed techniques are not only useful for anten-
nas and printed circuits on layered media but also for
antennas embellished with metamaterials for the purpose
of their performance enhancement.

In this sequel to Part-I, we present several other
Efficient Computational Electromagnetic (CEM) simula-
tion strategies for expediting the runtime and improving
the capability of handling large problems that are highly
memory-intensive. These include a domain decomposi-
tion technique, which utilizes the Characteristic Basis
Function Method (CBFM); the T-matrix approach which
is also useful for hybridizing Finite Methods (FEM or
FDTD) with the Method of Moments (MoM); Mesh
truncation in Finite Method by using a conformal Per-
fectly Matched Layer (PML); and Graphics Processing
Unit (GPU) acceleration of MoM and FDTD codes.

Index Terms – 5G/6G Communication, Antenna
Design, Computational Electromagnetics (CEM),
Electromagnetic Scattering, Finite-Difference Time-
Domain (FDTD), Finite Element Method (FEM), GPU
acceleration, Method of Moments (MoM), Microwave
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Circuits, Millimeter waves, Perfectly Matched Layer
(PML).

I. INTRODUCTION
In Part-I [1] of this paper, we presented three dif-

ferent strategies for enhancing the performance of effi-
cient Computational Electromagnetic (CEM) techniques
to enable them to handle the simulation of antennas, cir-
cuits as well as metamaterials at millimeter wavelengths.
In this sequel to Part-I, we describe three additional
strategies that complement those presented in Part-I.
The topics covered in this sequel include: High-Level
basis functions called the Characteristic Basis Functions
(CBFs); conformal PML (Perfectly Matched Layer)
for mesh truncation; and GPU acceleration of MoM
codes and those based on Finite Methods. The details
are presented in the sections that follow (sections II
through V).

II. CHARACTERISTIC BASIS FUNCTION
METHOD (CBFM) FOR EFFICIENT
ANALYSIS OF ARRAY ANTENNAS

This section focuses on the characteristic basis func-
tion method (CBFM), a reduced-order technique for effi-
cient electromagnetic (EM) analysis of large-scale radia-
tion and scattering problems, by revisiting its theoretical
framework (section II part A), outlining its key appli-
cation areas and its placement within the broader CEM
context (section II part B); and introducing a novel two-
level formulation of this algorithm with a single CBF per
subdomain at its top level (section II part C). While our
previous research on this topic, presented in conference
publications [2–4], has demonstrated the potential of this
CBFM formulation for enabling efficient EM analysis
of both periodic and aperiodic antenna arrays in radiat-
ing mode, its efficacy has not been extensively analyzed
in the existing literature, which primarily relates to the
conventional CBFM formulations that employ multiple
subdomain CBFs. Thus, section II part C aims to pro-
vide a unified and detailed analysis of the CBFM algo-
rithm with a single high-level subdomain basis function,
building upon the foundational concepts introduced in
our previous conference publications [2–4]. This anal-
ysis establishes the proposed CBFM formulation as an
effective tool for EM analysis in the context of rapid pro-
totyping of disconnected array antennas used in radio
astronomical research, 5G/6G communication systems
that utilize MIMO antenna arrays, and other applica-
tions. Furthermore, section II part D outlines our ongo-
ing research efforts aimed at integrating the proposed
CBFM approach with existing CEM solution techniques
to extend its applicability to connected antenna arrays
and circuits printed on multilayered dielectric substrates
for 5G/6G communication systems.

A conventional approach for conducting the EM
analysis of finite antenna arrays is by using full-wave
solution methods such as the finite-difference time-
domain (FDTD) method, the finite element method
(FEM), or the Method of Moments (MoM) [5]. For
arrays composed of metallic antenna elements in homo-
geneous space, which are in the focus of the analysis
in this paper, the surface formulation of MoM maxi-
mizes the numerical efficiency of the solution process
by discretizing only the conductive surfaces, whereas
the FDTD and FEM methods require meshing the entire
computational volume, as noted in [6, Chapter 5.11].
This formulation is based upon the transformation of dis-
cretized surface integral equations into a linear matrix
system:

ZZZRWGIIIRWG =VVV RWG. (1)
Here, VVV RWG and IIIRWG are the excitation or right-hand
side (r.h.s.) vector and the solution vector, respectively,
with a size of NRWG. The term ZZZRWG denotes the
moment matrix of the antenna array with a size of
NRWG ×NRWG. The dimensions of this matrix are deter-
mined by the overall number of Rao-Wilton-Glisson
(RWG) basis functions, which are used to model the
surface current distribution on triangulated surfaces [5].
This, in turn, determines the number of degrees of free-
dom (DoFs) for the solution in the MoM-based matrix
equation (1).

A. CBFM algorithm
In many antenna array problems characterized by a

high number of array elements, large electrical sizes, or
dense discretization of the antenna geometry, the MoM-
based matrix system can become too large to solve on
standard desktop computers. To overcome this challenge,
the dimension of the original MoM-based matrix sys-
tem (1) for these array problems can be reduced. This
reduction can be achieved by decomposing the entire
problem domain into several subdomains, and by group-
ing the low-level RWG basis functions within each sub-
domain to create a smaller set of high-level characteristic
basis functions (CBFs) specific to that subdomain. This
strategy forms the basis for the CBFM, which was orig-
inally introduced in [7] for efficient modeling of large-
scale EM scattering problems.

In the CBFM, the solution vector for the RWG
basis functions associated with the ith subdomain can be
expanded in terms of the CBFs generated on that subdo-
main as follows:

IIIRWG
i ≈

NCBF
i

∑
k=1

ι
CBF
i,k fff CBF

i,k . (2)

Here, the term fff CBF
i,k represents the kth CBF vec-

tor corresponding to subdomain i, with a size of NRWG
i ,

containing the expansion coefficients for the NRWG
i low-

level RWG subdomain basis functions associated with
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this CBF. Additionally, the term ιCBF
i,k is the expansion

coefficient for the corresponding CBF. Note that, follow-
ing the domain decomposition step of the problem geom-
etry, the defined subdomains may partially overlap, and
consequently, some RWG basis functions may be asso-
ciated with more than one subdomain [8, Chapter 4.3.1].

The initial set of subdomain CBFs is typically
selected to capture the underlying physics of the actual
current (i.e., the solution, yet to be determined) on that
subdomain. For instance, in radiating mode, this can be
achieved by generating primary CBFs that correspond to
the solutions of uncoupled subdomains, and secondary
or higher-order CBFs that account for mutual coupling
(MC) effects between subdomains. In scattering mode,
where the expected number of incident angles for incom-
ing plane waves can be relatively large, this can be
accomplished by collecting the responses of the subdo-
main geometry when illuminated by a set of incident
plane waves. Alternatively, subdomain CBFs can be gen-
erated from various numerical basis sets used to expand
the solution on that subdomain. These basis sets can be
derived from previous subdomain solutions in an iter-
ative method, characteristic modes, or physical optics-
based currents associated with the subdomain, to list a
few examples.

However, note that the initial set of subdomain CBFs
is often redundant from a linear algebraic perspective.
This means that some CBFs within this set can be
expressed as linear combinations of other CBFs from
the same set. To ensure that the CBFs are linearly inde-
pendent and that each CBF contributes unique infor-
mation to the solution, the singular value decomposi-
tion (SVD) algorithm or a similar matrix-decomposition
algorithm can be applied to orthogonalize the initial
set of CBFs. Moreover, a thresholding process can be
applied to the orthogonalized subdomain CBFs to elim-
inate those below the specified threshold, retaining only
the most significant subset. Consequently, the number of
generated subdomain CBFs, NCBF

i (i = 1, . . . ,M), may
vary across subdomains, where M corresponds to the
total number of subdomains. By applying the thresh-
olding procedure, the overall number of DoFs in the
reduced-order system is reduced, improving the compu-
tational efficiency of the solution process. In addition,
enforcing mutual orthogonality among the CBFs typi-
cally leads to a well-conditioned reduced-order matrix.
This not only minimizes the loss of numerical accu-
racy due to suboptimal matrix conditioning in both direct
and iterative solution approaches but also allows iterative
methods to be performed without the need for applying
advanced matrix preconditioning schemes, which is typi-
cally required to enhance the convergence of these meth-
ods when applied to MoM-based matrices with relatively
high condition numbers.

After decomposing the entire problem domain into
subdomains and generating the subdomain CBFs, a
CBFM-based reduced-order matrix equation can be for-
mulated as follows:

ZZZCBF
ιιι

CBF =VVV CBF. (3)
Here, VVV CBF and ιιιCBF represent the reduced-order

excitation vector and CBF coefficients vector, respec-
tively, both with a size of NCBF, where NCBF is the
total number of CBFs across all subdomains. Addition-
ally, the term ZZZCBF represents the reduced-order antenna
array coupling matrix, with a size of NCBF ×NCBF. By
applying a domain decomposition scheme to subdivide
the entire problem domain into subdomains, the MoM-
based matrix for this problem can be structured as a
block matrix. The diagonal blocks (submatrices of the
full matrix) contain the self and MC interactions between
the RWG basis functions within each subdomain, while
the off-diagonal blocks (submatrices) represent the MC
interactions between the RWG basis functions across
different subdomains. Consequently, the CBFM-based
reduced-order matrix can be constructed in a block-based
manner by modeling intra- or inter-block coupling inter-
actions between the CBFs associated with the blocks p
and q through the corresponding submatrix of the origi-
nal MoM matrix, as follows:

ZZZCBF
pq =

(
fff CBF

p

)†
ZZZRWG

pq fff CBF
q

(
{p, q}= 1, . . . ,M

)
,
(4)

where
fff CBF

i =
[

fff CBF
i,1 | . . . | fff CBF

i,NCBF
i

] (
i = 1, . . . ,M

)
, (5)

is a column-augmented CBF matrix of size NRWG
i ×

NCBF
i , with i = p for the CBF matrix containing NCBF

p
test (observation) CBFs on the pth subdomain, and i = q
for the CBF matrix containing NCBF

q source CBFs on
the qth subdomain [8, Chapter 4.3.1]. The symbol {·}†

denotes the conjugate transpose operator. In addition,
ZZZRWG

pq , with a size of NRWG
p × NRWG

q , is the submatrix
extracted from the MoM-based matrix ZZZRWG, which con-
tains the coupling interactions between subdomains p
and q. Consequently, the size of each matrix term ZZZCBF

pq

is NCBF
p × NCBF

q , and this matrix is incorporated as a
submatrix into the reduced-order matrix ZZZCBF. When
an array is composed of identical antenna elements,
NRWG

p = NRWG
q = NRWG

s .
Similarly, the CBFM-based reduced-order excita-

tion vector can be constructed in a block-based manner
as follows:

VVV CBF
p =

(
fff CBF

p

)†
VVV RWG

p
(

p = 1, . . . ,M
)
, (6)

where VVV RWG
p is the pth subdomain excitation vector of

size NRWG
p , extracted from the MoM-based excitation

vector VVV RWG. Consequently, the size of each vector term
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VVV CBF
p is NCBF

p , and this vector is incorporated as a sub-
vector into the reduced-order excitation vector VVV CBF.
Note that, instead of using (4) and (6) to calculate the
blocks of the reduced-order matrix and excitation vector
by processing the available MoM-based matrix and exci-
tation vector data, these blocks can be calculated directly
by evaluating the reaction integrals between the radiated
(scattered) field from the source CBF and the observation
(test) CBF, as described in [8, Chapter 4.3.1].

The runtime costs of the CBFM algorithm include
the initial cost of generating the MoM matrix, the cost
of generating subdomain CBFs, and the costs asso-
ciated with setting up and solving the reduced-order
matrix. Here, the runtime for generating the moment
matrix scales as O

((
NRWG

)2
)

. In the CBFM algo-
rithm applied to large antenna (array) problems, the cost
of generating subdomain CBFs is typically less signif-
icant compared to the costs of setting up and solving
the reduced-order matrix. The cost of constructing the
reduced-order matrix ZZZCBF via (4) can be estimated as
O
((

NRWG
)2 ×NCBF

s

)
, under the assumption that the

average number of subdomain CBFs, NCBF
s , is consid-

erably smaller than the number of RWG basis func-
tions per subdomain

(
i.e., NCBF

s ≪ NRWG
s

)
, as detailed

in [9]. Finally, solving the CBFM-based reduced-order
matrix system (3) to extract the CBF coefficients vector,
ιιιCBF, scales as O

((
NCBF

)3
)

when using a direct solver,

or O
(

Kit. ×
(
NCBF

)2
)

when using an iterative method,
where Kit. is the number of iterations required to reach
convergence. Direct solution methods are generally pre-
ferred in applications that require handling a large num-
ber of excitation vectors, such as in radar cross-section
(RCS) analysis. This is mainly because a direct solver
requires solving the reduced-order matrix only once,
after which generating solutions for the desired excita-
tion vectors is reduced to performing efficient matrix-
vector multiplications. However, in many applications,
the dimension of the reduced-order matrix may still be
large due to factors such as the large electrical size of
the problem or a high number of array elements, poten-
tially with a relatively large average number of gener-
ated CBFs per element. In such cases, or more gener-
ally in applications where the desired number of exci-
tation vectors is relatively small, iterative methods can
offer greater computational efficiency in comparison to
direct solution approaches. Note that for both direct and
iterative solution methods, the CBFM typically signifi-
cantly reduces the overall solution times of MoM-based
algorithms, while maintaining reliable solution accuracy.
This is achieved by rigorously accounting for EM cou-
pling effects within and between subdomains during the

construction of the reduced-order matrix through (4). As
a result, the CBFM enables accurate and systematic anal-
ysis of arbitrary large-scale 2D and 3D antenna array
and scattering problems in a computationally efficient
manner [7].

B. CBFM: Applications and related methods in com-
putational electromagnetics

Since its inception, the CBFM has been exten-
sively used for efficient analysis of various EM scatter-
ing problems [7, 10–33]. In addition, this algorithm has
been effectively adapted for the analysis of a range of
microwave structures [34–40], as well as array anten-
nas in free space [41–45], or antennas printed on top
of layered media [20, 46–48]. The numerical advan-
tages of using the CBFM for analyzing printed antennas
have been demonstrated, for instance, in [36] and [48],
showing significant improvements in both runtime and
memory requirements compared to the MoM, often by
orders of magnitude. In addition, the CBFM has been
successfully utilized in the context of analysis based
on the FEM [49–54], as well as in analyses of scatter-
ing from rough surfaces [55] and forest scattering [56].
Moreover, it has recently been shown that the CBFM,
which was originally developed to reduce the matrix
size by using high-level basis functions that made it
feasible to use a direct solver even for relatively large
size problems, can also be implemented into various
classical iterative schemes to improve their convergence
significantly [9, 45, 57–62]. Recently, the CBFM has
been implemented within the novel deep integration
paradigm for efficient multiscale analysis of integrated
active antenna arrays [40, Chapter 6]. These develop-
ments highlight the versatility and robustness of the
CBFM algorithm in handling a wide range of real-world
EM problems, as well as its potential for integration with
existing CEM codes and algorithms, enhancing their
numerical efficiency and accuracy and expanding their
range of applicability. Finally, it is worth mentioning
that, as of 2023, the CBFM solver has been integrated
in the commercially available EM simulation software
tool FEKO [63], further highlighting the significance of
this algorithm in modern antenna analysis and design.
For further insights into the application of the CBFM
in antenna design, interested readers may consult [64,
Chapter 2].

However, it is important to note that the concepts of
domain decomposition and the use of high-level subdo-
main basis functions are not unique to the CBFM. In this
context, the CBFM should be seen as part of a broader
family of CEM solution techniques that utilize high-level
subdomain basis functions. Notable examples of these
techniques include the combined expansion scheme [65],
the expansion wave concept [66], the diakoptics-based
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approach [67], the subdomain multilevel approach [68],
the eigencurrent approach [69–71], the synthetic func-
tions approach [72], the domain decomposition proce-
dure [73], the macrobasis function approach [58, 74, 75]
and the accurate subentire-domain (ASED) basis func-
tion method [76–86]. Interested readers are encouraged
to refer to the references listed above to explore the
conceptual differences in domain decomposition, high-
level basis function aggregation, reduced-order matrix
construction, and numerical acceleration techniques inte-
grated within these methods. In addition, it is worth
noting that the CBFM differs conceptually from the
higher-order MoM (see [87] and the citing references),
another widely adopted, numerically efficient CEM solu-
tion strategy. The strategy behind higher-order MoM is to
reduce the number of basis functions—and consequently
the size of the resulting MoM matrix—by defining a
smaller set of basis functions over larger subdomains,
typically on the order of a wavelength or more, while
increasing their order to capture complex variations in
the current distribution. In contrast, the CBFM algo-
rithm models the actual current distribution by aggregat-
ing low-order subdomain basis functions across smaller
subdomains, compared to those used in the high-order
MoM, to generate a reduced set of high-level basis func-
tions on these subdomains.

C. CBFM algorithm using single high-level CBF per
subdomain

In this subsection, we provide a unified and extended
account of the efficient CBFM formulation, which
employs a single CBF per subdomain, as introduced in
our previous conference publications [2–4]. As part of
this analysis, we introduce a novel two-level CBFM for-
mulation that utilizes a single CBF per subdomain at its
top level, greatly improving the numerical efficiency of
the algorithm presented in [4].

1. Background and concept
The CBFM formulation using single CBF per sub-

domain is proposed as an efficient alternative for the
analysis and design of large-scale antenna arrays, a
process that typically requires several iterations—each
involving EM analysis of the array being designed or,
alternatively, a multiphysics analysis that also consid-
ers circuit-theoretic, mechanical, or thermal factors to
ensure that the design meets targeted goals. In such appli-
cations, it is often preferable to split the design process
into two stages: initially using computationally efficient
methods, such as the CBFM, in the early design phases,
and reserving full-wave solvers for later stages to refine
or validate the design. During the early design stages,
the solution only needs to provide a reasonably accu-
rate approximation of the actual physical current (or the

resulting scattered field) to guide the design toward its
objectives. This enables the reformulation of the conven-
tional CBFM algorithm, which typically employs multi-
ple subdomain CBFs, into a more compact and compu-
tationally efficient form that utilizes only a single subdo-
main CBF. Consequently, extracting the subdomain solu-
tion generally involves two steps: (a) generating a single
CBF for each subdomain; and (b) weighting the gener-
ated CBF by its corresponding CBF coefficient, obtained
by solving the CBFM-based reduced-order matrix equa-
tion (3). Thus, the effect of array MC on the subdo-
main solution vector is captured through these two steps:
first, by approximating and fixing the complex profile
(shape) of the solution current during the generation of
the subdomain CBF, and then by adjusting its magnitude
using the corresponding CBFM-based coefficient, which
accounts for all interelement coupling interactions within
the array.

2. Context and contributions
In our previous work [2], we introduced the concept

of the CBFM algorithm using a single subdomain CBF,
demonstrating that in truncated-periodic array configura-
tions, CBFs can be assumed identical across all array ele-
ments and approximated as the solution of a unit cell in a
virtually infinite, doubly periodic array environment [2].
This is simulated by applying periodic boundary condi-
tions (PBCs) to the unit cell [2]. To account for devia-
tions in current distributions on edge and corner elements
due to finite-array truncation effects, we proposed a mod-
ified CBF generation approach in [3]. In this method,
localized MoM-based subarray problems, comprising 4
or 6 elements, are defined and solved to generate CBFs
for these elements, while the infinite-array solution is
retained as the CBF for interior array elements [3]. In
addition, in [4], we demonstrated that the subarray-based
approach to CBF generation can be extended to ape-
riodic array configurations, where each element’s CBF
is synthesized by solving a localized MoM-based sub-
array problem associated with that element, defined by
the element’s radius of influence (RoI). This strategy is
particularly effective in arrays with relatively large aver-
age interelement spacing, where perturbations in the ele-
ments’ current profiles are primarily determined by the
effects of MC with neighboring elements within their
sphere of influence; while the effects of MC with ele-
ments outside this sphere can be effectively incorporated
through the CBFM-based weighting coefficient.

While the proposed CBFM algorithm, which
employs a single subarray-based subdomain CBF, sig-
nificantly reduces the computational cost of a MoM
solver applied directly to the array problem as in (1),
solving a set of subarray problems using the MoM can
still be computationally expensive; particularly when the
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subarrays comprise electrically large and geometrically
complex elements represented by a large number of low-
level basis functions. To enhance the efficiency of the
subarray-based CBF generation process, this paper intro-
duces a novel two-level CBFM strategy. In this strategy,
the CBFM is first applied locally to a subarray problem
defined for each array element, extracting the solution for
that element at the bottom level of the CBFM algorithm.
This solution is then utilized as a single CBF at its top
level, where the algorithm is applied to the entire array
problem. Consequently, this method completely elimi-
nates the need for a low-level direct solution approach
for array or subarray problems at any stage of the solu-
tion process, significantly reducing computational cost.

The proposed algorithm differs from the concep-
tually similar multilevel CBFM approaches presented
in [14–16, 44], which rely on recursive formulations
where the reduced-order system variables at each level
are calculated based on those from the previous level,
generally retaining multiple CBFs per subdomain. How-
ever, these formulations can suffer from accuracy degra-
dation when only one CBF per subdomain is used at the
top level, as observed in [44]. In contrast, our strategy
preserves solution accuracy by directly constructing the
reduced-order system at both levels of the CBFM algo-
rithm using the low-level matrix system data as in (1),
while minimizing the computational cost by employing
a single CBF per subdomain at the top level of this algo-
rithm. A similar two-level CBFM approach was reported
in [20]; however, this approach retains multiple CBFs per
subdomain and is tailored for truncated-periodic arrays,
limiting its applicability to more general antenna con-
figurations, while our proposed strategy extends to both
truncated-periodic and aperiodic arrays.

Compared to existing subarray-based macrobasis
function solution frameworks for aperiodic antenna
arrays [45, 75, 88–90], our proposed approach leverages
the CBFM to efficiently solve localized subarray prob-
lems without relying on computationally expensive low-
level lower–upper (LU) decomposition techniques or the
explicit construction of active impedance matrices for
subarray elements. In particular, eliminating low-level
LU decomposition significantly enhances the scalability
of the proposed solution method when dealing with large
(sub)array problems. Moreover, while [45] employs the
CBFM to solve localized subarray problems, this CBFM
implementation generates multiple CBFs per subdomain,
leading to increased computational overhead compared
to our approach. Finally, similar to our proposed CBFM
algorithm, various formulations of the ASED basis func-
tion solution method [76–80, 84, 86] utilize either a
single or multiple subarray-based high-level basis func-
tions per subdomain. However, these algorithms were
primarily developed for periodic antenna arrays in scat-

tering mode. While [86] extends the ASED basis func-
tion method to radiating mode, it remains restricted to
periodic arrays, whereas our approach applies to both
periodic and aperiodic configurations.

3. Implementation
In this paper, the proposed two-level CBFM algo-

rithm is used to analyze various arrays of M identi-
cal, disconnected antenna elements, such as the bow-
tie antenna array shown in Fig. 1. In the analysis, each
array element is treated as a subdomain within the CBFM
framework. Algorithmically, both levels of the CBFM
algorithm follow the same development sequence, as
described by equations (3) to (6). The key distinction
between the two levels is in the number of CBFs assigned
per element: at the top level, a single CBF is used to rep-
resent each array element, whereas at the bottom level,
multiple CBFs are generated for each subarray element.

The CBFs for the top-level CBFM algorithm are
assigned as follows. For truncated-periodic array prob-
lems, the infinite-array solution is either uniformly
assigned as a CBF to all array elements or only to inte-
rior elements. In the latter case, the CBFs for edge and
corner elements are extracted from the solution vectors
of localized subarray problems associated with these ele-
ments, with subarray sizes of up to 3(2)×2(3), as illus-
trated in Fig. 1 [3]. Similarly, for aperiodic array prob-
lems, the CBF for each array element p = 1, . . . ,M is
extracted from the solution vector of its corresponding
localized subarray problem. The size of the pth sub-
array, Msa,p, accounts for the pth element itself along
with Msa,p − 1 neighboring elements within its sphere
of influence. To efficiently calculate the solution vector
for a given subarray problem, we use the conventional
CBFM formulation that utilizes primary and secondary
CBFs. In this formulation, the CBFs for each element
m of the subarray p, denoted as m(p) = 1, . . . ,Msa,p,
are obtained by initially defining a single primary CBF,
representing the isolated element solution, and a set of
NS

sa,p = Msa,p −1 secondary CBFs, representing the scat-
tered currents induced at this element by other elements
within the subarray, as detailed in [46]. The primary and
secondary CBFs are denoted by “P” and “S”, respec-
tively. For NS

sa,p ≥ 1, the combined CBF representation
for the element m(p) can be expressed as:

fff CBF
sa,m(p) = Φ

([
IIIP

sa,m(p) | III
S1
sa,m(p) | . . . | III

S
NS

sa,p
sa,m(p)

])
, (7)

where Φ(·) represents the orthogonalization process
based on the SVD algorithm, which renders the initial
set of CBFs mutually orthogonal. Note that, if no neigh-
boring elements are captured within the sphere of influ-
ence of the pth element, the CBF assigned to that ele-
ment in the top-level CBFM algorithm defaults to its
primary CBF. Given the relatively small subarray sizes
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in the implementation of this algorithm in this paper,
all CBFs are retained after orthogonalization. For larger
subarrays, redundant CBFs could be discarded to reduce
the sizes of CBFM-based subarray problems, accelerat-
ing their analysis without compromising accuracy. Fur-
thermore, the relatively small sizes of the reduced-order
systems associated with these subarrays allow for the use
of a direct solution method without incurring significant
computational overhead.

By assigning only a single CBF per element in
the top-level CBFM algorithm, the dimension of the
reduced-order matrix system is reduced to the number of
array elements, i.e., NCBF = M, leading to a major reduc-
tion in the original MoM-based matrix size, NRWG, by a
factor of NRWG

s [2–4]. The benefits of this reduction are
particularly evident when analyzing arrays composed of
electrically large and geometrically complex antenna ele-
ments, which require a large number of low-level basis
functions per element, NRWG

s . In such cases, the origi-
nal matrix size can be reduced by several orders of mag-
nitude, enabling efficient analysis of large-scale antenna
array problems even on standard desktop machines with
limited CPU and RAM resources when employing the
proposed CBFM method [2–4].

4. Simulation setup and validation strategy
The efficacy of the proposed CBFM algorithm

employing a single CBF per array element for analyzing
periodic antenna arrays, is numerically evaluated using
an 8 × 8 array of bow-tie antenna elements shown in
Fig. 1. In addition, to evaluate the efficacy of the pro-
posed approach for analyzing aperiodic arrays compris-
ing electrically large and geometrically complex antenna
elements, we consider a 10-element irregular sparse
array (ISA) of log-periodic antenna elements shown in
Fig. 2. The former element type is commonly used in
antenna arrays for various communication system appli-
cations, while the latter type is primarily utilized in radio
astronomy. For the analysis, the base bow-tie element
(see [9, Fig. 1]) is discretized in FEKO using a λ/20
triangular mesh resolution, with regard to the excita-
tion frequency of f = 28 GHz, resulting in NRWG

s = 80
RWG basis functions per element, where λ is the free-
space wavelength. Similarly, the base log-periodic ele-
ment (see [9, Fig. 7]) is discretized in FEKO using a
λ/15 resolution at the excitation frequency of f = 1
GHz, resulting in NRWG

s = 4260 RWG basis functions
per element.

In the next step, FEKO is used to generate the
moment matrices and excitation vectors for the bow-tie
and log-periodic array problems, as well as the infinite-
array solution for the bow-tie element unit-cell problem
with a specified squint angle of θs = φs = 0◦. Both arrays
are uniformly excited using a gap voltage source model

in FEKO with unit-magnitude and zero-phase excitation
settings. However, note that the proposed CBFM algo-
rithm also supports alternative internal excitation config-
urations, including scanned excitations, as well as exter-
nal excitation via incoming plane waves, which are not
considered in the analysis in this paper. The array matri-
ces and excitation vectors generated in FEKO are then
used to construct the CBFM-based reduced-order system
through (4) to (6), as well as to define localized subarray
problems for extracting subarray-based CBFs for both
array problems, as detailed in section II part C.3. The
subarray problems associated with the edge and corner
elements of the bow-tie antenna array are solved using
the MoM due to their relatively small sizes in terms of
the number of DoFs. In contrast, the subarray problems
associated with the elements of the log-periodic array are
solved using localized CBFM formulations to demon-
strate the runtime advantages of the proposed two-level
CBFM approach.

Fig. 1. Periodic 8×8 array of bow-tie antenna elements
(see [9, Fig. 1]) with a spacing of dx = dy = 0.5λ at the
excitation frequency of f = 28 GHz. The subarray prob-
lems used to calculate the CBFs for the highlighted edge
and corner elements are enclosed within rectangles.

The efficacy of the proposed CBFM algorithm
is evaluated numerically by assessing its accuracy
and computational cost in comparison to FEKO’s
MoM solver and the domain Green’s Function method
(DGFM) [91], as presented in section II part C.5. The
DGFM is selected for this comparison as a reduced-
order solution technique with a (computational) cost-
to-performance ratio similar to that of the CBFM, as
detailed in [91]. Moreover, its commercial availability
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within FEKO has led to its extensive use in the analysis
of large-scale antenna arrays across various applications,
making it a suitable reference for comparison. To assess
the accuracy of our algorithm, we focus on the prediction
of both far-field and near-field characteristics, which are
typically of interest to array designers, while also evalu-
ating the accuracy of surface current distributions, which
provide additional theoretical insights. To quantify the
error in the approximation of the solution current for the
ith subdomain relative to FEKO’s reference MoM-based
solution of (1), we define the norm-based relative error
percentage for the ith subdomain as follows:

εi =
|ĨIIRWG

i − IIIRWG
i |2

|IIIRWG
i |2

·100%, (8)

where ĨIIRWG
i and IIIRWG

i represent the approximation of
the solution and FEKO’s reference MoM-based solution
vector for the ith subdomain, respectively. Additionally,
{·}2 denotes the L2-norm. In the CBFM algorithm, the
subdomain solution ĨIIRWG

i is approximated through the
CBF expansion in (2).

To ensure an unbiased comparison, both the CBFM
and DGFM algorithms were implemented in Julia, a
high-performance programming language optimized for
scientific computing [92]. The latter algorithm is imple-
mented according to [91]. Additionally, to eliminate any
potential impact of differing parallelization paradigms
used in FEKO’s MoM solver and our Julia-based algo-
rithmic implementations on the runtime of the stud-
ied solution methods, all algorithms were executed in a
strictly serial manner. Furthermore, all simulations were
conducted on an Intel i7-9700K processor running at 3.6
GHz with 32 GB of RAM.

Fig. 2. The irregular sparse array of 10 log-periodic
antenna elements (see [9, Fig. 7]), excited at the fre-
quency of f = 1 GHz, with annotated indices and posi-
tions.

5. Numerical results
Before evaluating the accuracy of the CBFM algo-

rithm, we first investigate the efficacy of the solution of
a unit-cell element in an infinite, doubly periodic array
environment. This infinite-array solution approximation

is often used for the rapid estimation of the character-
istics of large, truncated-periodic antenna arrays. While
the accuracy of this approximation generally improves
with increasing array size, its overall reliability remains
inherently limited, as it does not rigorously account for
MC and truncation effects within a finite array. This
is demonstrated in Table 1, which shows the norm-
based relative error percentage of the infinite-array solu-
tion approximation, calculated for each element of the
bow-tie array problem shown in Fig. 1. As expected,
the infinite-array solution approach predicts the solu-
tion for interior elements with reasonable accuracy; how-
ever, its performance progressively degrades toward the
edges and corners of the array. At this stage, the CBFM
algorithm is introduced, where the infinite-array solu-
tion is uniformly assigned as the CBF to each array ele-
ment. These CBFs are then weighted with their corre-
sponding coefficients obtained by solving the CBFM-
based reduced-order matrix equation (3), which signifi-
cantly improves the accuracy of the infinite-array solu-
tion approximation, as demonstrated in Table 2. This
improvement can be attributed to the rigorous inclusion
of the array MC effects during the construction of the
reduced-order matrix system through (4).

Table 1: Norm-based relative error percentage (8), con-
sidering the infinite-array solution approximation and
MoM-based solution vectors for the elements of the bow-
tie antenna array shown in Fig. 1

17.7 22.9 22.4 20.5 20.5 22.4 22.9 17.7
16.7 7.9 5.3 5.6 5.6 5.3 7.9 16.7
14.6 6.9 3.4 2.8 2.8 3.4 6.9 14.7
15.7 7 4 2.3 2.3 4 7 15.7
15.7 7 4 2.3 2.3 4 7 15.7
14.6 6.9 3.4 2.8 2.8 3.4 6.9 14.7
16.7 7.9 5.3 5.6 5.6 5.3 7.9 16.7
17.7 22.9 22.4 20.5 20.5 22.4 22.9 17.7

Nevertheless, in spite of this overall improvement,
the error in the final solution remains higher for edge
and corner elements in comparison to the interior ele-
ments. Note that, when using a single CBF per element,
the spatial distributions (profiles) of the element’s CBF
and its associated final solution are essentially identical,
with the difference arising from the applied scaling by
a complex weighting coefficient calculated in the pres-
ence of array MC effects. Therefore, the inclusion of MC
effects via the weighting coefficient only partially coun-
terbalances the error introduced by finite array trunca-
tion effects—which cause the largest perturbation in the
solution from the assumed infinite-array solution approx-
imation, and consequently the largest error—for edge
and corner elements. To improve the solution accuracy
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while maintaining a single CBF per element, we employ
a hybrid CBF generation strategy, in which the CBFs for
edge and corner elements are extracted from the solu-
tions of their respective subarray problems, while the
interior elements retain the infinite-array solution as their
CBF, as detailed in section II part C.3. The improvement
in accuracy in the final CBFM-based solution for edge
and corner elements is evident from the error results pre-
sented in Table 3. To enable visual comparison of the
errors presented in Tables 1 through 3, an identical color
scheme has been applied across these tables, mapping the
range between the minimum and maximum error values
to their corresponding color codes.

Table 2: Norm-based relative error percentage (8), con-
sidering the CBFM-based and MoM-based solution vec-
tors for the elements of the bow-tie antenna array shown
in Fig. 1. In the CBFM algorithm, each array element is
assigned an identical CBF corresponding to the infinite-
array solution approximation

7.8 9.4 8.4 8.6 8.6 8.4 9.4 7.9
5.1 3.9 3.8 3.1 3.1 3.8 3.9 5
4.9 4.5 2.9 2.5 2.5 2.9 4.5 4.8
4.6 3.5 3.1 2 2 3.1 3.6 4.6
4.6 3.5 3.1 2 2 3.1 3.6 4.6
4.9 4.5 2.9 2.5 2.5 2.9 4.5 4.8
5.1 3.9 3.8 3.1 3.1 3.8 3.9 5
7.8 9.4 8.4 8.6 8.6 8.4 9.4 7.9

Table 3: Norm-based relative error percentage (8), con-
sidering the CBFM-based and MoM-based solution vec-
tors for the elements of the bow-tie antenna array shown
in Fig. 1. In the CBFM algorithm, an identical CBF cor-
responding to the infinite-array solution approximation is
assigned to the interior elements, while the CBFs for the
edge and corner elements are calculated by solving local-
ized MoM-based subarray problems specific to these
elements

2.4 3.6 4 3.5 3.5 4 3.6 2.4
2.9 3.3 3.9 3.2 3.2 3.9 3.3 2.9
2.7 3.6 2.5 2.5 2.5 2.5 3.6 2.7
2.6 2.5 2.8 1.9 1.9 2.8 2.5 2.6
2.6 2.5 2.8 1.9 1.9 2.8 2.5 2.6
2.7 3.6 2.5 2.5 2.5 2.5 3.6 2.7
2.9 3.3 3.9 3.2 3.2 3.9 3.3 2.9
2.4 3.6 4 3.5 3.5 4 3.6 2.4

To assess the performance of the CBFM algorithm
with a single CBF per element in relation to the applied
CBF generation scheme for the truncated-periodic bow-
tie antenna array problem, we compare its near-field and

far-field results against FEKO’s reference MoM-based
solutions. Specifically, we compare the electric near-field
results in the observation plane of interest, as shown in
Fig. 3, and the far-field (directivity) results in the eleva-
tion plane at θ = 30◦, as shown in Fig. 4. These results
suggest that although the CBFs for edge and corner ele-
ments more accurately represent the actual current distri-
bution when a modified CBF generation scheme is used
for these elements, the overall impact of this improve-
ment on the accuracy of near- or far-field calculations
may be limited in various practical scenarios [3]. More-
over, in many practical applications where the primary
focus is on efficiently characterizing antenna array far-
field patterns, both versions of the CBFM algorithm
might produce similar design outcomes [3]. Neverthe-
less, the improved solution accuracy for the edge and
corner elements, as shown in Table 3, suggests that for
observation points closer to the antenna surface, the salu-
tary effects of this improvement will be more noticeable.
Finally, the limited accuracy of far-field results based on
the infinite-array solution approximation, as displayed
in Fig. 4, highlights the importance of integrating the
CBFM into the solution algorithm to improve the accu-
racy in both near- and far-field predictions [3], leading to
well-informed design decisions.

Fig. 3. Surface plots illustrating the Ey-component of
the electric near field in the observation plane at z =
0.25λ , radiated by the uniformly excited bow-tie antenna
array shown in Fig. 1, and calculated using: (a) the
CBFM solver with an identical CBF corresponding to
the infinite-array solution approximation for all array ele-
ments [2]; (b) the CBFM solver with an identical CBF
for the interior elements and region-specific CBFs for
the edge and corner elements [3]; and (c) FEKO’s MoM
solver.

For the analysis of the ISA of log-periodic antenna
elements shown in Fig. 2, the RoI is set to 2.5λ relative
to the excitation frequency. Consequently, each subarray
defined by this RoI contains between 2 and 4 elements,
as summarized in Table 4. In addition, Table 4 compares
the norm-based relative error percentage for the CBFs
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Fig. 4. Directivity plots for the antenna array shown in
Fig. 1.

Table 4: Norm-based relative error percentage (8), con-
sidering the top-level CBF and final solution vectors of
the two-level CBFM algorithm and MoM-based refer-
ence solution vectors for the elements of the irregular
sparse array of log-periodic antenna elements shown in
Fig. 2. The third column shows the error associated with
the pth element’s CBF, calculated from its correspond-
ing subarray problem of size Msa,p (second column),
given the RoI of 2.5λ corresponding to the excitation fre-
quency of f = 1GHz, while the last column presents the
error associated with the final solution of this algorithm

Element p Msa,p CBF Error (%) CBFM Solution
Error (%)

1 4 6.1 6.6
2 2 8.5 7.4
3 3 3.1 3.3
4 3 6.9 5.1
5 4 5.9 6.7
6 2 7.5 5.2
7 4 6.3 5.0
8 2 8.0 6.1
9 2 2.9 2.5

10 2 4.0 2.9

derived from localized subarray-based CBFM formula-
tions and the corresponding final solutions of the two-
level CBFM algorithm, demonstrating relatively good
accuracy of both representations when compared to the
reference MoM-based solution. These results support the
hypothesis that, in the two-level CBFM solution pro-
cess, the shape of the solution for each element can be
well approximated during the CBF generation step at the
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Fig. 5. Directivity plots for the antenna array shown in
Fig. 2.

bottom level of this algorithm by considering only the
MC interactions within the localized subarray problem
associated with that element; while the contributions of
elements outside the subarray are effectively accounted
for by refining the generated CBFs at the top level using
CBFM-based weighting coefficients. The effectiveness
of the CBFM algorithm in modeling surface currents
translates directly to accurate far-field characterization,
as shown in Fig. 5, which compares the directivity results
in the θ = 45◦ cut plane obtained using our method
with the reference results from the DGFM and FEKO’s
MoM-based solver. The CBFM-based result successfully
reproduces the reference complex oscillatory directivity
pattern, despite the approximations used in this algo-
rithm [4].

Table 5 presents the computational costs and solu-
tion accuracy of the proposed two-level CBFM approach
in comparison to DGFM-based and MoM-based ref-
erence solutions considering the studied ISA of log-
periodic antenna elements. In addition, Table 6 pro-
vides an overview of runtime complexities of these solu-
tion methods at different stages of the solution process.
The computational complexities listed in Table 6 were
approximated by considering the total number of scalar
multiplications of the most computationally intensive
process in each step of the solution process, as detailed
in [9].

Several observations can be made based on the
results displayed in Table 5: (a) the proposed two-
level CBFM approach, leveraging local CBFM formu-
lations, greatly outperforms FEKO’s MoM-based refer-
ence solver in both runtime and peak memory consump-
tion, achieving an order-of-magnitude improvement in
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Table 5: Computational costs and solution accuracy rela-
tive to FEKO’s MoM-based reference for different solver
implementations, considering the 10-element ISA of log-
periodic antenna elements shown in Fig. 2 with the
RoI 2.5λ relative to the excitation frequency. The sec-
ond column lists all unique DoFs encountered through-
out the solution process, corresponding to the size of
the matrix (or matrices) solved using a direct solution
method (LU decomposition). For the two-level CBFM
with local CBFM formulations, the listed DoFs corre-
spond to: the size of the isolated element matrix, which
is decomposed once and then reused to generate the pri-
mary and secondary CBFs at the bottom level; the max-
imum size of the reduced-order matrix across all subar-
ray problems; and the size of the top-level reduced-order
matrix, respectively. Runtime values in parentheses indi-
cate the breakdown of the total runtime into the bottom-
level CBF generation and the top-level CBFM solution
processes. The peak memory requirement is calculated
by assuming a double-precision storage scheme, with
each complex matrix element stored using 16 bytes of
memory

# DoFs Runtime
(s)

Peak Memory
Usage (GB)

Error
(%)

CBFM
(local MoM)

17040 10
838

(825+13)
4.33 5

CBFM
(local CBFM)

4260 16 10
96

(83+13)
0.27 5.21

DGFM 4260 65 0.27 6.33
MoM (FEKO) 42600 2719 27.04 n/a

both metrics while maintaining comparable accuracy in
the solution current; (b) replacing CBFM-based local
formulations with their MoM-based counterparts sig-
nificantly increases the overall runtime, without pro-
viding substantial improvements in solution accuracy.
However, the latter approach still considerably outper-
forms FEKO’s MoM solver in both the runtime and
memory usage; (c) compared to the DGFM, our pro-
posed approach achieves slightly improved accuracy,
albeit with a slightly larger but competitive runtime.
This overhead is likely due to the fact that neither algo-
rithm is fully numerically optimized in Julia. However,
the DGFM follows a more straightforward algorithmic
implementation routine, potentially leading to faster exe-
cution times in the unoptimized implementations of
these algorithms. More importantly, the runtime com-
parison does not fully reflect the theoretical advantages
of our CBFM method in terms of numerical efficiency
for many practical antenna array problems, as evidenced
in Table 6. A key disadvantage of the DGFM in this
context is its reliance on solving the active impedance
matrix for each element independently using a direct

Table 6: Overview of approximated runtime complexi-
ties for different solver implementations. Here, the sym-
bol “#” denotes the number of instances of different pro-
cesses, while O(·) represents their corresponding com-
putational complexity. The variables are defined as fol-
lows: M is the number of subdomains; Msa is the average
subarray size; NRWG

s and NRWG represent the sizes of the
MoM-based subdomain and array matrices, respectively.
In the bottom-level CBFM algorithm, we assign a single
primary CBF and a set of secondary CBFs to each sub-
array element, while retaining all CBFs following their
orthogonalization via the SVD algorithm. Consequently,
the total average number of CBFs per subarray element
corresponds to the average subarray size Msa. In deriving
the runtime of generating the secondary CBFs, we use
the following approximation: Msa · (Msa − 1) ≈ M2

sa.
Furthermore, assuming that NRWG

s ≫ Msa, as is typically
the case for geometrically large and complex antenna
elements, the runtime complexity of the classical
Golub-Reinsch SVD algorithm applied to the CBFs
of each subarray element can be approximated as
O((2NRWG

s )2 · Msa) (see [94, Fig. 8.6.1]). In addition,
note that for arrays composed of identical antenna ele-
ments, the generation of primary CBFs in the proposed
CBFM algorithm requires only a single instance, as the
base element matrix needs to be solved only once

MoM DGFM [91]
Proposed
Two-Level

CBFM Algorithm
# O(·) # O(·)

MoM Matrix
Generation

(
NRWG)2 1

(
NRWG)2 1

(
NRWG)2

Generation of
Primary CBFs

n/a n/a n/a 1
(
NRWG

s
)3

Generation of
Secondary

CBFs
n/a n/a n/a M

(
NRWG

s ·Msa
)2

SVD
Ortho-

gonalization
n/a n/a n/a M

(
2 ·NRWG

s ·Msa
)2

Bottom-Level
CBFM

Systems Setup
n/a n/a n/a M

(
NRWG

s ·Msa
)2 ·Msa

Bottom-Level
CBFM

Systems
Solution

n/a n/a n/a M
(
Msa ·Msa

)3

Top-Level
CBFM

System Setup
n/a n/a n/a 1

(
NRWG)2

Top-Level
CBFM
System
Solution

n/a n/a n/a 1 M3

DGFM
Solution

n/a M
(
NRWG

s
)3 n/a n/a

MoM Matrix
Solution

(
NRWG)3 n/a n/a n/a n/a
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solution method. The cumulative computational cost of
this process is typically higher than that of dealing with
the reduced-order systems at both levels of our CBFM
algorithm. Note that in our method, the runtime is typ-
ically dominated by the construction of the reduced-
order systems, while the additional solution overhead is
often negligible for many practical array problems, as
is evident from Table 5. In addition, a key advantage of
our approach over the DGFM is its ability to systemati-
cally enhance solution accuracy. This can be achieved by
increasing the RoI to define larger subarray problems or
by incorporating higher-order CBFs at the bottom level
to more effectively capture interelement coupling effects,
leading to improved solution fidelity, whereas the stan-
dard DGFM formulation lacks this flexibility.

Note that the size of the studied array example
is not constrained by the computational complexity of
our method, which significantly improves upon those
of MoM- and DGFM-based solvers, as demonstrated
in Tables 5 and 6. Instead, the maximal array size is
limited by the use of FEKO’s full-rank array matrix,
which exceeds the RAM capacity of standard desk-
top machines even for moderately sized log-periodic
antenna arrays. Meanwhile, the numerical efficiency of
our proposed two-level CBFM algorithm suggests that
significantly larger arrays can be analyzed using our
method, even on standard machines, such as the ISA
composed of 2048 log-periodic antenna elements shown
in [45, Fig. 5]. However, achieving this would require
applying a matrix compression scheme, such as the
adaptive cross approximation (ACA) algorithm [93], to
significantly reduce the effective size of the moment
matrix. This could be implemented in two ways: first,
by precalculating and storing the compressed moment
matrix for the entire antenna array at the initial step
of the two-level CBFM algorithm, allowing its sub-
matrices to be reused throughout different stages of
this algorithm; or alternatively, by dynamically recal-
culating the intra- or interelement coupling submatri-
ces on demand, rather than storing them in advance.
This represents a trade-off between runtime and mem-
ory consumption, where the first approach minimizes
runtime by avoiding repeated calculations of the cou-
pling submatrices at the cost of increased memory con-
sumption. In contrast, the second approach reduces the
memory usage by storing only small-sized compressed
submatrices instead of the full array matrix, enabling
the simulation of larger arrays on machines with fixed
RAM capacity, albeit at the expense of increased run-
time due to repeated calculations of the same sub-
matrices. Nevertheless, when using the first approach
and excluding matrix generation times from the analy-
sis—since this matrix is required for all methods con-
sidered—the complexities listed in Table 6 suggest that

for elements with a larger number of DoFs per ele-
ment and larger array sizes, the runtime advantages of
our method become more pronounced due to its favor-
able scaling. Finally, the proposed two-level CBFM
approach is fully parallelizable, allowing for its numer-
ically efficient implementation on multi-threaded CPUs
and GPUs.

6. Future work and concluding remarks
As part of the future work, in addition to apply-

ing the matrix compression scheme to further reduce the
computational requirements of the proposed two-level
CBFM formulation, we will extend the analysis of
this method to antenna arrays above an infinite ground
plane. Since the impact of the ground plane is embed-
ded into the calculation of the full or compressed array
moment matrix, the proposed method can be applied
in its present form. In addition, we will investigate the
potential integration of the overlapping subarray strat-
egy detailed in [75] into our algorithm to efficiently
account for the coupling effects from array elements
just outside the specified RoI. This would enhance the
accuracy of the single-CBF representation for each ele-
ment in the CBFM algorithm. The use of an over-
lapping subarray strategy to generate subarray CBFs
with improved accuracy—or alternatively, a different
approach, such as employing higher-order CBFs beyond
secondary—may be particularly important when analyz-
ing array problems with connected subdomains, where
the current CBF generation scheme may not effectively
capture strong MC effects between subdomains. Fur-
thermore, to extend the applicability of this method to
printed antenna array problems on multilayered sub-
strates, we will investigate its integration with the equiv-
alent medium approach (EMA), as detailed in section II
part D, or alternatively, by embedding substrate effects
directly during the construction of the MoM matrix. The
former approach seamlessly integrates into our method
with negligible computational overhead but may not
fully capture exact field interactions across layers, sur-
face wave modes, or material inhomogeneities, par-
ticularly in antenna arrays with relatively thick sub-
strates. Conversely, the explicit use of a multilayered
Green’s Function generally improves accuracy; however,
this improvement comes at the expense of significantly
increased computational cost, an effect that becomes
particularly pronounced at millimeter-wave frequencies,
such as in 5G/6G system applications, as detailed in
section II part D. Moreover, an iterative formulation
of this algorithm, inspired by [9], will be explored to
improve solution accuracy in applications with high-
precision requirements.

In this section, we presented a novel two-level for-
mulation of the CBFM algorithm for efficient analysis
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of large-scale antenna arrays. In this approach, local
CBFM formulations generate a single CBF per element
at the top level. Our results demonstrate that this method
achieves over an order-of-magnitude improvement in
both memory efficiency and runtime compared to MoM.
Furthermore, it ensures reliable accuracy not only in
the antenna far field—typically the primary concern for
array designers—but also in the near field, establishing
the proposed two-level CBFM algorithm as a powerful
and highly efficient alternative for analyzing large, com-
plex antenna arrays.

D. Toward a numerically efficient CBFM implemen-
tation for mm-wave problems

While the previous section focused on the CBFM
with a single basis per element and outlined future
research directions within that framework, a broader
paradigm shift is necessary to enhance the effectiveness
of the general CBFM framework in addressing the chal-
lenges of modern antenna analysis and design. One of
the primary challenges today is the growing demand
for efficient electromagnetic simulations at millimeter-
wave (mm-wave) frequencies and beyond, particularly
in the context of 5G/6G communication systems, as dis-
cussed in section II of [1]. The shift to higher operat-
ing frequencies, coupled with fixed space constraints in
electronic devices, has significantly increased the elec-
trical sizes of antennas and circuit modules, introduc-
ing new challenges for their effective EM simulation in
the mm-wave region. A major challenge in this context
concerns the numerically efficient calculation of Green’s
Functions, which are essential for MoM-based analysis
of antennas and circuits printed on layered media [95].
Herein, the Sommerfeld integrals used in the calcula-
tion of Green’s functions can become highly oscillatory
and slowly decaying, reducing solution accuracy while
increasing the runtime [95].

In section II of [1], an efficient numerical strategy
for evaluating the Sommerfeld integrals in layered media
problems is discussed, as recently proposed in [95]. This
approach employs a strategic interpolation and extrapo-
lation scheme to minimize the number of sample points
needed to accurately represent the integrand, enabling
analytical integration which in turn significantly acceler-
ates the calculation of Green’s functions [95]. In contrast,
section III of [1] presents a novel strategy for the numer-
ical modeling of planar circuits and antennas printed on
layered media, which completely eliminates the need
for constructing the layered-medium Green’s Function in
the MoM. This strategy utilizes the EMA to replace the
original layered geometries with equivalent geometries
embedded in an infinite homogeneous medium, char-
acterized by the corresponding effective dielectric con-
stant. By replacing the original geometry with the equiv-
alent one, the problem that originally required using

a volumetric MoM formulation can instead be effec-
tively addressed using a surface formulation based on
Green’s Function in a homogeneous medium, signif-
icantly improving the computational efficiency of the
solution process.

In addition to its integration with the EMA, we
highlight a promising research direction for improving
the numerical efficiency of the CBFM algorithm by for-
mulating it based on quadrilateral surface discretization
(see [96, Fig. 3]) with piecewise sinusoidal (PS) basis
functions between pairs of quadrilateral elements, as
in [28], instead of using conventional triangular mesh-
ing with RWG basis functions. The three key benefits
of using quadrilateral discretization with PS basis func-
tions are: (a) the reduced number of basis functions com-
pared to the number of RWG basis functions for identi-
cal patch and mesh sizes, combined with the more favor-
able scaling with domain size, as demonstrated in Fig. 6;
(b) the ability to efficiently generate matrix elements by
testing observation basis functions against the scattered
fields from sinusoidal current filaments or sheets corre-
sponding to source basis functions, which are available
in closed form (see [28] and references therein). This
eliminates the need for evaluating computationally inten-
sive numerical integrals when generating these elements
in conventional MoM algorithms that use triangular dis-
cretization with RWG basis functions; and (c) the ability
to reuse previously calculated matrix elements for equiv-
alent pairs of basis functions, leveraging the inherent
geometric regularity and repeatability of the structured
mesh. Note that quadrilateral and triangular meshes can
be hybridized to model arbitrary planar geometries, such
as the bow-tie antenna array shown in Fig. 1, with the
former used in interior regions and the latter conforming
to the geometry’s edges.

To fully leverage the computational advantages of
quadrilateral mesh discretization with PS basis func-
tions, the EMA, and the CBFM, a hybrid approach is
being developed in our group that integrates these meth-
ods. This approach utilizes the EMA to eliminate the
direct computation of Green’s Functions for antenna
arrays printed on layered media, the quadrilateral MoM
with PS basis functions to efficiently generate the array
moment matrix, and the CBFM to accelerate the solution
process. Initial results from this study will be presented
in future work.

III. LCPML-LOG: A PARAMETER-FREE
PERFECTLY MATCHED LAYER METHOD

FOR FINITE METHODS
In this section, we introduce the LCPML-log

method, an advanced Locally-Conformal Perfectly
Matched Layer (LCPML) technique optimized for
addressing mesh truncation challenges in solving
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Fig. 6. Comparison of the number of RWG basis func-
tions for triangular discretization in FEKO versus the
number of PS basis functions for quadrilateral discretiza-
tion of a square patch with varying dimensions, using a
λ/20 mesh size.

electromagnetic radiation and scattering problems using
the FEM. LCPML-log is distinguished by (a) achiev-
ing optimal PML performance without requiring param-
eter tuning and (b) yielding superior results even with a
minimal, single-layer PML configuration. This approach
represents a significant advancement in both cost-
effectiveness and robustness in PML technology.

In computational electromagnetics, the PML is
essential for simulating open-region electromagnetic
wave problems, providing an artificial boundary that
absorbs outgoing waves with minimal reflection. Tra-
ditional PML approaches, developed in the 1990s, laid
the foundation for this technology but often struggle
with arbitrary geometries and require complex parame-
ter adjustments [97–102]. The Locally-Conformal PML,
introduced by Ozgun and Kuzuoglu in 2007 [103], [104],
revolutionized the field by offering a more flexible,
geometry-agnostic solution.

Recently, Ozgun and Kuzuoglu have developed a
variant of the LCPML method, named LCPML-log,
which utilizes a logarithmic decay function in its coor-
dinate transformation [105, 106]. Unlike its predeces-
sor, LCPML-log modifies the matrix formation phase of
the FEM, embedding the logarithmic function directly
into the core of the computational process, rather than
simply substituting real coordinates with complex ones.
While this method may require a more intricate imple-
mentation, it offers clear benefits: enhanced performance
without the need for prior parameter adjustments and
increased accuracy with a single PML layer. This effi-
ciency leads to a significant reduction in computational
resources, making LCPML-log a breakthrough for large-
scale simulations.

Fig. 7. Illustration of the LCPML-log method.

Initially developed for 2D electromagnetic prob-
lems governed by the scalar Helmholtz equation [105],
LCPML-log was subsequently extended to address 3D
problems involving the vector wave equation [106]. This
section provides a brief overview of the LCPML-log
method, supplemented with examples that demonstrate
its effectiveness and practicality.

A. Mathematical formulation
The LCPML-log method constructs a PML region

ΩPML that conforms to an arbitrary region (Ω), designed
to enclose the sources or objects of interest within the
smallest possible convex set. As shown in Fig. 7, the
PML region is defined by its inner and outer bound-
aries (∂Ωin and ∂Ωout). Each point r ∈ ℜ3 in the PML
region is mapped to a complex coordinate r̃∈C3 through
the following transformation, assuming time-harmonic
fields of the form exp( jωt):

r̃ = r+( jk)−1 f (δ ) n̂(δ ) , (9)
where f (δ ) is the decay or attenuation function, which is
a monotonically increasing function of the decay param-
eter δ = ∥r − rin∥/∥rout − rin∥ confined within (0,1).
The unit vector n̂(δ ) = (r− rin)/∥r− rin∥ indicates the
direction of decrease within the PML region. The posi-
tion vectors r, rin, and rout correspond to points within
ΩPML, ∂Ωin, and ∂Ωout, respectively, while k denotes the
wavenumber, and the Euclidean norm is used for mag-
nitude calculations. The most critical component in this
transformation is the decay function f (δ ), which drives
the transformation and is defined as follows:

f (δ ) =− log(1−δ ) , (10)
In developing the FEM formulation, we start by

deriving the weak variational form of the wave equa-
tion via the weighted residual method. The computa-
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tional domain is then discretized into a mesh of ele-
ments—triangular in 2D and tetrahedral in 3D—over
which the weak form is solved. The integration necessary
for the weak form is simplified by mapping the original
domain to a master element (ξ ,η ,ζ ), using isoparamet-
ric mapping. The coordinates within this master element
are expressed using the same shape functions as those
for the unknown field variables, facilitated by a Jacobian
matrix.

LCPML-log’s uniqueness lies in its handling of
the Jacobian matrix. The process involves two suc-
cessive transformations: (ξ ,η ,ζ ) → (x,y,z) → (x̃, ỹ, z̃).
The complex coordinates, now composite functions,
are mapped through these stages, i.e., x̃(x,y,z) =

x̃
(

x(ξ ,η ,ζ ),y(ξ ,η ,ζ ),z(ξ ,η ,ζ )
)

. Here, for exam-

ple, x(ξ ,η ,ζ ) is expressed as a combination of the
shape functions and real coordinates: x(ξ ,η ,ζ ) =

∑
ne

j=1 N j(ξ ,η ,ζ )x j, where x j is the real coordinate of
the j-th node, N j is the j-th shape function, and ne

is the number of nodes in an element. Here, J =
JmJc represents the Jacobian matrix, where Jm =
∂ (x,y,z)/∂ (ξ ,η ,ζ ) pertains to the standard FEM trans-
formation and Jc = ∂ (x̃, ỹ, z̃)/∂ (x,y,z) captures the log-
arithmic transformation unique to LCPML-log.

The entries of Jc are given in (11), where α , β ,
and γ represent the directional components of the unit
vector n̂. Partial derivatives such as fx = ∂ f/∂x are
computed analytically, when possible, or numerically
by using the functional dependence of boundary points.
For numerical computation, central differencing formu-
las can be applied. The boundary points on the PML
boundaries are determined by employing the Lagrange
multiplier method, as detailed in [105] and [106].

Jc =

( jk)−1 (α fx + f αx)+1 ( jk)−1 (β fx + f βx) ( jk)−1 (γ fx + f γx)

( jk)−1 (α fy + f αy) ( jk)−1 (β fy + f βy)+1 ( jk)−1 (γ fy + f γy)

( jk)−1 (α fz + f αz) ( jk)−1 (β fz + f βz) ( jk)−1 (γ fz + f γz)+1

 . (11)

B. Numerical results
To demonstrate the performance of the LCPML-log

method, we first consider the problem of constructing the
free-space Green’s Function for the Helmholtz equation
within a given domain. Specifically, we examine a sce-
nario where a line source located at (0.2 m, 0) radiates
within a circular region of radius a = 1 m, as depicted in
Fig. 8. The mean-square error (MSE), which compares
the computed and analytical field values, is plotted as
a function of the number of PML layers for different
wavelength (λ ) values. We observe that the LCPML-
log method outperforms the original LCPML method,
particularly when using a single PML layer. As evident
from the vertical axis (MSE values), even with a single
layer, the LCPML-log method achieves significantly low
error levels across different frequencies and mesh resolu-
tions. This indicates that increasing the number of PML
layers beyond a certain point does not necessarily pro-
vide a substantial accuracy improvement, as the error is
already minimized at very low levels. Moreover, many
applications require broadband frequency sweeps using
the same mesh, which poses challenges in both com-
putational cost and accuracy. The LCPML-log method,
as demonstrated by the almost flat nature of the error
curves, remains robust and nearly independent of fre-
quency even with a relatively coarse mesh. This stabil-
ity further supports the argument that a large number of
PML layers is not essential, as the method maintains low
error levels across a wide frequency range with minimal
computational effort.

Fig. 8. A line source radiating in a circular PML region.
(a) Geometry, (b) plot of mean-square error (MSE) vs.
number of PML layers. (Axes are logarithmic.)

Next, we examine a scattering problem involving
a conducting ‘golden’ ellipsoid, where the ratio of the
semi-major axis to the semi-minor axis is approximately
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Fig. 9. Golden ellipsoidal PML. (a) Geometry, (b)
backscattering RCS, (c) bistatic RCS profile at φ = 0◦

plane, (d) bistatic RCS profile at φ = 90◦ plane.

the golden ratio (i.e., 1.6) (see Fig. 9). The object is
illuminated by an x-polarized plane wave propagating
along the z-axis, with a conformal PML applied around
its spherical boundary. The wavenumber k is 2π , corre-
sponding to a wavelength λ of 1 m. The computational
setup includes a cell size of λ/20 and a separation of
λ/2 between the inner PML boundary and the object. A
single PML layer with a thickness of λ/20 is employed.
The radar cross-section (RCS) values obtained using
the LCPML method, optimized for best performance,
are compared in Fig. 9 with those from the LCPML-
log method, which requires no parameter tuning. The
results are also compared with those obtained using the
commercial electromagnetic solver FEKO. The results
clearly demonstrate that LCPML-log performs well even
with a single PML layer and without the need for param-
eter adjustments.

IV. GPU ACCELERATION OF MOM AND
FDTD

In this section, we briefly discuss the GPU accel-
eration of MoM and, separately, the FDTD algorithm.
GPU Acceleration of CEM codes [107] is currently a
very popular topic, and we have included brief writeups
in this work for the sake of completeness. For additional
details, the reader is encouraged to refer to select publi-
cations on this topic that have been cited herein.

The Graphics Processing Unit (GPU) is a highly
parallelized stream processor, originally designed for
image processing, where it executes parallel operations
on all pixels simultaneously. Consequently, GPUs are

optimized for handling large-scale data that is uniform in
type and exhibits minimal interdependency. Due to dif-
fering design objectives, the architecture of GPUs sig-
nificantly contrasts with that of Central Processing Units
(CPUs). As illustrated in Fig. 10, the CPU architecture
comprises key components such as a controller (which
orchestrates the operation of various units), an arith-
metic logic unit (which performs data processing), reg-
isters, cache, and data/control/status buses. The CPU’s
functions include program control (regulating the order
of instruction execution), operation control (managing
the execution of instructions), timing control (coordinat-
ing the timing of operations), and data processing (per-
forming arithmetic and logical calculations). In essence,
the CPU manages the temporal and spatial control of
instruction and data flow. It is particularly adept at han-
dling complex operations like distributed tasks and coor-
dinated control, making it highly versatile.

(a)

(b)

Fig. 10. Comparison between GPU and CPU architec-
tures

In contrast, GPUs consist of numerous processing
units and feature long pipelines, but the design of their
logical units is relatively simple. The number of cores
in a GPU far exceeds that of a CPU, allowing the same
instruction to be dispatched to multiple cores to process
different data simultaneously. This architecture makes
GPUs particularly well-suited for tackling computation-
ally intensive tasks.
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General-purpose computing on GPUs (GPGPU)
refers to using graphics cards for general-purpose com-
putations beyond rendering graphics. In recent years, the
computational speed of GPU units has increased dramat-
ically and, in some applications, GPUs have significantly
outperformed CPUs. This has led to the emergence of a
new research field: GPGPU, which focuses on utilizing
GPUs for a broader range of computational tasks beyond
traditional graphics processing.

A. GPU acceleration of MoM
Operation of 5G mobile devices at millimeter-wave

frequencies (e.g., 30 GHz) introduces substantial com-
plexity, leading to significantly increased problem sizes
compared to sub-5 GHz operation. This imposes a signif-
icant computational burden, since it demands extensive
CPU time and memory resources for electromagnetic
analysis. To effectively mitigate these challenges, we
propose and implement several acceleration techniques:
geometry simplification, numerical reduction of degrees
of freedom, and GPU-based parallel processing. Primary
memory reduction is achieved via the CBFM, an effi-
cient iteration-free technique for compressing basis func-
tions [7]. CBFM has been extensively applied and inves-
tigated, including for the analysis of structures embedded
in multilayered media [108].

These acceleration techniques are illustrated by
using the geometry of a mobile device, comprising
a metallic frame and an antenna mounted on a lay-
ered substrate (see Figs. 11 and 12). The initial step
involves geometrical simplification without compromis-

Fig. 11. Cellphone model.

Fig. 12. Simplified full-size cellphone.

ing the device’s electrical characteristics. This measure
yields a significant reduction in the number of degrees
of freedom, from 99738 down to 1892 unknowns at
30 GHz. Subsequently, the CBFM formulation, origi-
nally developed for scattering analysis, is adapted for
layered media antenna applications by employing two
distinct types of excitations—Edge Port(EP) and Dipole
Moment (DM)—to generate the CBFs for the antenna
structure [109]. Compared to conventional MoM, CBFM
inherently reduces the dimension of the system matrix.
This reduction is achieved irrespective of the excitation
type, and our study indicates that the performance of the
EP excitation is superior. This is because EP and DM
excitations incorporate near-field components, including
content related to the ‘invisible’ spectrum (evanescent
waves) that are typically absent in traditional plane wave
excitations, and this, in turn, enhances the accuracy of
the representation. The impedance matrix, Z, computed
via MoM, is utilized to construct the CBFs. GPU acceler-
ation significantly expedites this process by parallelizing
the computationally intensive filling of the MoM matrix.
The MoM mesh and geometrical data are initially trans-
ferred to GPU global memory. The rows of the MoM
impedance matrix are then computed in serial batches.
Within each batch, the matrix elements are calculated
in parallel on the GPU, with each element computation
assigned to a dedicated GPU thread. Upon completion of
a batch computation, the elements are copied back from
the GPU global memory to CPU host memory for subse-
quent use in solving the MoM linear system. To mitigate
the overhead associated with GPU-CPU data transfer ini-
tialization, a large GPU batch size is selected to max-
imize the utilization of the global memory. Numerical
results confirm that leveraging GPU parallel processing
substantially reduces fill time of the MoM matrix.

Future development of the GPU-accelerated CBFM
scheme will involve defining GPU batches based on the
MoM interactions required for generating a set of CBFs,
rather than simply grouping a fixed number of MoM
matrix rows. Following GPU processing of a batch, the
MoM elements relevant to CBF construction will be
copied back to the CPU host, where the SVD for forming
the CBFs will be performed.

1. CBFM for microwave circuit and antenna prob-
lems

Based on the mixed-potential integral equation
(MPIE), CBFs are constructed by using a set of low-level
basis functions, specifically the Rao-Wilton-Glisson
(RWG) functions. For each CBF level l, the correspond-
ing reduced matrix equation is formulated as:

[Zl ]
∑

Bl
i Kl,i×∑

Bl
i Kl,i

[Il(θ ,φ)]
∑

Bl
i Kl,i×1

=

[V l(θ ,φ)]
∑

Bl
i Kl,i×1

, (12)
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Fig. 13. Edge ports on a dipole.

Fig. 14. Dipole moments above a dipole.

where Zl , Il , and V l represent the l-level reduced
impedance matrix, the vector of current distribution coef-
ficients, and the excitation vector, respectively. It is note-
worthy that for l = 0, this formulation reduces to the orig-
inal MoM system matrix equation.

To effectively adapt CBFM for millimeter-wave cir-
cuit and antenna problems, we utilize EPs defined on
the surface of the analyzed structure (see Fig. 13). This
approach is the natural choice for constructing the excita-
tion vector in antenna problems, providing a direct inter-
face to circuit ports, in contrast to plane wave excita-
tions used in scattering analysis. As an illustrative exam-
ple, the dipole geometry is partitioned into four blocks;
the dark blue faces in the figure delineate the extended
region used in the CBFM construction, while the red
lines indicate the EPs oriented along the x-axis. Further-
more, in an antenna application employing a single delta-
gap source for excitation, this source—implemented as
an EP—must be included as one of the contributions to
the excitation vector.

An alternative excitation strategy employs sources
that are neither solely far-field (e.g., a plane wave)
nor located exclusively on the object’s body (e.g., an
EP, as illustrated in Fig. 14). In this method, equiva-
lent dipole moments positioned in the vicinity of the
object are selected as sources to generate the excita-
tion matrix. This inherently ensures the inclusion of both
near-field (evanescent) and far-field (propagating) infor-
mation, which is crucial for accurate CBF construction.

2. Numerical results
We now present some numerical results demonstrat-

ing the accuracy and efficiency of applying CBFM to
antenna problems, along with the effectiveness of GPU
acceleration. The first example analyzes a Perfect Elec-
tric Conductor (PEC) dipole in free space (see Fig. 15).
For the CBFM implementation, the dipole geometry is
partitioned into four blocks along its longitudinal axis,
and a delta gap port is utilized for excitation at the cen-
ter. The analysis is performed across a frequency range
from 300 MHz to 700 MHz, with a step size of 50 MHz.
The antenna structure is discretized by using 324 trian-
gular elements, with element lengths approximately 0.1
wavelengths at 500 MHz. For constructing the CBFs, an
extension region equivalent to 0.1 wavelengths at 500
MHz is employed. The computed input impedance (Z11)
is plotted in Fig. 16, using results obtained from the con-
ventional MoM as a reference for validation. Table 7
summarizes the SVD down-selection thresholds, as well
as the number of samples and unknowns characteriz-
ing the reduced matrices for different excitation types:
EP denotes edge-port, PW denotes plane-wave, and DM
denotes dipole-moment excitation.

Our second numerical example analyzes a Perfect
Electric Conductor (PEC) cross situated on the inter-
face of a layered medium (see Fig. 17). This case
is specifically employed to illustrate the computational
acceleration achieved using GPU processing. The cross

Fig. 15. PEC dipole.

Fig. 16. Z11 of example 11 obtained by using CBFM.
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Table 7: Parameters and results of example 11

Method Threshold Samples Unknowns
Min. Max.

EP-CBFM 0 96 96 96
PW-CBFM 1e-3 400 110 184
DM-CBFM 0 120 120 120

MoM 0 0 486 486

Fig. 17. PEC cross embedded in layered medium.

consists of arms measuring 10 wavelengths in length
and 2 wavelengths in width. The layered medium is
backed by a PEC plane. The analysis is conducted at
30 GHz, involving a total of 12085 unknowns. Table 8
presents the matrix fill-time, which clearly demonstrates
significant computational acceleration when utilizing the
GPU. The hardware platform used for this comparison
included an Nvidia GTX860M GPU and an Intel I7-
4710HQ CPU. The system was equipped with 8 GB of
host memory. For comparative purposes, the CPU-based
numerical results were obtained using commercial elec-
tromagnetic simulation software.

Specifically, the GPU acceleration process
[110, 111] is organized as follows:

• All geometrical and material data required for MoM
computations are first transferred to GPU global
memory.

• The impedance matrix is computed in batches of
rows. Each batch is processed serially, while the ele-
ments within a batch are computed in parallel on the
GPU. Each thread handles one matrix element (i.e.,
a source-observer pair).

• After completing each batch, the results are copied
back from GPU global memory to CPU memory.
This approach is designed to balance GPU mem-
ory usage and data transfer overhead. To reduce
the latency of memory transfers, the batch size is
chosen to maximize the occupancy of GPU global
memory.

• The MoM impedance matrix computed in this way
is subsequently used to form the reduced-order sys-
tem in the CBFM framework.

Table 8: Time used for matrix filling on different plat-
forms

Platform Matrix filling time (minutes)
GPU 0.7

1 CPU-Core 26.6
2 CPU-Core 20.0
4 CPU-Core 24.0
6 CPU-Core 26.4
8 CPU-Core 26.5

• In our current workflow, SVD is performed on the
CPU after GPU-based computation of the MoM
matrix elements.

Additional detail on GPU acceleration may be found
in [112–116].

B. GPU acceleration of FDTD
Since its inception, the FDTD method has developed

into a mature and comprehensive numerical computation
technique. Its straightforward and intuitive implementa-
tion, combined with its applicability to various compu-
tational models, has led to its widespread use and recog-
nition as one of the fundamental methods in computa-
tional electromagnetics. However, due to the effects of
numerical dispersion and stability, as well as the limi-
tations of CPU floating-point performance, single-CPU
implementations of the FDTD method can only handle
the simulation and analysis of electrically small prob-
lems. These simulations may take several hours or even
days to complete, and the simulation of electrically large
targets presents even greater challenges. When applied
to large-scale electromagnetic simulations, the FDTD
method requires extensive memory and computing time.

To address these limitations, researchers have exten-
sively explored several approaches, including higher-
order FDTD methods, time-domain multiresolution anal-
ysis, and parallel FDTD algorithms. Among these, par-
allel FDTD, combining the computational power of par-
allel processing with the simplicity and clarity of the
FDTD method, has gained prominence, particularly with
the rapid advancement of GPGPU [117–120].

The workflow of the GPU-accelerated parallel
FDTD algorithm is shown in Fig. 18. In this approach,
the GPU acts as a coprocessor, working in tandem with
the CPU. The program flow is divided into two parts: the
host (CPU) part and the device (GPU) part, as depicted
in Fig. 18. The right side of Fig. 18 represents the device
section, which is executed by the GPU, while the left side
shows the host section, managed by the CPU. The CPU
primarily handles tasks such as memory allocation, field
initialization, and time advancement of the simulation.
The GPU is responsible for computationally intensive
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Fig. 18. Flowchart of the GPU-based parallel FDTD
algorithm.

operations, performing field value calculations at each
time step and updating the electric and magnetic fields in
a recursive manner.

Using the Ex component as an example, at each time
step, the GPU reads the previous Ex values, along with
the Hy and Hz values, computational coefficients, and
auxiliary variables related to boundary conditions from
global memory. The GPU first executes the FDTD stan-
dard update equation kernel in parallel to compute the
Ex field values across the entire domain. After that, it
runs a boundary condition kernel in parallel to update the
field components located at the boundaries. Once this is
complete, the new Ex values and the associated auxiliary
variables for the boundary conditions are written back
to global memory for use in the field updates during the
next time step.

The calculation process for other field components
follows a similar procedure. After all field components
for a given time step are computed, the CPU advances
the simulation to the next time step, allowing the GPU
to begin the next round of field calculations. The rea-
son for using the CPU to handle time advancement
is that Compute Unified Device Architecture (CUDA)
lacks global thread synchronization capabilities, which is
essential for FDTD’s time-domain iterations. The algo-
rithm requires that all E (or H) field components be fully
computed at a given time step before advancing to the H
(or E) field components. To address this, the device-side
computation is split into two kernel functions: one for
computing the E fields and another for computing the H
fields, which are executed sequentially. The CPU ensures
global synchronization between these two steps, prevent-
ing computation errors that would result from improper
synchronization.

In this work, parallel computation is implemented
by assigning one thread to handle each Yee cell. For
example, in the case of calculating the Ex component,

within an FDTD computational domain of dimensions
Nx×Ny×Nz, the number of Ex components to be updated
is typically Nx × (Ny + 1)× (Nz + 1). Both the grid and
block structures used in this paper are one-dimensional,
with each block consisting of nT threads. The CUDA
thread index corresponding to the Ex component at
position (i, j,k) in the FDTD domain can be calculated
by:

blockx = [(i−1+ j ·Nx + k ·Nx ·Ny)/NT ], (13)
threadIdx = (i−1+ j ·Nx+k ·Nx ·(Ny+1))%NT , (14)

where [·] represents the floor operation, and % denotes
the modulo operation. It is important to note that NT
must be a multiple of the GPU’s warp size, which is
typically 32. This thread allocation strategy ensures that
the memory assigned to each block is contiguous in
the x-direction, which satisfies global memory align-
ment requirements. This allows for continuous memory
access, thereby improving the effective memory band-
width.

The authors are currently pursuing further research
in the area of GPU/FDTD acceleration and plan to report
the results in a future publication [121].

In summary, GPUs have become indispensable
for accelerating computational electromagnetics simula-
tions. In FEM, GPUs enhance the solution of large sparse
matrix systems through parallelized iterative solvers and
efficient handling of element-wise computations. For
MoM, which involves dense matrix operations for sur-
face integral equations, GPUs leverage their high mem-
ory bandwidth and parallel processing capabilities to
accelerate matrix filling and matrix-vector products, sig-
nificantly reducing solution times. In FDTD, GPUs excel
by parallelizing the explicit time-stepping updates across
the computational grid, enabling real-time or large-scale
simulations of wave propagation and scattering prob-
lems. By exploiting massive parallelism, GPUs deliver
orders-of-magnitude speedups over CPUs, making them
essential for high-performance electromagnetic analy-
sis in research and industry. Future advancements in
exascale computing, AI-driven numerics, and heteroge-
neous architectures will further push the limits of GPU-
accelerated EM simulation.

V. CONCLUDING REMARKS
In this work, we have presented several innovative

CEM techniques for numerical modeling of microwave
circuits, antennas, and array configurations, with spe-
cial emphasis on techniques for efficient simulation at
millimeter-waves, and beyond, where the conventional
simulation techniques become both memory-intensive
and time-consuming. We have focused on solving a vari-
ety of practical design and analysis problems and have
presented a wide array of example geometries that are
useful for 5G/6G applications. Looking into the future,
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the authors are currently developing an AI-based antenna
design software [122] which will integrate some of the
simulation algorithms presented in this work to speed up
the design process.
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