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Abstract — This paper investigates the effect of aug-
mented rail geometry on rail gun key parameters such as
mutual inductance gradient between the main and aug-
mented rail (M), maximum current density, and maxi-
mum magnetic flux density distribution in the rail cross-
section, as well as repulsive force acting on the rails. The
research study was conducted using a rectangular main
rail with several augmented rail designs, including rect-
angular T, rectangular E, rectangular U, rectangular Con-
vex, and rectangular Concave under inward and outward
modes. The ANSYS MAXWELL 2-D eddy current field
solver, which computes the magnetic field distributions
for a given configuration using the finite element method,
was used to calculate the rail gun essential parameters.
Using the obtained results, a comparison study was con-
ducted. It was found that the rectangular main rail with
the inward circular convex augmented form rail cross-
section had a greater value of M’ than other geome-
tries; hence, it could be utilized to increase the armature’s
velocity.

Index Terms — Current density, magnetic flux density,
mutual inductance, repulsive force, velocity.

L. INTRODUCTION
One weapon technology that can be utilized to
increase the projectile’s velocity is the rail gun [1]. In
order to accelerate the projectile with a faster veloc-
ity, the rail gun must overcome numerous obstacles and
hurdles during design and construction [2]. Getting a
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greater electromagnetic force on a projectile to increase
its acceleration and velocity is one of the primary issues
in rail gun design.One of the traditional ways to increase
force on the armature is to typically excite the rails with
a high current magnitude for a brief period of time. This
results in an uneven current density distribution in the
rail and armature, which damages the rail and arma-
ture because it increases local heat and erosion in the
rails [3].

Increasing the inductance gradient of the rails is
another method of increasing the projectile’s accelera-
tion in a traditional rail cannon. This is a crucial element
in rail gun design because it directly affects the force
applied on the projectile [4, 5].

The dimensions, shape, and material properties
of the rail all affect the inductance gradient values.
Using analytical and computational techniques, numer-
ous researchers have proposed different rail shapes in the
past year to raise the inductance gradient value of the
rails [6—12]. Researchers discovered that attaining a uni-
form current density distribution in the rail is the primary
challenge in rail gun design. Therefore, without reducing
the armature force with uniform current density distribu-
tion the researchers followed one of the advanced tech-
niques is the augmented rail gun, as seen in Fig. 1, which
involves connecting extra rails to the main rails either in
series or parallel to create an additional magnetic field
between them. This lowers the current flowing to the
rail and helps to accelerate the projectile with a higher
velocity [13].
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Projectile .

Fig. 1. Basic rectangular augmented rail gun [14].

The railgun Lorentz force is determined by

1
F= EL’12. 1)
For an improved rail gun, the electromagnetic force

operating on the armature is [15]

F:%L/If,,—i—M’IMIA, 2)
where I, is the current flowing through the augmenting
rail, M’ is the mutual inductance gradient between the
main rail and the augmenting rail, Iy is the electrical
current flowing through the main rail, F is the armature’s
accelerating force, and L is the main rail’s inductance
gradient. The force acting on the armature is directly pro-
portional to the L' and M’, according to the equation.
Since the M’ value is dependent on the dimensions and
shape of the main and augmented rail, research has been
conducted in recent years to raise the M’ value by alter-
ing these elements. Simulation and experimentation have
been used in recent years to improve the performance of
augmented rail [14-23].

This study uses the ANSYS MAXWELL 2-D finite
element method to analyze the impact of augmented rail
geometries’ shape on rail gun key design parameters like
L’ and M’, the main rails’ maximum current density dis-
tribution (Jpr) and magnetic flux density distribution
(BMmRr), and the repulsive force acting on the main rails
(Fmr) and augmented rails (Far).

II. GOVERNING EQUATIONS FOR
RAILGUN DESIGN PARAMETER
CALCULATION

When the displacement current is ignored, and
Maxwell’s equations are used to calculate the electric
and magnetic fields [24-26], we have

VxH=7, 3)
\Y% xf:—ﬁ

ot’ )

V.8 =0, (5)
v.7 =0, 6)
J=oF. )

Additionally, in the transitory case, the differential
equation for the magnetic vector potential A is:
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%
v (lvxZ)= o4 -7 )
u ot
B=VxaA. )

The magnetic flux density, permeability, conductiv-
ity, and impressed current density are denoted by A, u,
o, and J, respectively. The following is the induced eddy
current:

_>
— A

Jo= —0—. 10

f c—, (10)

For the 2-D situation, equation (8) reduces to

| oA

V. (VA) P (11)
u ot

This formula can be used in any 2-D time-varying
scenario that involves non-linear magnetic materials. If J
is a time harmonic excitation with frequency @ (rad/s),
then (10) can be expressed as follows by substituting j®

for d /ot
V. (:LVA> —GjwA = —7. (12)

Solving this equation yields magnetic vector poten-
tial (A). B may be derived from (8). The magnetic energy
per length is then determined using

2
W, = 5//7'[1 ds. 13)
This is the force exerted to the armature and may be
expressed as
1w 1
F=Wy,=2) —
"2 z,: Hi
where 1 is the element index and S; is the area of the
i™" element. The inductance gradient L’ is defined as the
ratio of magnetic energy per length to current squared.
Then, using equations (14) and (1), we may write:
r 2F
L = 7 (15)
the equation we used to calculate the inductance gradi-
ent, L.

%

B;|Si, (14)

III. THE EFFECT OF AUGMENTED RAIL
GEOMETRY ON RAIL GUN DESIGN
PARAMETERS
A. Validation of basic rectangular augmented rail gun

To examine the effect of augmented rail geome-
try form on rail gun design parameters, the ANSYS
Maxwell is first validated by simulating the 2-D basic
rectangular augmented rail gun as shown in Fig. 2.

The main rails (MR) and augmented rails (AR) are
assumed to supply a current of 250 kA with a maximum
frequency of 2000 Hz. In Fig. 2 the cross indicates the
current supplied to the rail is passes into the rail and
the dot indicates the current comes out of the rails. The
main rail height (Hy), width (Wy), and rail separation
(Sm) are assumed to be 15 mm, 30 mm, and 10 mm,
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Fig. 2. A simple rectangular enhanced rail gun.

respectively. The height and width of the left- and right-
hand augmented rails (Hp s and Wiy, Hra and Wry)
are considered to be 30 mm and 15 mm, respectively.
The spacing between the main rail and the left and right
augmented rails (SMpa and SMgy) is expected to be 10
mm. The main and supplemental rails are supposed to
be copper with a conductivity of 5.8x 107 S. The mag-
netic vector potential (A) at the external border is taken
to be zero.The rail geometry is symmetrical about the
X and Y axes; therefore one-fourth of the rail structure
might be utilized to imitate the rail cannon. In this study,
the rail construction is mimicked without using the sym-
metrical characteristic. The enlarged rail gun geometry
is simulated with ANSYS Maxwell, and the inductance
gradient L and mutual inductance M’ are measured to be
0.492 uH/m and 0.225 pH/m, respectively. These values
are consistent with the findings [14].

B. Augmented rail geometry’s impact on various con-
figurations

Several rails augmented geometry designs, includ-
ing the rectangular T, E, Convex, Concave, and U shapes
shown in Figs. 3 and 4, were considered and simulated
in order to assess their impact in this study. The aug-
mented geometry always has an area of 450 mm?, which
is equivalent to the area of a rectangular augmented rail.
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Fig. 3. Different types of augmented inward rail geome-
tries.
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The dimensions of the rails, for each rail configuration
are in millimeter (mm) which is given in the Fig. 3 and
in order to get the constant cross-sectional area of aug-
mented rail geometry the width of the rail is adjusted.

1) Rectangular b)Rectangular <) Rectangular d)&ectmgula! <) mfula
T 5}:.'.;15- E shape Convex Concave
shape shape

Fig. 4. Different types of augmented outward rail geome-
tries.

IV. SIMULATION RESULTS

Figures 5 and 6 demonstrate the current density dis-
tribution over rail cross-sections generated from simula-
tions for various shapes of augmented rail geometry. Due
to the symmetrical structure of the rail geometry, only the
upper portion is represented in the illustrations.

Figures 5 and 6 show that the current density dis-
tribution in the rail is not uniform, with the majority
of the current distributed nearer to the surface of the
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Fig. 5. Current density distribution over different inwards ] -
augmented rail geometries: (a) rectangular T shape, (b)
rectangular E shape, (c) rectangular Convex shape, (d)
rectangular Concave shape, and (e) rectangular U shape. (c)
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Tables 1 and 2 show that adding augmented rail (d)

and modifying the shape of its cross-section has no

effect on the value of the main rail’s inductance gra-  Fig. 6. Continued
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Fig. 6. Current density distribution over different out-
wards augmented rail geometries: (a) rectangular T
shape, (b) rectangular E shape, (c) rectangular Convex
shape, (d) rectangular Concave shape, and (e) rectangu-
lar U shape.

Table 1: Rail gun key design characteristics for various
inwardly enhanced rail cross-sections

Augmented| L’ M | Jur | Jar | BmMr | Bar | Fmr
Rail Shape |(uH/m)(uH/m)(, 10" | (x 10°) |(Tesla) |(Tesla) | & Far

(A/m?)|(A/m?) (kN)

Rectangular | 0.492 | 0.225 | 1.065 | 9.236 | 9.12 | 7.84 | 110.9
T 0.492 | 0.256 | 1.097 | 9.226 | 9.40 | 7.78 |132.02

E 0.492 | 0.218 | 1.047 | 9.144 | 9.04 | 7.89 | 97.64

Convex 0.492 | 0.263 | 1.115 | 9.22 | 997 | 7.92 | 142.7

Concave | 0.492 | 0.207 | 1.042 | 9.266 | 9.26 | 8.23 | 84.03

8] 0.492 | 0.215 | 1.05 | 9.284 | 9.00 | 8.02 | 93.01

Table 2: Rail gun key design characteristics for various
outwardly expanded rail cross-sections

Augmented| L’ M’ | Jur | Jar | Bur | Bar | Fmr
Rail Shape | (uH/m) |(uH/M) . 10" | (x 10%) |(Tesla) | (Tesla) | & Far

(A/m?)|(A/m?) (kN)

Rectangular | 0.492 | 0.225 | 1.065 | 9.236 | 9.12 | 7.84 | 110.9
T 0.492 | 0.221 | 1.063 | 8.183 | 9.13 | 7.08 | 105.3

E 0.492 | 0.214 | 1.047 | 9.474 | 898 | 8.18 | 92.05

Convex 0492 | 0223 | 1.07 | 798 | 9.15 | 7.35 | 103.3

Concave 0492 | 0213 | 1.04 | 9.56 | 9.34 8.5 90.8

U 0492 | 0217 | 1.06 | 9.50 | 9.11 | 8.05 | 105

dient, whereas other rail gun critical design parameters
are altered by the augmented rail shape change. Table 1
shows that M’ values are higher for the rectangular T
and Convex augmented rail geometries. This may be due
to the rail bulging inwards which decreases the separa-
tion between the main and augmented rail. The rectan-
gular Convex augmented rail geometry has a high mutual
inductance (0.263 uH/m) compared to other structures.
However, the current density and magnetic flux den-
sity distribution over the rail cross-section, as well as
the repulsive force acting on the rails, are higher. It is
also observed that the repulsive force acting on the main
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rail and enhanced rail is the same for each rail cross-
section, indicating that the repulsive force operating on
the rail is primarily determined by the current flowing
through the rails rather than the distance between the
rails.Tables 1 and 2 show that M’ values are lower for
all configurations when compared to the basic rectangu-
lar augmented rail geometry in the outward mode. As a
result, the rectangular Convex enhanced rail geometry in
inward mode might be used to increase the armature’s
velocity.

V. CONCLUSION

This research investigates the effect of modifying
the form of an augmented rail cross-section on rail
gun critical design parameters using the finite element
approach. Rail gun essential design characteristics are
estimated for several enhanced rail geometries, includ-
ing rectangular T shape, rectangular E shape, rectangu-
lar U shape, rectangular Convex, and rectangular Con-
cave, in both inward and outward modes. A detailed
comparison analysis was performed utilizing the col-
lected results, and it was discovered that the M’ value is
higher in values for inward mode that enhanced the rail
geometry when compared to outward mode. When com-
pared to the standard rectangular augmented rail geom-
etry, the rectangular T shape and rectangular Convex
augmented rail geometries have greater M’ values. As
a result, the rectangular Convex enhanced rail geometry
in inward mode might be used to increase the armature’s
velocity.
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