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Abstract — This paper addresses the low degree of free-
dom in optimization, primarily attributed to the conven-
tional antenna array optimization methods that solely
focus on the optimization of element positions, with-
out considering the influence of element excitations. To
address this issue, a sparse array optimization method is
proposed based on modified Particle Swarm Optimiza-
tion (PSO) algorithm and Orthogonal Matching Pursuit
(OMP). This method simultaneously optimizes both the
element positions and excitations to achieve the desired
pattern. Initially, the compressive sensing principle is
employed to establish a compressive sensing optimiza-
tion model for the antenna array. Subsequently, OMP is
utilized to simultaneously optimize the element positions
and excitations within the antenna array. An improved
PSO algorithm is then applied to iteratively update the
obtained parameters, thereby further enhancing the peak
sidelobe level. Experimental results demonstrate that the
proposed algorithm can achieve satisfactory optimiza-
tion performance.

Index Terms — Compressive sensing, orthogonal match-
ing pursuit, particle swarm optimization algorithm,
sparse array antenna.

L. INTRODUCTION

As the radio technology continues to advance,
antennas have played a pivotal role in various applica-
tions such as communications, remote sensing, naviga-
tion, and radar, profoundly influencing every aspect of
social life and national defense and military affairs. As
the device for receiving and transmitting electromag-
netic waves [1], antennas play an irreplaceable role in
radio communication systems. The optimization of array
antenna deployment is a crucial step in radio communi-
cation systems. To enhance performance and meet sys-
tem requirements, researchers conduct optimizations of
array structures by analyzing the relationship between
antenna array performance and its geometric configura-
tion [2, 3]. When the spacing between array elements
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adheres to certain constraints, mutual coupling among
elements can be effectively reduced. Nevertheless, this
often triggers the issue of grating lobes. Consequently,
researchers have embarked on optimizing sparse array
antenna technologies. Sparse array antennas, character-
ized by a smaller number of elements, offer advantages
of higher degrees of freedom and broader optimization
space [4], attracting extensive research and applications.

In recent years, several studies on sparse array syn-
thesis have attempted to achieve a certain pattern def-
inition with the minimum number of antenna elements
by optimizing the excitation coefficients and positions of
individual antenna elements. Pinchera et al. proposed a
deterministic iterative method for synthesizing isophoric
radiation patterns of aperiodic arrays with arbitrary upper
limits, which can scan over a wide angle range without
violating the sidelobe level constraints [5]. To address the
problem of array structure design, Cui et al. introduced a
novel Consensus Penalty Dual Decomposition (CPDD)
method based on the concept of consensus computing.
CPDD utilizes a virtual star topology network, where
the central node corresponds to the global variable and
each edge node corresponds to a single beam synthe-
sis task. In the outer loop, the algorithm collects exci-
tation vector information from the edge nodes through
the central node, then integrates the information to obtain
a better co-array structure [6]. Xia and Zhang proposed
a new method for synthesizing sparse arrays with dis-
crete phase constraints using Mixed-Integer Program-
ming (MIP). The proposed method optimizes antenna
positions and amplitude/phase excitations under given
discrete phase constraints [7].

Existing literature on sparse array antenna opti-
mization can be broadly categorized into global opti-
mization [8—13], matrix pencil method (MPM) [14, 15],
and compressed sensing-based array optimization algo-
rithms [16—19]. Moreover, the intuitionistic fuzzy tool-
box based on fuzzy divergence calculation will allow for
more effective modeling of the implicit uncertainties and
trade-offs in array optimization[20]. Global optimization
algorithms transform the synthesis problem into a binary
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optimization problem, systematically exploring the solu-
tion space to find the global optimal solution or a solu-
tion close to it. These algorithms are particularly suitable
for optimization problems with complex, non-convex
objective functions, effectively addressing the nonlinear
optimization challenges in sparse arrays. Among them,
evolutionary algorithms such as the Genetic Algorithm
(GA) [8, 10], Particle Swarm Optimization (PSO) [11],
and Differential Evolution (DE) [12, 13] have demon-
strated the best performance. However, these algorithms
are characterized by high computational complexity. The
MPM [14, 15] can be applied to the synthesis of non-
uniform arrays. By performing matrix transformations
on the signals from the array antenna, MPM efficiently
estimates signal sources, making it particularly effective
in sparse arrays. MPM can simultaneously optimize the
number of elements, element positions, and excitations
in a sparse array, allowing the synthesis of sparse arrays
to no longer be limited to minimizing the peak sidelobe
level by optimizing element positions (and sometimes
element excitations) given a fixed number of elements.
This opens up new research directions for the synthesis
and design of sparse arrays. Nevertheless, the complex
matrix operations involved in the MPM algorithm lead
to challenges in terms of high computational complexity
and implementation difficulty.

Compressed Sensing (CS) technology was intro-
duced in 2006, primarily targeting the solution of sparse
signal problems. Research on the application of com-
pressive sensing in array antennas started relatively late.
Professor L. Carin from Duke University was the first
to theoretically analyze the connection between random
sparse arrays and compressive sensing, proving that ran-
dom sparse arrays are a special case of compressive sens-
ing [21]. The ELEDIA Research Center at the University
of Trento in Italy has established a dedicated research
group to explore the application of compressive sens-
ing in the field of sparse array antennas, and they have
achieved preliminary research results [22]. Experimen-
tal results have verified the potential and advantages of
applying compressive sensing to the synthesis of sparse
array antennas. The emergence of the CS paradigm [17]
has significantly advanced the design of sparse arrays.
By applying CS techniques to array antenna synthe-
sis, sparse solutions for array antennas are sought. CS-
based optimization methods for array antennas effec-
tively reduce the number of array elements, thereby low-
ering the cost of array construction. Convex optimiza-
tion [18] minimizes the number of elements by optimiz-
ing the weights of each element, converting the solution
of the /0 norm into that of the /1 norm, and incorpo-
rating certain decision criteria. [19] proposes an algo-
rithm combining Multi-Objective Particle Swarm Opti-
mization (MOPSO) with convex optimization. Through
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optimization of sparse circular arrays, this algorithm sup-
presses grating lobes, significantly enhancing the recog-
nizability of the main beam and improving the optimiza-
tion efficiency of the algorithm. However, these methods
overlook the influence of element positions on optimiz-
ing array antennas. Furthermore, it is easy for the use of
optimization algorithms to get stuck in local optima dur-
ing the search for global optimal solutions.

To address this, this paper proposes a joint array
optimization algorithm based on the Modified Particle
Swarm Optimization (MPSO) and Orthogonal Matching
Pursuit (OMP), which is applied to both linear arrays and
concentric circular arrays. Firstly, the optimization of lin-
ear arrays is achieved. With the main beamwidth fixed,
the element positions and excitations are optimized. The
results show that compared to other algorithms, this pro-
posed algorithm can achieve a lower Peak Side-Lobe
Level (PSLL). PSLL refers to the ratio of the maxi-
mum value in the sidelobes to the maximum value in the
main lobe, and it is an important indicator for evaluat-
ing antenna performance, typically expressed in decibels
(dB). Generally, radar systems require extremely low
sidelobe levels to meet anti-interference requirements
and effectively perform target search. Therefore, this
parameter is often used as one of the optimization criteria
in array synthesis. Secondly, considering the complexity
of the array antenna model, the proposed algorithm is
further applied to concentric circular arrays. By solving
for the excitations of continuous current loops, relevant
information about discrete elements can be obtained.
According to the simulation results, under the premise
of a fixed main beamwidth, although the number of
required elements slightly increases, there is a significant
improvement in reducing the PSLL.

The structure of this paper is organized as follows:
Section II presents the proposed algorithm and model.
Section III conducts simulations and analyses of the pro-
posed algorithm, along with a comparative analysis with
existing sparse array optimization algorithms. Section IV
summarizes and concludes the paper.

II. METHOD DESCRIPTION

A. Array structure model
1. Linear array

As shown in Fig. 1, there are 2N + 1 array ele-
ments symmetrically distributed on both sides of the x
axis, with a spacing of Ax;,i € [1,N] between adjacent
elements. The directional pattern, as a direct represen-
tation of an antenna’s radiation characteristics, can be
used to determine the antenna’s directional properties. It
not only depicts the spatial distribution of energy when
the antenna emits electromagnetic waves but also char-
acterizes the spatial filtering characteristics when receiv-
ing electromagnetic waves. Based on the obtained direc-
tional pattern, the parameters of the main lobe and side



Fig. 1. A symmetric linear array with 2N + 1 elements.

lobes can be determined. Based on the superposition
principle, the directional pattern function expression of
this linear array is

/

(Lm0 £ 0(8))+

M=

F(8) = I fo(8) +

n=1

N . .
Y. (e r(0)),
n=1

where I’ = I,,e/P represents the excitation of the nth ele-
ment, k =2m/A, A is the wavelengths, x, is the position
of the nth element, 0 is the signal elevation angle, and
0 € [-m/2,7/2]. When the element factor f,(6) = n,
n € [—N,N], and when each element adopts equal ampli-
tude and phase excitation (let I, = 1), then (1) can be
simplified as

(D

N
F(6) =1+2Y cos(kx,sin®). )

n=1

2. Concentric Ring Array
The Concentric Ring Array (CRA) is composed
of multiple concentric circles, with its array elements
located on the circles under certain constraints. Its struc-
ture is shown in Fig. 2. Assuming there are N, circles, the
radius of the nth circle is r,(1 < n < N,), and its pattern

is shown in (3)
F(u,v) =1+

Ny N,

n 3
Z ), Z exp[jzl—”rn(cos Qi+ sin @), ©)
n=1 m=1

where ), is the excitation weight of the nth ring, and the
array element positions are (r, COS @i, SINQv), u =
sin@cos @, v =sinBsing, @, = 2x(m — 1)/N,. When
o, = 1, i.e., the excitation of each array element is fixed,
(3) can be transformed into (4)
Nr Na 2T
F(G,(p): 1+Z Z ejTrnsmOcos((pf(pm)' (4)
n=1m=1
For a concentric ring array with uniformly dis-
tributed array elements, if the spacing between adjacent
array elements in the nth ring is d,, then, given the radius
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Fig. 2. Concentric ring array structure.

of the ring, the number of array elements in that ring is

2
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where d, is the defined minimum spacing between array

elements, and it is assumed that the spacing between

adjacent array elements is not greater than A. Then, the

number of array elements on the ring should satisfy

27ry,
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When the total number of concentric ring arrays is
N, then it needs to satisfy

N,
Y N, =N. ™)
n=1

When this model imposes constraints on the total
number of array elements, i.e., satisfying (7), control-
ling the total number of array elements becomes a crit-
ical issue. It is necessary to ensure that the total num-
ber of array elements remains constant during the opti-
mization process while also ensuring a reasonable dis-
tribution of array elements on each ring. [23] proposes
a method of linearly weighting the number of array ele-
ments, comparing linear models with Gaussian models,
and ultimately derives a relationship between the radius
of the array elements and the proportion of the total num-
ber of array elements, as shown in (8)

f(ra) = a(sin(r, — ) +b((rs — 10)*) +¢,  (8)
where f(r,) represents the full array occupancy ratio of
the number of array elements in the nth ring, r, is the
radius of the nth concentric ring. a, b, and c are three con-
stants, which can be solved according to the optimization
results in the known literature. After determining the full
array occupancy ratio, the number of array elements on
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each ring can be determined

MJ ) 9)
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B. Modified Particle Swarm Optimization

The PSO algorithm is combined with adaptive muta-
tion and crossover operations, where the mutation vec-
tor is influenced by the individual optimal vector. This
process not only maintains the diversity of the popula-
tion during the iteration process but also ensures that the
information of high-quality particles is not destroyed.
Adaptive mutation can intervene when the population
gets trapped in a local optimum by randomly changing
the position or velocity of some particles, enabling them
to escape the current optimal region and explore other
under-explored areas. The flow of the proposed MPSO
algorithm is as follows:

Step 1: Initialize the population
Taking the concentric circular array as an example,
suppose the aperture of the concentric circular array is R,
the minimum spacing between adjacent rings is Ad, the
minimum spacing between array elements in the same
ring is d,, the number of populations is NP, where C is
the minimum interval between rings to meet the require-
ments of the array antenna, and [x;,x2, ..., xy,] is the mar-
gin of the rings to form the original mapping vector.
Then, the radius of the rings can be expressed as
[r1,725 07, ] = C+ [X1,%2, ... XN, ] (10)
C=[Ad,2Ad,...,N,Ad|
When the total number of array elements is fixed,
the number of elements on each ring can be determined
by (8) and (9). According to (10), the value of its peak
sidelobe level is related to [xl X2,y XN, N1, No, ~~~»NN,] .
Based on the obtained initial population, the peak side-
lobe level corresponding to any vector in the population
can be determined. Based on the merits of the obtained
results, the partial optimal solution pbest and the glob-
ally optimal solution gbest are determined. Optimizing
[xl,xg, ...7xN,] can reduce the search space from [O,R}
to [O,R — N,Ad] , accelerating the search speed and facil-
itating the acquisition of the optimal solution.

Step 2: Update speed and location information
Based on the characteristics of the PSO algorithm,
during each iteration process, the position and velocity
variables are updated according to the obtained informa-

tion, as follows
\4 :(D(k) -v;+Cirand - (pi — Vl')Jr
GCyrand - (g —v;),

X; = Vi +X;, (12)

where C1 and C, are acceleration factors, with C; being
the individual learning factor for each particle and C;

an
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being the social learning factor for particles. p; repre-
sents the position vector corresponding to the individ-
ual extremum pbest; of the ith swarm, and g represents
the position vector corresponding to the global optimum
gbest. (k) is the inertia factor, which is non-negative. In
this paper, a linearly decreasing inertia weight is adopted.

C()(k) = wstart(wstart - wend)(Tmax - k)/Tmam (13)
where Th.x represents the maximum number of itera-
tions, and k indicates the current iteration number. W g+
stands for the initial weight, ®,,; for the final weight,
and g4y > O,,4. During the iteration process, the iner-
tia weight decreases linearly from @gqr tO @pnq. At
the initial stage of iteration, the inertia weight is larger,
which leads to stronger global search capability; as the
number of iterations increases, the inertia weight gradu-
ally decreases, which facilitates the algorithm’s precise
search in local areas. The obtained v;; and x;; need to
satisfy the following formula

. (14)
0 Sx,-j SR—NrAd

{Vmin < Vij < vmax7i = 1,27 7IVP,] = 1,27 ~~~7Nr
Step 3: Mutation
This paper adopts adaptive mutation, and the gener-
ated mutation vector is as follows

V=g'+F (x —xt),i=1,2,..,NP,  (I5)
where g¥ represents the position vector corresponding to
the global optimal solution during the kth iteration. ry, 7
are distinct positive integers in [1, NP], and none of them
are equal to the target vector index i.

Step 4: Crossover

To increase the diversity of disturbance variables, a
crossover operation is introduced. Define the test vari-
able u; as

u; = (uilaui27"'vuiN)i:laza---7NR (16)

) vijsb(j) <CRor j=br(i)
Y\ wijyb(j) > CRand j#br(i) (A7)

i=2,..,NP;j=1,2,...,N,
where CR is the crossover operator, b(j) represents the
jth estimated value generated from a set of random num-
bers between [0, 1]. br(i) € [2,NR] denotes a randomly
selected integer, used to ensure that at least one set of
parameters can undergo crossover.

Step 5: Update the optimal solution

Calculate the fitness function to determine whether
u; can become a member of the next generation. Com-
pare the fitness of vector u; in the experiment with that
of vector x; in the population, and retain the better one.
Then, based on the obtained population, update the indi-
vidual optimal and global optimal solutions, and proceed
to the next iteration until the specified conditions are met.



The flowchart of this algorithm is shown in Fig. 3.

Initialize the velocity and
position information for each
particle in the population

Initialize the individual best solution gbest; and the
global best solution pbest,

!

Update the position and
velocity of the particles

[ Mutation and crossover J

I

Determine whether u; can proceed to the next
iteration based on the greedy criterion

|

[Updategbesti and pbest, based on the]

obtained x;.

Do the termination conditions meet?

Fig. 3. Flow chart of MPSO.

C. Optimization of linear array by MPSO-OMP

For sparse linear arrays, their array structure is sim-
ple, and it is often difficult to obtain the desired radia-
tion characteristics by optimizing only the array element
positions. Moreover, the degree of freedom for posi-
tion optimization is low, resulting in limited optimiza-
tion of peak sidelobe levels. Therefore, this section uti-
lizes the OMP algorithm to simultaneously optimize the
positions and excitations of the array elements in the lin-
ear array, and combines the proposed MPSO algorithm
to iteratively update the obtained parameters, which is
conducive to achieving better peak sidelobe levels. The
algorithm flow is as follows:

Step 1: Optimization model construction
For a linear array with N array elements, its pattern
function is as follows

N .
F(d,0) =Y weVT45m0) —A(d)o.  (18)

i=1
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From the above equation, it can be seen that the two
vectors that affect its pattern function are the array ele-
ment positions and the array element excitations. In the
process of joint optimization, the obtained PSLL is used
as the performance evaluation index. Assuming that the
minimum spacing between adjacent array elements is d,,
and the desired main beam is F;(6;)(6; € ®y), where
®y is the shaping area of the main beam, the optimiza-
tion model can be expressed as

minPSLL(d, w)

PSLL(d, ) = max {| f8:92 |}
(19)
dit1—di>2de,1<i<N-—-1
di=0
|[F(6k) — Fa(6r)| < €6, € Oy

Step 2: Population initialization

Initialize the position vector d, and establish an
OMP sparse recovery model based on the desired shap-
ing main beam Fy(6; ). Solve for the corresponding array
element excitation vector of the position vector d.

minPSLL(d, )
s..|F(6) — F(6r)| < &,6 € Oy
Based on ZQ’;I a)nlo(zl—”rn sin @), the corresponding
PSLL is solved, and the individual best value and the
global optimal value in the population are determined.

The obtained results are then carried over to the next
iteration.

(20)

Step 3: Information updating and mutation

Utilize the velocity information of the PSO algo-
rithm to update its position information. Generate a
mutation vector through adaptive mutation based on the
global optimal solution, and select the results. The spe-
cific operation process is detailed in II.B.

Step 4: Optimal solution update

Substitute the obtained array element positions into
(20), with the peak sidelobe level as the optimization
objective, and determine the array element excitations
under the condition that the main beam does not change
significantly. Based on the results obtained, update the
individual optimal solution and the global optimal solu-
tion, and carry the results into the next iteration process.
When the number of iterations reaches the maximum
iteration count, stop the iteration, and the global optimal
solution obtained is the optimal result from the optimiza-
tion process.

D. Optimization of concentric ring array by MPSO-
OoMP

Unlike linear arrays, concentric ring arrays have
more parameters that affect the radiation pattern,
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including element positions, ring radii, the number of
elements, and element excitations. To achieve a lower
peak sidelobe level, this section conducts a multi-
variable joint optimization of concentric circular arrays
with uniformly distributed elements to obtain better radi-
ation characteristics. For the concentric circular array
structure shown in Fig. 2, its radiation pattern can be
represented by (4). The radiation pattern function of the
concentric circular array can be equivalently substituted
using the zeroth-order Bessel series, and the substituted
formula is shown below

N 2T
F(0)= Z a),lJo(Tr,, sin 6)
n=1

()]
2 2 ()
= Jo(%rl sin@), ...,Jo(%rN,_ sin 6)
Wy,
=A(0)w.
2y

As can be seen from, (21) the radiation pattern func-
tion at this time only depends on the radiation angle
0, the ring radius r,, and the excitation matrix @. This
section also adopts the equivalent form of the Bessel
series to solve the radiation pattern of the circular array.
Similarly, the excitation vector of the continuous current
loop is first obtained, and then it is equivalently replaced
by discrete elements. The number of elements and exci-
tation amplitudes on the corresponding ring are deter-

miny(NhNg,...,NN,)
2nT/2| N, N,

[ [|E 5, Y e/ Tmsinocoo-om) _ g jy(2Er,sin0)| dodg

0 0 [n=1 m=1
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mined based on minimizing the matching error value.
Different from the reconstruction process, for the radius
variable in the steering vector A(0), this section does not
adopt a small step size Ar similar to that established in
the reconstruction process. Instead, it utilizes a set of ran-
dom numbers that meet the requirements, which are ran-
domly generated during the initialization process of the
MPSO algorithm. The specific steps are as follows:

Step 1: Optimization model construction

Based on the above description, under the constraint
of satisfying the main beam conditions, the optimization
process for the concentric circular array mainly consists
of two parts. Firstly, the corresponding ring radii and
excitation matrices under continuous current loop exci-
tation are obtained. Then, the discrete elements are used
for equivalent substitution to determine the number of
uniformly distributed elements and the excitation ampli-
tudes of each ring. The optimization model can be com-
posed of two parts, as shown (22) and (23)

min PSLL(r, ®)

PSLL(r,®) = max { ‘ F(r.o) ‘}

max F , (22)
riv1 —r 2 Ad, 1 <i <N,
|F(9k) —Fd((-)k)| <E, (-)k €0y
2
(23)

’)/:

In:wn/Nnal <n<N,

270 [ | @nJo(Zr,sin0) | d6

Step 2: Population initialization

For this model, the initial values of the ring radii are
first determined. When the minimum spacing between
adjacent rings is constrained to Ad, and the array aperture
is R, the initialization of the radii for N rings can be set
as follows

r=rand(1,N,)-(R—Ad-N,)
(24)
r = sort(r,2)

Based on the initialized vector, the OMP algorithm
is utilized to solve for the excitation matrix @ of the con-
tinuous current loop, with the obtained element radii as
known quantities, under the condition of a fixed main
beam. Through calculations based on the obtained infor-

mation, the individual optimal solution pbest; and the
global optimal solution gbest within the population can
be determined.

Step 3: Information update and mutation

The initialization results are brought into the iter-
ation process to update the particle information. To
increase population diversity, mutation and selection
operations are performed on relevant particles, with the
specific operational process as described earlier.

Step 4: Update optimal solutions

The individual optimal solution and global optimal
solution are updated based on the obtained results. The
criterion for whether to update is to determine if the peak
sidelobe level of the obtained result is more optimal, and



the particle information corresponding to the lower peak
sidelobe level is retained.

Step 5: Equivalent substitution of discrete elements
for continuous current loop

After obtaining the optimal solution correspond-
ing to the continuous current loop excitation matrix ®
through iteration, according to (25), the number of uni-
formly distributed elements on each ring can be deter-
mined simply by specifying the total number of ele-
ments. Based on the number of elements on each concen-
tric ring, the matching error value between the concentric
circular array under discrete element conditions and the
continuous current loop excitation can be determined. By
finding the number of elements that minimizes match-
ing error value, the equivalent substitution of the contin-
uous current loop can be completed, and the excitation
amplitudes of the discrete elements on the rings can be
obtained.

N,
Sfloor(N x @,/ ¥ @;),n=1
i=1

Ny = N-"5 N . (25)
floor § ———

21 o;

,n=23,... N,

i

1. NUMERICAL EXAMPLES

A. MPSO-OMP optimization for linear array

For sparse linear arrays, their array structure is sim-
ple, and it is often difficult to obtain the desired radia-
tion characteristics by optimizing only the element posi-
tions. Moreover, the degree of freedom for position
optimization is low, limiting the optimization of PSLL.
[24] proposes the IGA-EDSPSO algorithm to jointly
optimize the element positions and excitations in lin-
ear arrays. This algorithm combines Improvements of
Genetic Algorithm (IGA) and the modified PSO algo-
rithm. By comparing the results obtained by the hybrid
algorithm with those of the two individual algorithms, it
is found that the optimization results of the hybrid algo-
rithm are relatively excellent. This section will utilize the
MPSO-OMP algorithm to jointly optimize the element
positions and excitations in linear arrays. In the simula-
tion process of [24], the array aperture is constrained to
9.744A, the total number of elements is 17, and the min-
imum spacing between adjacent elements is 0.54. Under
these conditions, the IGA-EDSPSO algorithm achieves
a PSLL of -26.67 dB, with a corresponding main beam
width (FNBW) of 17.4° in the pattern diagram. [25] pro-
poses the IWO-CVX algorithm, which combines CVX
technology with Invasive Weed Optimization (IWO) and
applies it to the optimization process of sparse linear
arrays. The simulation conditions are the same as those
for IGA-EDSPSO.

To verify the effectiveness of the proposed algorithm
in optimizing sparse linear arrays, the optimization of
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sparse linear arrays is conducted under the same condi-
tions. The results obtained by this algorithm are com-
pared with those in [24] and [25]. During the optimiza-
tion process, the main beam width is also constrained to
17.4°. First, 10 independent simulation experiments are
conducted for the proposed algorithm, with C; = C, =
1.492, Fy = 0.5, CR = 0.9, population size NP = 30,
and maximum number of iterations Tp,,x = 50. The con-
vergence curves of the Monte Carlo simulation values
obtained from the 10 independent experiments are shown
in Fig. 4.

According to Fig. 4, during the optimization process
with a total of 50 iterations, most of the results tend to
stabilize after 15 iterations and remain unchanged in the
later stages. However, a few results show variations dur-
ing the 30th to 45th iterations. Although the convergence
curves of the obtained results exhibit some fluctuations
in the later stages of optimization, the number of itera-
tions is only 50 and, under a limited number of iterations,
the results obtained are relatively impressive. The Monte
Carlo simulation values, i.e., PSLLs, obtained from the
10 independent experiments are shown in Table 1.

According to Table 1, the optimal PSLL obtained
from 10 independent experiments is -35.17 dB, the worst
PSLL is -34.21 dB, and the average PSLL is -34.84
dB. Compared with the results obtained by the IGA-
EDSPSO algorithm, the optimal PSLL obtained by the
MPSO-OMP algorithm is optimized by 8.5 dB, and the
worst PSLL is optimized by 7.54 dB, with an opti-
mization ratio of approximately 28.3% to 31.9%. There-
fore, taking PSLL as the performance evaluation index
and under the condition of the same main beamwidth,
the proposed algorithm exhibits significant superiority
in optimizing sparse linear arrays compared to the IGA-
EDSPSO algorithm. This paper also compares the results

31p
321
-33 ¢

L
satl ‘\\

35 == ‘ =~

Peak Sidelobe Level (dB)

-36

0 10 20 30 40 50
Number of iterations

Fig. 4. The convergence curves corresponding to the
results of the 10 independent experiments.
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Table 1: PSLLs obtained from 10 independent experiments

No. 1 2 3 4 5 6 7 8 9 10
PSLL 37.45 34.98 35.17 34.74 34.74 34.98 35.13 34.21 35.14 34.87

with those obtained by the IWO-CVX algorithm pro-
posed in [25]. Under the same conditions, the opti-
mal PSLL obtained by the IWO-CVX algorithm after
10 independent experiments with a maximum number
of iterations of 50 is -33.85 dB, and the worst PSLL
is -33.62 dB. The results obtained by the proposed
algorithm, both optimal and worst PSLL, are superior
to those obtained by the IWO-CVX algorithm. More-
over, the worst PSLL obtained by the proposed algo-
rithm is approximately 0.36 dB better than the optimal
PSLL obtained by the IWO-CVX algorithm. This result
demonstrates that under the condition of the same main
beamwidth, the optimization results of the MPSO-OMP
for sparse linear arrays are superior to those obtained
by the IWO-CVX algorithm, making it more suitable
for joint optimization of element positions and element
excitations. Figure 5 shows the comparison of the opti-
mal array patterns, and Table 2 presents the excita-
tion amplitudes and element positions obtained from the
experiments.
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Fig. 5. Comparison of optimal array pattern obtained by
MPSO-OMP and IWO-CVX.

B. MPSO-OMP optimization for concentric ring
array

Chen et al. employ a Modified Genetic Algorithm
(MGA) to optimize a concentric ring array, jointly opti-
mizing the array element positions and the number of
array elements for a 6-ring array under the condition that
the aperture R = 4.7A [9]. The experimental results indi-
cate that this algorithm achieves a PSLL of -28.33 dB,
with a total of 142 array elements in the array. This paper
compares with this algorithm by optimizing the relevant

parameters of the concentric ring array under the same
aperture width and number of rings, using the peak side-
lobe level as the performance evaluation metric for sim-
ulation experiments.

To ensure that the main beam correlation coefficient
remains unchanged after the experiment, the main beam
width is constrained during this simulation process. The
main beam width obtained in the pattern generated by
the MGA algorithm is 16.9° and, similarly, this paper
also constrains the main beam width to 16.9° during the
simulation process. Based on the above analysis, the sim-
ulation analysis of the concentric ring array using the
MPSO-OMP algorithm consists of two parts: first, solv-
ing the continuous current loop excitation variables using
OMP to determine the ring radii and continuous cur-
rent loop excitations; second, determining the number of
array elements for each ring under a uniform distribu-
tion based on the obtained results. This section conducts
five independent simulation experiments for the first part
of the operation, which are carried out when the popula-
tion size NP = 30 and there are 50 iterations. The con-
vergence curves obtained from the results are shown in
Fig. 6.

As shown in Fig. 6, the algorithm exhibits excel-
lent convergence performance under continuous current
loop excitation. Despite only 50 iterations, the results
gradually stabilize after the 25th iteration, approaching
the final optimized results. Moreover, the results from
the five experiments show little variation, all converg-
ing around -31.5 dB. Therefore, this paper analyzes the
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Fig. 6. Convergence curves corresponding to the five
independent experiments.
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Table 2: Comparison of joint optimization results for sparse array of array elements
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Element IWO-CVX Optimal Array MPSO-OMP Worst Array MPSO-OMP Optimal Array
Number Element Excitation Element Excitation Element Excitation
Positions Amplitudes Positions Amplitudes Positions Amplitudes
1 0 0.225 0 0.155 0 0.193
2 0.765 0.315 0.726 0.219 0.702 0.270
3 1.353 0.289 1.282 0.338 1.339 0.388
4 1.867 0.524 1.910 0.501 1.952 0.513
5 2.581 0.788 2.606 0.628 2.561 0.667
6 3.270 0.769 3.113 0.548 3.171 0.752
7 3.770 0.661 3.645 0.835 3.711 0.727
8 4.313 0.854 4.314 0.997 4.241 0.870
9 4.820 0.709 4.994 1 4.849 1
10 5.383 1 5.641 0.920 5.482 0.924
11 6.091 0.975 6.237 0.718 6.019 0.687
12 6.728 0.652 6.738 0.602 6.522 0.718
13 7.238 0.574 7.313 0.636 7.101 0.645
14 7.834 0.487 7.890 0.415 7.680 0.523
15 8.354 0.327 8.412 0.326 8.310 0.447
16 8.948 0.321 9.027 0.307 9.034 0.229
17 9.744 0.228 9.744 0.163 9.744 0.187
Table 3: Parameters corresponding to the optimal array obtained by MPSO-OMP
Number of 1 2 3 4 5 6
Rings
Current Loop 0.2434 6.271 0.9919 1 0.8384 0.9586
Excitation
Ring Radius 0.5436 1.2703 2.0792 2.9170 3.7587 4.7
PSLL (dB) -31.5445

optimal array obtained from the five experiments and
determines the number of array elements on the rings
based on the relevant continuous current loop excitations
and ring radii obtained under these conditions. The nor-
malized continuous current loop excitations and ring
radii corresponding to the optimal array are shown in
Table 3.

By minimizing the matching error as the criterion,
the total number of corresponding array elements can
be determined, thereby obtaining the number of array
elements uniformly distributed on each ring. The results
obtained are presented in Table 4 along with the relevant
data from the MGA algorithm.

According to Table 4, when the array aperture is
R = 4.7A, the number of rings is 6, and the main beam
width remains consistent, the PSLL obtained by MPSO-
OMP is approximately 3.2145 dB lower than the opti-
mal PSLL achieved by the MGA algorithm reported in
the literature, demonstrating a significant optimization
effect. Although the number of array elements increases
by 5, which is about 3.5% of the original array, the
PSLL has been greatly improved, thus, the impact of the

increased number of array elements can be neglected.
The results obtained in this paper correspond to the
three-dimensional pattern and array elements as shown
in Fig. 7. The comparison of patterns at ¢ = 0° between
the results obtained in this paper and those by MGA is
illustrated in Fig. 8.

As can be seen from Fig. 8, the MPSO-OMP
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Fig. 7. The optimal array’s three-dimensional pattern and
element distribution obtained by MPSO-OMP.
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Table 4: Comparison of results obtained by MPSO-OMP and MGA

Method Number MGA MPSO-OMP
Ring Radius | Number of Elements | Ring Radius | Number of Elements | Excitation Amplitudes
1 0.7604 9 0.5436 7 1
2 1.3180 16 1.2703 20 0.9019
3 2.0969 26 2.0792 29 0.9124
4 2.9305 30 2.9170 32 0.8989
5 3.7852 27 3.7587 27 0.8931
6 4.7000 33 4.7000 33 0.8355
Number of 142 149
elements
Main beam 5 5
width 16.9 16.9
PSLL (dB) -28.33 -31.5445
by the individual best vector, which not only main-
or —MPSO-OMP k tains the diversity of the populatiqn during iteratiqns
. ——MGA but also ensures that the information of high-quality
g-107 particles is preserved. Furthermore, by integrating the
g OMP algorithm and making reasonable choices regard-
2201 ing array element excitations, the number of array ele-
% ments, and the radius of the circular rings, a reduction in
K300 the peak sidelobe level is achieved. Simulation results
é demonstrate that the proposed algorithm can achieve
g 40 satisfactory optimization performance for array antenna
z systems.
S0 05 o 03 | ACKNOWLEDGMENT
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Fig. 8. Comparison of directional patterns between
results obtained by MPSO-OMP and MGA.

algorithm can achieve a lower PSLL. This is because
MPSO-OMP optimizes the excitation of the array ele-
ments in the array by utilizing the OMP sparse recovery
principle, while keeping the fitness calculation function
unchanged. Although this algorithm can achieve a lower
sidelobe level, it requires a relatively large amount of
computation and a longer calculation time, making it
suitable for antenna systems with high requirements for
sidelobe levels.

IV. CONCLUSION

In this paper, the application of compressive
sensing-related techniques in the optimization of sparse
arrays is investigated. Analyzing both linear arrays and
concentric circular arrays, the MPSO-OMP algorithm
is proposed for joint optimization of multiple variables,
including array element excitations. Firstly, an MPSO
algorithm is introduced, incorporating adaptive muta-
tion and crossover operations within the PSO frame-
work. The mutation vector in this process is influenced

Natural Science Foundation of China under Grant
62071140.
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