
499 ACES JOURNAL, Vol. 40, No. 06, June 2025

A Stable Subgridding 2D-FDTD Method for Ground Penetrating Radar
Modeling

Xiao Yan Zhang and Rui Long Chen

The School of Information and Software Engineering
East China Jiao Tong University, Nanchang 330013, China

xy zhang3129@ecjtu.edu.cn, 2465246593@qq.com

Abstract – The subgridding finite-difference time-
domain (FDTD) method has a great attraction in ground
penetrating radar (GPR) modeling. The challenge is that
the interpolation of the field unknowns at the multi-
scale grid interfaces will aggravate the asymmetry of the
numerical system which results in its instability. In this
paper, an explicit unconditionally stable technique for a
lossy object is introduced into the subgridding FDTD
method. It removes the eigenmodes of the coefficient
matrix which make the algorithm unstable. Therefore,
the proposed approach not only maintains the advan-
tages of simple implementation of the traditional FDTD
method but also adopts a relatively large time step in both
coarse and fine grid, which breaks through the restric-
tion of the Courant-Friedrichs-Lewy (CFL) stability con-
dition. The proposed method is applied in simulating
the transverse magnetic (TM) wave backscattering of the
two-dimensional buried objects in lossy media. Its accu-
racy and efficiency are examined by comparison with
conventional FDTD and subgridding FDTD approaches.

Index Terms – Courant-Friedrichs-Lewy (CFL) stability
condition, ground penetrating radar (GPR), subgridding
finite-difference time-domain (FDTD) method, uncondi-
tionally stable algorithm.

I. INTRODUCTION
Ground penetrating radar (GPR) plays an impor-

tant role in geological detection, resource exploration,
and urban construction. In order to identify the targets
detected by the GPR equipment, some approaches, such
as a Born approximation [1], a method of moments
(MoM) [2], and a finite-difference time-domain (FDTD)
method [3–4], are proposed to establish a half-space
model to study the backscattering of the buried objects
in advance. Among these methods, FDTD is the most
popular because of its relatively simple implementation.
However, the efficiency of the traditional explicit FDTD
approach is low when simulating such GPR models. The
reason is that, on the one hand, the underground object

usually has a fine structure or its or soil’s dielectric con-
stant is large, so that the FDTD method has to use the fine
grid to guarantee its accuracy, which increases the mem-
ory requirement. On the other hand, due to restriction by
the Courant-Friedrichs-Lewy (CFL) stability condition,
the time step of the traditional FDTD is shortened corre-
spondingly, which increases the time cost.

An efficient way to overcome the above issues is
to introduce a subgridding technique into the traditional
FDTD approach [5–7]. This method divides the solu-
tion domain into several coarse and fine grids. The inner
fields of the different grids are updated separately by
using a local time increment. This process is stable, but
the fields at the coarse/fine grids interface need to be esti-
mated by certain interpolation schemes, which will lead
to asymmetry of the numerical system and result in its
instability [8]. Meanwhile, influenced by the CFL con-
dition and numerical dispersion of the FDTD, the dis-
continuity in time of the temporal subgridding method
will increase the algorithm’s implementation complexity
and limit the flexibility of the grid ratio [6]. Therefore, a
good subgridding FDTD should be stable, have accept-
able accuracy, and be simple to implement.

In recent years, some explicit subgridding FDTD
approaches, such as Huygens subgridding FDTD method
[9–10], FDTD hybrid method [11], and FDTD subgrid-
ding method with two separate interfaces in time and
space [12], were proposed to improve the efficiency of
the traditional subgridding FDTD. However, the time
increments of these algorithms are restricted by the
CFL condition. To break through such restriction, hybrid
methods of the implicit and the explicit algorithm were
proposed to make the time increment of the subgrid as
large as that of the coarse grid [13–14]. However, the
introduction of the implicit operation will increase the
FDTD’s complexity and may degrade the algorithm’s
performance since a matrix needs to be solved. In addi-
tion, unstable eigenmodes still exist in these methods, so
the late time stability is still a problem to be faced [15].

In order to identify the root cause of the algorithm’s
instability, the system matrix of the subgridding FDTD
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was analyzed in [8, 16–18]. They achieved late time sta-
bility by removing the eigenmodes of the system matrix
that make the algorithm unstable [15] or by deriving
a new iterative approach [8, 17–18]. In those studies,
the scattering of objects in free space or cavities is of
concern. To retain the original FDTD code and extend
the CFL limit, a spatial filtering technique based on
Fourier transform was developed in [19] and success-
fully applied in the GPR detect simulation. Its compu-
tational overhead was related to the number of sampling
points in the spatial frequency domain. Therefore, when
the number of the unknowns is much less than that of the
sampling, the efficiency of the algorithm will decline.

In this paper, a subgridding 2D-FDTD method [20]
based on the explicit unconditionally stable technique for
a lossy media is proposed. Different from those global
modeling methods, the proposed method only performs
the explicit unconditional stable technique in the sub-
grid region, and the traditional FDTD algorithm with a
uniaxial medium perfect matched layer (UPML) absorb-
ing boundary is used in the other grids. In this way, the
implement simplicity of the traditional FDTD algorithm
can be maintained. Furthermore, by removing the eigen-
modes of the coefficient matrix that make the subgrid-
ding FDTD unstable, its time step can be extended to be
a relatively large one, so the proposed algorithm can use
a unified time increment in both coarse and fine grids and
achieve the late time stability.

This paper is arranged in the following manner. In
section II, theories and mathematics of 2D-FDTD for-
mulation with a lossy medium, subgridding scheme and
unconditional stable algorithm for a lossy medium are
derived. In section III, the computation performance of
the algorithm is examined by comparing it with con-
ventional FDTD and subgridding schemes. Numerical
results of 2D GPR simulation with the transverse mag-
netic (TM) wave proves the validity and efficiency of
the proposed algorithm. In section IV, conclusions are
drawn.

II. THEORIES AND MATHEMATICS
As Fig. 1 shows, the half-space 2D GPR model is

composed of air (ε0, µ0, representing the dielectric per-
mittivity and the magnetic permeability of free space,
respectively), the lossy soil (its parameters are ε1, µ1,
and a conductivity of σ1. The soil extends into the
absorbing boundary), and the underground objects (ε2,
µ2, σ2). The electromagnetic signal is sent from the Tx,
and the backscattering of the soil and the buried objects
is received by the Rx (Tx, Rx denote the transmitting
antenna and the receiving antenna, respectively).

The air layer is a small proportion in the model.
Therefore, its spatial increment is set to be the same
as that of the soil in this research, which will only

slightly increase the computational cost of the algorithm.
In this case, the computational domain is divided into
two parts: the coarse grid area of the background and
the subgridding area of the buried objects. The out-
ward traveling wave is absorbed by the UPML absorp-
tion boundary, which also uses the coarse mesh and is
implemented using traditional FDTD methods. Since the
explicit unconditional stable technique only performs in
the subgrid region, we can skip the UPML, because
its electrical parameters change with distance, making
it almost impossible to apply the unconditional stable
explicit methods to it.

Fig. 1. Configuration of the two-dimensional GPR
model.

A. Overall algorithm of the model
To describe the algorithm principle of the model, the

coarse/fine grid size ratio of 3:1 is taken as an example.
Figure 2 shows the spatial distributions of the electric
field intensity (E or e) and the magnetic field intensity (H
or h) at grid nodes. As Fig. 2 shows, the meshes in the
model mainly include the coarse mesh nodes (in cell #1),

Fig. 2. Spatial distributions of the electric field intensity
and the magnetic field intensity at grid nodes (take TMz
wave as example).
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the fine mesh nodes (in cell #4), and the border nodes (in
cells #2 and #3). In cell #1, the traditional FDTD method
is employed to obtain the transient values of E and H
at the coarse nodes. In cell #4, the unconditionally stable
explicit FDTD method in lossy media is used to calculate
the field quantities of e and h in the fine grids. In cells #2
and #3, the E field is calculated by the H field of a portion
of the coarse grids and the h field of a portion of the fine
grids. It should be noted that the time steps used in all
regions are the same.

Following, we will describe the calculation methods
for different regions.

B. Explicit unconditional stable FDTD formulations
in cell #4

A two-dimensional (2D) TMz wave propagating in
a lossy medium is considered. Its Maxwell’s equation in
time domain (t) can be written as: ε∂t +σ ∂y −∂x

∂y µ∂t 0
∂x 0 −µ∂t

 Ez
Hx
Hy

= 0, (1)

where ∂ς represents the operator of ∂
/

∂ς , ε and σ are
the dielectric constant and the conductivity of the media,
respectively, and µ is the media’s permeability. The wave
equation corresponding to (1) is:

∂
2
t Ez +

σ

ε
∂tEz −∂

2
y Ez/εµ −∂

2
x Ez/εµ = 0, (2)

where ∂ 2
ς represents the second-order derivative of ς . Let

Ẽ = ∂ 2
y Ez

/
εµ +∂ 2

x Ez
/

εµ and expand Ẽ using the differ-
ence method to obtain:

Ẽ(i, j) =
1

εµ

{
1

∆y2 [Ez(i, j+1)−2Ez(i, j)

+Ez(i, j−1)]+
1

∆x2 [Ez(i+1, j)−

2Ez(i, j)+Ez(i−1, j)]} , (3)

where i and j represent the grids in space. The matrix
form of (3) is:

Ẽ = ME. (4)

Here, M is a sparse matrix representing the oper-
ator ∂ 2

y
/

εµ + ∂ 2
x
/

εµ , E=[Ez(0,0), Ez(0,1), Ez(0,2), . . . ,
Ez(1,0), Ez(1,1), Ez(1,2), . . . , Ez(2,0), Ez(2,1), Ez(2,2),
. . . ]T .

Taking Ẽ(1,1) as an example, its expansion equa-
tion is:

Ẽn(1,1) = 1
εµ

[
0 1

∆x2 0 · · · 1
∆y2

−2
∆x2 +

−2
∆y2

1
∆y2 · · · 0 1

∆x2 0 · · ·
]

E
. (5)

Substituting (4) into (2), we have:

∂ 2E
∂ t2 +Dσ

∂E
∂ t

−ME = 0, (6)

with Dσ the diagonal matrix of element σ /ε .

Since E is a vector, the characteristic equation of
(6) is:

(λ 2+DσN×Nλ −MN×N) VN×1 = 0, (7)

where V is the right eigenvector corresponding to each
eigenvalue λ . The quantity of λ is 2N (N represents
the number of grids), so the corresponding number of
columns in V is also 2N [21].

After some manipulations, (7) becomes a typical
eigenvalue problem as:

A2N×2Nui = λiui, i = 1,2, · · · ,2N, (8)

with:

A2N×2N =

[
ON×N IN×N
MN×N −DσN×N

]
and ui =

[
Vi

λiVi

]
. (9)

It can be seen that A is determined by space dis-
cretization and the size of A will expand as the unknown
number increases. A is an asymmetric matrix and does
not have orthogonality, so its eigenvalue vector u also
does not have orthogonality, and λ is the eigenvalue
of A.

Usually, the generation of unstable modes comes
from space discretization. For example, for an object
with a large ε or a fine structure, the explicit FDTD
algorithm requires very fine mesh generation. Thus,
∆x and ∆y must be very small and subject to CFL
condition [22]:

∆t ≤ min(∆x,∆y)√
2εrc

, (10)

where c is the speed of light. Therefore, ∆t will become
very small. According to the Nyquist sampling theo-
rem, ∆t only needs to meet ≤ 1

/
fmax (f max is the max-

imum frequency of the incident wave), and the high-
frequencies >f max corresponding to very small ∆t is
redundant [16]. In terms of (8), if ∆t is selected beyond
the CFL condition, the modes corresponding to eigenval-
ues that do not meet:

|λi| ≤
2
∆t

, (11)

will lead to algorithm instability. In fact, these modes
correspond to redundant frequencies. Theoretically, the
removal of these unstable modes will not affect the accu-
racy of the algorithm. Therefore, the key to breaking free
from CFL constraints in algorithms lies in being able to
find the unstable modes in A and remove them. However,
due to the large size of A, directly solving the eigenval-
ues of A would be time-consuming.

To achieve matrix compression, an orthogonal
matrix FT

E is left multiplied into (7):

FT
E
[(

λ
2I+Dσ λ −M

)
V
]
. (12)
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According to the property that orthogonal matrix FT
E

has FT
EFE = Ir, (12) can be transformed into:(

λ
2FT

EFE +FT
EDσ FEλ −FT

EMFE
)

FT
EV = 0, (13)

i.e. (
λ

2Ir +Dσ ,rλ −Mr
)

Vr = 0, (14)

where Dσ ,r = FT
EDσ FE , Mr = FT

EMFE , Vr= FT
EV.

FE are obtained through preprocessing, and its
matrix size is N×a (a<N). Therefore, the matrix sizes of
Dσ ,r, Mr, and Vr are correspondingly reduced to a×a,
a×a, and a×2N. The eigenvalue problem becomes:

Ar2a×2aur2a×2N = λur2a×2N , (15)

with:

Ar2a×2a =

[
Or Ir
Mr −Dσ ,r

]
and ur2a×2N =

[
Vr

λVr

]
. (16)

Obviously, the eigenvalues of (15) have not
changed, but the scale of matrices Ar and ur has signifi-
cantly decreased.

By executing:

Vst= FEVr, (17)

the eigenvector containing stable modes can be obtained.
The size of Vst is the same as that of Vr. The stable tran-
sient Est (t) can be represented as:

Est(t) = Vsty(t). (18)

Substituting (18) into (2) and performing the central
difference scheme on the equation, we have:(

I+
∆t
2

Cb

)
yn+1 =

(
2I+∆t2Cc

)
yn

−
(

I− ∆t
2

Cb

)
yn−1. (19)

Cb and Cc are calculated by:

Cb =
(
VH

st Vst
)−1 VH

st Dσ Vst .

Cc =
(
VH

st Vst
)−1 VH

st MVst . (20)

Therefore, (19) can be written as:

yn+1 = Cdyn+Ceyn−1, (21)

in which Cd and Ce are given by:

Cd =

(
I+

∆t
2

Cb

)−1 (
2I+∆t2Cc

)
Ce =−

(
I+

∆t
2

Cb

)−1(
I− ∆t

2
Cb

)
. (22)

Execute (21) and (18) to compute unconditional sta-
ble Est (t) and then substitute Est (t) into (1). The value of
Hst (t) can be obtained simultaneously.

To improve efficiency, Vr and λ are not directly
solved but are obtained by iterating FDTD for
some steps. The specific method is as described in
Algorithm 1.

According to the property that orthogonal matrix 
T

E
F  

has 
T

E E r
=F F I , (12) can be transformed into: 

2( ) 0T T T T
E E E E E E E + − =F F F D F F MF F V ,   (13) 

i.e.  

 2
,( ) 0r r r r + − =I D M V ,              (14) 

where ,
T

r E E =D F D F , T
r E E=M F MF , = T

r EV F V . 

E
F  are obtained through preprocessing, and its 

matrix size is N×a (a<N). Therefore, the matrix sizes of 

,r
D , 

r
M , and 

r
V  are correspondingly reduced to a×a, 

a×a, and a×2N. The eigenvalue problem becomes: 

 2 2 2 2 2 2r a a r a N r a N  =A u u ,              (15) 

with: 

 2 2
,

=
r r

r a a
r r



 
 

− 

O I
A

M D
 and 2 2 =

r
r a N

r


 
 
 

V
u

V
.  (16) 

Obviously, the eigenvalues of (15) have not changed, but 

the scale of matrices rA  and ru  has significantly 

decreased. 

By executing: 

 =st E rV F V ,                          (17) 

the eigenvector containing stable modes can be obtained. 

The size of stV  is the same as that of Vr. The stable 

transient Est(t) can be represented as: 

 ( ) = ( )st stt tE V y .                     (18) 

Substituting (18) into (2) and performing the central 

difference scheme on the equation, we have: 

 

1 2

1

( ) (2 )
2

( )
2

n n
b c

n
b

t
t

t

+

−


+ = +  −


−

I C y I C y

I C y

.         (19) 

bC  and cC  are calculated by: 

 
1

1

( )

( )

H H
b st st st st

H H
c st st st st


−

−

=

=

C V V V D V

C V V V MV
.              (20) 

Therefore, (19) can be written as: 

 1 1n n n
d e

+ −=y C y + C y ,                 (21) 

in which dC  and eC  are given by: 

 

1 2

1

( ) (2 )
2

( ) ( )
2 2

d b c

e b b

t
t

t t

−

−


= + + 

 
= − + −

C I C I C

C I C I C

.            (22) 

Execute (21) and (18) to compute unconditional 

stable Est(t) and then substitute Est(t) into (1). The value 

of Hst(t) can be obtained simultaneously. 

To improve efficiency, Vr and λ are not directly 

solved but are obtained by iterating FDTD for some steps. 

The specific method is as described in Algorithm 1. 

 

 

C. Subgridding scheme in cells #2 and #3 

In the subgridding scheme, properly dealing with 

coupling between the base and fine grid interfaces is 

crucial because it determines the stability and accuracy 

of the algorithm. However, the algorithms that can 

improve accuracy are often complex. In this paper, we 

adopt the improved separated temporal and spatial 

interfaces subgridding method to solve the above issues. 

Due to the application of the unconditional stability 

technique, both coarse and fine grids use the same time 

increment, which further reduces the complexity of the 

algorithm. 

Taking the 2D TM wave subgridding interface 

shown in Fig. 2 as an example: Hx2, Hx3, Hx6, Hy2, Hy3, 

Hy4 are the magnetic fields of the coarse grid; hx1, hx6, hx7, 

hx8, hx9, hx10, hy1, hy2, hy5 are the magnetic fields of the 

fine grid; 
,

2

b cor

zE , 
,

3

b int

zE , 5

b

zE , 
,

7

c int

xH  are the fields of 

coarse/fine grid interface, in which 
,

2

b cor

zE  is located at 

the boundary corner. All these fields need to be 

particularly treated. 

According to [20], Ez on the interface can be solved 

by: 

 1 1n n

z z i i

i

t
E E l H

S

+ 
= +


 ,                 (23) 

Algorithm 1: Scheme procedure of finding stable 
eigenmodes 

1. While
1

| | | |H H

h h l l
y y y y e , 

2.  performing n steps of traditional FDTD 

(n≥∆tp/∆tCFL. ∆tp is the time increasement of the 

unconditionally stable algorithm, ∆tCFL is the 

time increasement of CFL limitation); 

3.  [ ]n
E E zE=F F , orth( )E E=F F ; 

4.  ,
T

r E E =D F D F , T
r E E=M F MF . Calculate the 

eigenvalues and eigenvectors of matrix [ rO

,; ]r r r−I M D ; 

5.  if 1
2| | | |n n n

i i i e  −−  , then , ,[r l r l=V V ]iV ; 

else , ,[ ]r h r h iV=V V ; 
here, Vr,l is a repetitive eigenvalue, and Vr,h is a 

non-repetitive eigenvalue. Vi is the eigenvector 

corresponding to n

i . 

6.  orthogonalize the eigenvectors; 

Vr,l=orth(Vr,l), 

, , , , ,orth( )H
r h r h r l r l r h= −V V V V V . 

7.  determine the weight of Vr,l and Vr,h; 

,
H H n

l r l E zy =V F E , 

,
H H n

h r h E zy =V F E . 

8. ,st E r st=V F V , where ,r stV  is the vectors of ,r lV  

whose eigenvalue satisfy (11); 

9. perform iteration by (21) to calculate y, and stE  

is determined by (18). 

 

C. Subgridding scheme in cells #2 and #3
In the subgridding scheme, properly dealing with

coupling between the base and fine grid interfaces is cru-
cial because it determines the stability and accuracy of
the algorithm. However, the algorithms that can improve
accuracy are often complex. In this paper, we adopt the
improved separated temporal and spatial interfaces sub-
gridding method to solve the above issues. Due to the
application of the unconditional stability technique, both
coarse and fine grids use the same time increment, which
further reduces the complexity of the algorithm.

Taking the 2D TM wave subgridding interface
shown in Fig. 2 as an example: Hx2, Hx3, Hx6, Hy2, Hy3,
Hy4 are the magnetic fields of the coarse grid; hx1, hx6,
hx7, hx8, hx9, hx10, hy1, hy2, hy5 are the magnetic fields
of the fine grid; Eb,cor

z2 , Eb,int
z3 , Eb

z5, Hc,int
x7 are the fields of

coarse/fine grid interface, in which Eb,cor
z2 is located at the

boundary corner. All these fields need to be particularly
treated.

According to [20], Ez on the interface can be solved
by:

En+1
z = En

z +
∆t
µ

1
∆S ∑

i
liHi, (23)



503 ACES JOURNAL, Vol. 40, No. 06, June 2025

where ∆t is the time step of the FDTD method and ∆S is
the area of a grid. Thus:

Eb,n+1
z5 = Eb,n

z5 + ∆t
µ

1
∆xc∆yc

[
∆xc(H

c,int,n+ 1
2

x7 −H
n+ 1

2
x3 )

+
∆yc+∆y f

2 (H
n+ 1

2
y4 −H

n+ 1
2

y3 )+∆y f (h
n+ 1

2
y5 −h

n+ 1
2

y2 )

] ,

(24)
and:

Eb,cor,n+1
z2 =Eb,cor,n

z2 +
∆t
µ

1
∆xc∆yc

[(
∆xc +∆x f

2
H

n+ 1
2

x6 +

∆x f h
n+ 1

2
x6 −∆xcH

n+ 1
2

x2

)
+

(
∆yc +∆y f

2
H

n+ 1
2

y3

+∆y f h
n+ 1

2
y2 −∆ycH

n+ 1
2

y2

)]
. (25)

Hc,int comes from the interpolation of h in the fine
grid [20]:

Hc,int =
2m−1

∑
i=1

m−|m− i|
m2 hi. (26)

Hence, Hc,int
x7 can be estimated by:

Hc,int
x7 =

1
9

hx6 +
2
9

hx7 +
1
3

hx8 +
2
9

hx9 +
1
9

hx10. (27)

Use Eb,int
z to update hx and hy on the boundary. Eb,int

z

is calculated through linear interpolation. Taking Eb,int
z3 as

an example:

Eb,int
z3 =

2
3

Eb,cor
z2 +

1
3

Eb
z5. (28)

For ease of understanding, suppose that the current
time step is n and all fields are known. We summarize the
update process of the proposed subgridding scheme into
the following steps:

Step #1: Calculate En+1 and Hn+ 3
2 (such as Hx2,

Hx3, Hx6, Hy3, Hy4) for coarse grids by using the tra-
ditional FDTD method.

Step #2: Calculate en+1 and hn+ 3
2 (such as hx6, hx7,

hx8, hx9, hx10, hy2, hy5) for fine grids by using the explicit
unconditional stable FDTD formulations.

Step #3: Substitute (27) into (24) to obtain Eb,n+1
z5 ,

and substitute (24), (25), into (28) to obtain Eb,int,n+1
z3 .

Thus, the fields on the coarse/fine grids interface can be
updated accordingly.

It should be noted that the subgridding scheme and
the unconditional stable algorithm above are analyzed
and derived based on TMz waves. The proposed method
in this paper is applicable for 2D GPR numerical simu-
lation in TM mode.

III. NUMERICAL RESULTS
A. Accuracy

To demonstrate the accuracy of this proposed sub-
gridding unconditional stable algorithm, a square object
(εr2 =5, µr2 =1, σ2 =0.02 S/m) in a homogeneous

medium (εr1 =3, µr1 =1, σ1=0.1 S/m) is illustrated (see
Fig. 3). The object has a size of 0.21×0.21 m with a cen-
ter located at (0.675 m, 0.495 m). It is illuminated by a
TMz wave in the form of:

Jz = δ (x− x0,y− y0)e(−((t−t0)/td)2). (29)

Fig. 3. Model for algorithm accuracy verification.

Here, (x0, y0) is the location of the source, δ (x −
x0,y−y0) = 1

/
(∆x∆y), t0 = 0.9

/
fc, td = t0

/
4, and fc=5

MHz. The source is placed at (0.66 m, 0.9 m), and the
receiver is located at (0.66 m, 1.2 m).

Two sizes of grids with ∆lbase =30 mm and
∆l f ine =10 mm are adopted. Their size ratio is 3. A tem-
poral step of CFL stability condition of uniform base
grids is chosen, which is three times beyond CFL condi-
tion of uniform fine grids. The total number of the eigen-
modes is 800, of which 773 unstable eigenmodes need to
be removed. Furthermore, we also compute the numeri-
cal problem when the size ratio increases to 5, 15, 25, 75,
and the removed eigenmodes are 2287, 21621, 60542,
549121, with the total eigenmodes number 2312, 21632,
60552, 549152. When selecting different grid size ratios,
the number of grids applying unconditional stable algo-
rithm vary, so the total eigenmodes number will be dif-
ferent and this leads to different stable eigenmodes size.
On the other side, error e1, e2 and FDTD step n in the
unconditional stable algorithm also affects the number
of stable eigenmodes. In this problem, we choose the
parameters e1, e2, n in the procedure of finding stable
eigenmodes with e1 =10−4 and e2 =10−3 with n=3 (grid
size ratio equals 3), e2 =10−2 with n=5 (grid size ratio
equals 5), e2 =10−2 with n=15 (grid size ratio equals
15), e2 =10−4 with n =25 (grid size ratio equals 25),
e2 =10−4 with n=30 (grid size ratio equals 75).

The transient Ez(t) at the receiver computed using
the proposed algorithm are compared with the results
of traditional FDTD method based on uniform grid
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Fig. 4. Electric field computed by conventional FDTD,
subgridding FDTD, and subgridding unconditional sta-
ble algorithm.

(∆l f ine) and traditional subgridding approach. As shown
in Fig. 4, the proposed method with ratio=3 and 5 has
the best agreement in our simulation; a larger ratio will
lead to some accuracy loss. Although there is a gradu-
ally increasing error when ratio=15, 25, 75, it indicates
that the proposed method is feasible when we use a large
ratio. This proposed method will have more advantages
in multi-scale electromagnetic problem simulation.

To measure the accuracy of the algorithm, a relative
error is defined as:

Error(t) =

∣∣Ez(t)−Ez,re f (t)
∣∣∣∣Ez,re f (t)

∣∣
max

×100%. (30)

The reference solution Ez,re f (t) is obtained by con-
ventional FDTD with ∆l f ine. The relative errors of the
traditional subgridding FDTD and the proposed method
are shown in Fig. 5. It can be seen that the relative error
of the proposed method with ratio=3 is less than 3%,
and there is only a slight difference when ratio=3 and
5. It must be pointed out that when selecting an appro-
priate grid size ratio, the computational accuracy of the
proposed approach is slightly lower than the subgridding
scheme.

Table 1 lists the computational resource consump-
tion of three methods. From Table 1, the following obser-
vations are made:

• The number of unknowns in the proposed method
with ratio = 3, 5, 15 is 0.19, 0.22, 0.64 compared
to the conventional FDTD. The proposed method
with ratio = 3 reduces memory cost by 52.48% and
saves computational time by 84.84% compared to
that of conventional FDTD. The proposed method
with ratio=5, 15 has advantages in terms of time
consumption.

Fig. 5. Relative error of the traditional subgridding
scheme and the proposed subgridding unconditional sta-
ble algorithm.

Table 1: Computational resource consumption of the
three methods

Method Grid
Ratio

Grid
Number

Memory
(MB)

Time
(s)

FDTD 1 70840 1.01 62.06
Subgridding

Scheme
3 13364 1.80 20.05

Proposed
Method

3 13364 0.48 9.41
5 15716 1.44 9.97

15 45116 1.90 25.06
25 103916 5.32 84.68
75 838916 130.13 10825.27

• Compared to the subgridding scheme, the proposed
method with ratio = 3, 5 reduces memory cost
by 73.33%, 20%, and saves computational time
by 53.07%, 50.27%. The proposed method with
ratio=15 has advantages in terms of time consump-
tion.

In our experiment, as the grid size ratio increases
from 3 to 75, the CPU time of the preprocessing pro-
cedure to find stable eigenmodes is 0.33 s, 0.49 s, 0.87
s, 1.99 s, 125.89 s, respectively. It is clear that the pre-
processing time only accounts for a small portion of the
total time in Table 1. In this numerical example, when we
select inappropriate parameter e1, e2 and step size n, the
main resource consumption increment will come from
the preprocess of finding the stable vector Vr,st . In our
experience, e1 is on the order of 10−4, e2 is 10− 4∼10−2,
and n usually equals the grid size ratio when it is not too
large.
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B. GPR model
Next, we apply the algorithm to the 2D GPR model,

as Fig. 6 shows, while keeping the time step and spa-
tial step unchanged. A lossy square (εr1 = 2, µr1 =1,
σ1 = 0.97 S/m) is buried under the dispersive soil
(εr0 = 4, µr0 = 1, σ0 = 0.004 S/m). The size of the sim-
ulation domain is 3×3.6 m, with the object located at
a depth of 1.89 m below the surface and the center at
(1.245 m, -1.965 m). Its scale is 0.15×0.15 m. Tx and
Rx are placed at (0.48 m, 0.09 m) and (2.46 m, 0.09 m),
respectively.

A TM wave is excited by the z-component of a cur-
rent source Jz(t) with first derivative of the Blackman-
Harris pulse as:

Jz(t) =

{
− 2π

Ts
∑

3
n=0 annsin

(
2πnt

Ts

)
, 0 < t < Ts

0, otherwise
, (31)

with fc=100 MHz, Ts=0.9/fc, a0 = 0.3532, a1 = -0.488,
a2 = 0.145, and a3 = -0.0102.

Figure 7 shows comparisons of the transient Ez(t) at
Rx. It can be seen that the proposed method agrees well
with the results of other methods. In the proposed algo-
rithm, we compute the problem with grid ratio 3 and 5,
scale of coefficient matrix A is 392×392, 1152×1152,
and number of stable modes is 7 and 3. In the uncon-
ditional stable process, parameter e1 =10−4, e2 =10−2,
and step size n=3, 5.

Figure 8 shows time snapshots of the electric field
amplitudes in the computational domain at n = 150,
220, 290, and 330, where the Tx and Rx antennas are
static.

In B-Scan simulation, Tx is moved from (0.09 m,
0.09 m) to (2.91 m, 0.09 m), with a spatial increment of
0.06. Rx also moves with Tx, and the distance between

Fig. 6. Two-dimensional GPR model.

Fig. 7. Comparison of the electric fields computed by dif-
ferent methods.

(a) (b)

(c) (d)

Fig. 8. Time snapshot of electric field amplitude in
the computational domain: (a) n=150, (b) n=220, (c)
n=290, and (d) n=330.

them is always 0.09 m in the x-axis direction. Figure 9
shows the contour of the echo z-component of the elec-
tric field received by Rx.

Computational resource consumption of the three
methods in the GPR simulation are listed in Table 2. The
efficiency of the proposed algorithm has been validated
again. It can be seen that the proposed method has supe-
riority in memory consuming compared to the other two
methods with acceptable time increment and showing its
potential in GPR simulation.
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Fig. 9. Contour of the echo electric field received by Rx.

Table 2: Computational resource consumption of the
three methods

Method Grid
Ratio

Grid
Number

Memory
(MB)

Time
(s)

FDTD with
∆l = (mm)

10 1 362005 2.47 1342.11
30 1 49365 0.63 12.02

Subgridding
Scheme

3 49985 1.98 12.75

Proposed Method 3 49985 1.09 13.67
5 51185 1.47 13.05

Finally, we carried out an experiment to test the per-
formance of the proposed method when simulated in
media with different electrical properties. We changed
the buried object by selecting material parameter εr1 = 2,
4, 8, and σ1 = 0 S/m, 4 S/m, 16 S/m, respectively. There
are no obvious variations in memory cost and time con-
sumption, and the accuracy is also stable with relative
error below 6%. Long-term instability will occur from
the interface of the base and fine grid when low εr1 and
σ1 are chosen, and can be a direction to improve the pro-
posed method.

IV. CONCLUSION
In this paper, an explicit unconditionally stable

technique is introduced into the subgridding 2D-FDTD
approach and applied in GPR modeling with TM mode.
A subgridding algorithm with separated temporal and
spatial interfaces is proposed to solve the multiscale
problem. The unconditional stable algorithm can find all
the stable eigenmodes to keep numeric stability with-
out compromising accuracy when the time step does not
meet CFL conditions, and the numerical results demon-
strate its good performance in terms of accuracy. In GPR
simulation, this proposed method’s potential in solving
multiscale problems is demonstrated.
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