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Abstract — The design of antennas for specific purposes
often results in significant time costs due to the lengthy
simulation processes required. Adopting deep learning-
based approaches in antenna design can offer more effi-
cient solutions. In this study, deep learning methods were
applied to accurately and efficiently predict the resonant
frequency value of the hollow shaped cylindrical dielec-
tric antenna. For this purpose, a total of 1000 simula-
tions were performed for the considered antenna, and
corresponding operational frequencies in 6-12 GHz fre-
quency band were obtained. The data was diversified to
search for an optimal solution. A total of 800 simulation
results were employed for training, and a series of oper-
ations were performed to develop the training model. As
a result of these improvements the mean squared error
(MSE) was observed to decrease to 0.128. In order to
evaluate the performance of the model, the output was
obtained by using randomly assigned input parameters.
This revealed a difference of 0.49% between the actual
result and the model output, which indicates improved
prediction accuracy and reliability of the model.

Index Terms — Antenna design, deep learning, dielectric
resonator antenna, hollow shaped antenna.

L. INTRODUCTION

Dielectric resonator antennas (DRAs) are pre-
dominantly designed for operation at microwave and
millimeter-wave frequencies, particularly in applications
such as 5G, WiMax, WLAN, and radar [1-3]. The per-
formance of antennas utilized in these technologies is
of paramount importance, especially concerning signal
accuracy and efficiency in high-frequency bands. The
frequency range of 6-12 GHz is a notable bandwidth
for applications that demand high resolution and low
latency. DRAs operating within this frequency range are
distinguished from conventional metal antennas by their
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low loss, wide bandwidth, high efficiency, and compact
structures [4, 5].

Achieving the desired antenna performance dur-
ing the design phase is challenging. Many software
tools provide features for optimizing antenna parame-
ters. Deep learning algorithms offer the capability to per-
form multi-parameter optimization across a wide range,
which not only enhances antenna performance but also
accelerates physical prototyping processes. The integra-
tion of deep learning and machine learning techniques
into antenna design has thus opened up a innovative field
of research focused on improving antenna performance.

In [6], Ranjan et al. highlight the advantages offered
by machine learning-assisted algorithms in optimiz-
ing hybrid DRA designs. This research encompasses
improvements in antenna performance achieved through
optimizing combinations of dielectric materials and geo-
metric structures. Kushwaha et al. [7] focus on the opti-
mization of cylindrical DRAs, addressing the contri-
butions of machine learning to specific DRA geome-
tries. This approach enables the optimization of crit-
ical performance indicators for DRA in the X-band,
such as gain, radiation pattern, and bandwidth. The
study by Pachori et al. [8] emphasizes the contributions
of machine learning-based modeling in predicting the
performance of multiple-input multiple-output (MIMO)
antennas. This research demonstrates the significant
potential of machine learning algorithms in accelerat-
ing the optimization process by enabling rapid and accu-
rate predictions of antenna performance. In [9], Fu and
Leung examine how evolutionary algorithms, when inte-
grated with machine learning, can enhance efficiency in
antenna design. These hybrid methods not only enable
high-accuracy optimization of antenna parameters but
also reduce computational costs throughout the process.
This study illustrates how machine learning can work
synergistically with evolutionary algorithms to meet the

https://doi.org/10.13052/2025. ACES.J.400802

1054-4887 © ACES

694


https://doi.org/10.13052/2025.ACES.J.400802

695

complex electromagnetic requirements of DRAs in the
X-band, showcasing the multifaceted benefits these two
fields bring to antenna design.

Numerous studies apply deep learning techniques to
datasets of antenna and filter designs to produce fast and
reliable results [10-17]. Depending on the processing
speed of the computer and the size of the data set, initial
calculations may take time; however, once the desired
data is obtained, this method remains both relevant and
efficient.

Although the main focus of the study is to investi-
gate the role of deep learning in antenna design, another
objective is to design an antenna with high gain and wide
impedance bandwidth operating in the 6-12 GHz fre-
quency region, which distinguishes it from conventional
cylindrical DRAs. Various methods have been applied to
improve impedance bandwidth in DRAs. These meth-
ods generally enhance impedance bandwidth by alter-
ing the permittivity distribution within the dielectric res-
onator [18-21]. In a related study aimed at improving
impedance bandwidth [22], cavities of different diam-
eters were introduced into a cylindrical DRA structure
to modify the effective dielectric constant, achieving an
improved impedance.

Overall, in contrast to traditional antenna designs,
the physical parameters of the dielectric used in DRAs
are typically analyzed through machine learning tech-
niques [6-8, 23]. What distinguishes this study from sim-
ilar ones is the involvement of more parameters in the
application of machine learning methods in DRAs, as
well as the incorporation of deep learning techniques,
thereby introducing a novel approach.

Deep learning, as a subset of machine learn-
ing, employs multi-layered artificial neural networks
(ANN) that automatically learn complex patterns and
extract meaningful features from large and unstructured
datasets. Unlike traditional machine learning, which
relies on manual feature selection and works best with
structured data, deep learning can identify complex
structures directly from raw data, making it especially
effective for difficult and high-dimensional problems
[24, 25]. Building on these advantages, the deep learning
models used in this study were further improved, result-
ing in enhanced predictive performance.

In the current study, the Latin hypercube sampling
(LHS) algorithm was applied to accurately and effi-
ciently predict the resonant frequency value of a hol-
low shaped cylindrical dielectric antenna. In order to
increase the impedance bandwidth, two gaps were cre-
ated within the cylindrical dielectric. These gaps were
designed in such a way that they do not disrupt symme-
try. The LHS algorithm was used to determine the design
parameter values for the antenna to operate at the desired
frequency.
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The main purpose of LHS is to provide sampling
points that represent a wide range of the design space.
This comprehensive sampling offers better diversity,
allowing for statistically reliable results to be obtained
[26, 27]. To enhance prediction accuracy, a multi-layer
ANN was developed and optimized using the adap-
tive moment estimation (Adam) optimization algorithm,
widely recognized for its effectiveness in training deep
learning models [28, 29]. In addition, advanced tech-
niques such as early stopping and adaptive learning rate
adjustments were employed to refine the deep learning
model.

This paper is organized as follows. Section 2
explains the proposed cylindrical DRA design specifica-
tions as well as the dataset used in this study. Section 2
also describes the methodology for predicting the reso-
nant frequency value of the DRA, the multi-layer ANN
and deep learning models, and the optimization algo-
rithm. In section 3, the obtained results are discussed.
Conclusions and perspectives for future works are pre-
sented in section 4.

II. MATERIALS AND METHOD

A series of systematic steps are followed to accu-
rately and efficiently predict the resonant frequency
value of the hollow shaped cylindrical DRA. This pro-
cess is illustrated in Fig. 1 which shows the five main
steps the proposed design procedure includes: antenna
design, LHS, algorithms and data, model improvement,
and predicted results.

Create 1000 discrete sequence of 6

input parameters

[ Standardize and normalize the |
Conduct 1000 Simulations —— original data to test model for 3
different data content

|

s )
Use 6 machine learning algorithms

to create a model
Calculate MSE

Compare tested data with | Improve the model - Use Deep
original data, plotresults Learning Techniques

Calculate MSE

Antenna Design

Output: 1000 Resonant Frequencies

Fig. 1. Design procedure flowchart.

A. Antenna design

Figure 2 shows the proposed hollow shaped cylin-
drical DRA components and the design parameters. As
shown in Fig. 2, the proposed antenna has eight physical
and two electrical design parameters: ry, 2, 3, ¥4, s, hy,



hy, h3, €, and loss tg. In order to numerically obtain the
data set, a commercial full-wave electromagnetic simu-
lation program Computer Simulation Technology (CST)
was used [30] in the simulations. The designed antenna
was fed using a 50Q waveguide port and a microstrip-
slot coupling mechanism. The parameters utilized in cre-
ating the dataset, moving outward from the center, are:
r1, 2, and the height from the ground of the solid object
between these two values, hp; 3, r4, and the height from
the ground of the solid object between these two values,
hy. The other parameters of the antenna were kept con-
stant. The dielectric substrate height is 1.52 mm, while
the outer radius and height of the dielectric cylindrical
antenna are rs = 6 mm and 3 = 4 mm, respectively.
Since changes in slot size have minimal impact on the
results, they were not considered when generating the
dataset.

(b)

Fig. 2. (a) Antenna design and (b) antenna scheme.

B. Latin hypercube sampling

LHS is a statistical technique used for sampling a
multi-variable space. Unlike random sampling methods,
LHS generates samples where each variable is evenly
distributed across its value range. LHS divides the sam-
ple space into a specified number of cells and takes only
one sample from each cell. This ensures that different
values are selected for each variable, allowing the entire
value range to be represented simultaneously for all vari-
ables.

A dataset was prepared for the six parameters in the
design (ry, r2, 13, r4, h1, and hy), and simulations were
performed. As shown in Table 1, the boundaries for each
parameter were set as (r; € [0, 1.50], »» € [1.50, 3.00],
r3 € [3.50, 4.25], rq € [4.25,5.00], by € [0, 3.00], hy €
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Table 1: LHS dataset

# ry r r3 raq h1 h2

1 0.366 | 2.055 | 3.826 | 4.331 | 2.411 | 2.814

2 1.110 | 2.855 | 3.991 | 4.764 | 2.350 | 2.159

3 1.320 | 2.280 | 3.825 | 4.582 | 0.875 | 0.587
1000 | 0.027 | 1.550 | 4.016 | 4.318 | 0.929 | 2.234

[0, 3.00]). Subsequently, random values were assigned to
each parameter within its limits, generating 1000 differ-
ent inputs.

C. Algorithms and data

In this study, the resonant frequency value was pre-
dicted using different machine learning methods with the
values of ry, ry, 13, 14, hy, and hy. First, to assess the pre-
dictive success of traditional machine learning methods,
the following machine learning algorithms were tested:

* RandomForestRegressor

* GradientBoostingRegressor

* HistGradientBoostingRegressor
» ExtraTreesRegressor

* AdaBoostRegressor

* BaggingRegressor

For each model, hyperparameter optimization was
conducted using the Random Search method to obtain
the best-performing model for the respective machine
learning algorithm. Random search efficiently tunes
hyperparameters by randomly sampling the search space,
often outperforming similar strategies in many machine
learning models [31, 32]. RandomizedSearchCV, an
implementation of the random search strategy combined
with cross-validation, was employed to optimize the
hyperparameters of our machine learning models. Three
different scaling methods were applied to each model:
the original data, as well as two preprocessed versions
(normalized and standardized), to test whether data pre-
processing affected model performance.

The performance of each model was obtained using
mean squared error (MSE) on the test data. In equation
(1), n is the number of tested data, y; is the predicted res-
onant frequency by the model and y; is the resonant fre-
quency of simulation for the same sequence of six input
parameters:

n
MSE = % Y (i—y)% (1)
i=1

MSE, which calculates the average of squared
errors, serves as a metric to evaluate the predictive accu-
racy of the model. The lower the MSE, the better the
model’s performance is considered to be.
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D. Model improvement

To achieve better prediction performance a multi-
layer ANN model was created and tested. For this pur-
pose, a model that utilizes the dense layer concept was
preferred. A dense layer is a layer in a neural network
where every neuron is connected to all the neurons in the
previous layer.

Based on the model’s output performance, the num-
ber of layers and neurons in each layer were optimized.
As a result, the proposed ANN consists of nine hidden
dense layers, in addition to an input layer and output
layer. The number of neurons in the dense layers is set to
64, 128, 128, 64, 64, 32, 32, 16, and 8, respectively, from
the first dense layer to the last. Considering factors such
as the bimodal, positive, and linear nature of the data, the
activation function preferred in this case is the Rectified
Linear Unit (ReLU) for all layers. The ANN structure is
illustrated in Fig. 3.

Dense

kernel {16x8)
bias (8)

Activation

Dense Dense

kernel (128x128) kernel {64x32)
sample bias ¢128) bias {32)
size x 6

Activation Activation

Dense Dense Dense

kernel (32x32)
bias (32)

Activation

Dense

kernel (6x64)
bias (64>

kernel (8x1)
bias (1)

kernel {128x64)
bias {64)

Activation

Activation

Dense

kernel (64x128}
bias {128)

Activation

Dense Dense

kernel (64x64)
bias (64)

Activation

kernel (32x16)
bias (16}

Activation

Fig. 3. ANN structure of the model.

Additionally, to prevent overfitting during the train-
ing phase, features such as early stopping, automatic
learning rate adjustment (ReduceLROnPlateau), and sav-
ing the best-performing model (ModelCheckpoint) were
used in an effort to obtain the model with the best perfor-
mance.

In the deep learning model, the MSE, which was
used in traditional machine learning methods during test-
ing, was preferred. The optimization algorithm chosen is
the Adam optimization algorithm.

II1. RESULTS AND DISCUSSION
The bar graph in Fig. 4 illustrates the operating
frequency values obtained from simulations conducted
within the 6-12 GHz frequency range.
Since the designed antenna is expected to operate
actively within the 6-12 GHz range, it is observed that
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Fig. 4. Obtained operating frequency values.

the results concentrate in the 7-8.5 GHz and 9.5-11 GHz
region. However, a small dense region between these
is also shown in the graph, which does not align with
the general data distribution. This minor density makes
accurate predicting challenging. Subsequently, 800 of
the data were used for training and 200 for testing.

The original dataset was expanded through the pro-
cesses of normalization and standardization. This dataset
was used distinctly as input for both machine learning
and deep learning models. As the output, a single oper-
ating frequency value was obtained, allowing for a per-
formance comparison between the machine learning and
deep learning models.

Accordingly, initially, all the data was fed into
machine learning methods, and MSE was calculated
(Table 2).

Table 2: Performance of traditional machine learning
methods

# Model MSE Data

1 ExtraTreesRegressor 0.272| Normalized
2 GradientBoostingRegressor 0.276| Normalized
3 RandomForestRegressor 0.299| Normalized
4 | HistGradientBoostingRegressor |0.328 | Normalized
5 ExtraTreesRegressor 0.333 | StandardScale
6 BaggingRegressor 0.340| Normalized
7 ExtraTreesRegressor 0.350 Normal

8 | HistGradientBoostingRegressor |0.403 Normal

9 | HistGradientBoostingRegressor |0.403 | StandardScale
10 RandomForestRegressor 0.408 Normal
11 GradientBoostingRegressor 0.412 | StandardScale
12 GradientBoostingRegressor 0.416 Normal
13 RandomForestRegressor 0.422 | StandardScale
14 BaggingRegressor 0.429 Normal
15 BaggingRegressor 0.438 | StandardScale
16 AdaBoostRegressor 0.617| Normalized
17 AdaBoostRegressor 0.710| StandardScale
18 AdaBoostRegressor 0.714 Normal




Table 2 indicates that ExtraTreesRegressor achieved
the best prediction performance, particularly with nor-
malized data, which resulted in an MSE of 0.272, fol-
lowed closely by GradientBoostingRegressor. In general,
normalization improved model performance, while stan-
dardization and raw data led to higher errors. AdaBoost-
Regressor performed the worst, with MSE values signif-
icantly higher across all preprocessing methods. These
findings suggest that tree-based ensemble methods,
especially ExtraTreesRegressor, are well-suited for this
dataset, with normalization playing a key role in opti-
mizing predictive accuracy.

In the next step, multi-layered ANNs were used, and
the number of neurons in these layers was optimized.
Then, early stopping and saving the best-performing
methods were applied. Finally, the improving process
was completed using the Adam optimization. With the
deep learning model, a value of 0.128 was achieved for
MSE. Thus, a performance improvement of 53% was
obtained compared to the lowest MSE value obtained
with traditional methods, which was 0.272. Figure 5
presents a comparison of actual simulation results with
predicted values.

Additionally, the MSE distribution of the entire test
set, which contains 200 data points, was calculated. As
seen in Fig. 6, the best predictions fall particularly within
the 8-8.5 GHz and 10-11 GHz ranges, where sufficient
training examples were available, allowing the system to
learn effectively. Poor predictions were obtained below
7 GHz, which is the band edge. The sharp peak at 7
GHz, along with the limited number of training exam-
ples below 7 GHz, have led to uncertainty, causing the
model to generate incorrect interpolations. In contrast,
better predictions were observed in the 9-10 GHz range
and at the upper band edge above 11 GHz. This can be
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Fig. 5. Predicted and real values.
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Fig. 6. MSE of the test set.

explained by the fact that most of the test data is concen-
trated around 10 GHz, providing the model with more
examples to learn from. As a result, the model was able
to capture the underlying patterns more effectively in this
region, leading to improved predictions.

In order to show the prediction performance of the
resonant frequency value of the proposed deep learn-
ing methods for the hollow shaped cylindrical dielec-
tric antenna, a numerical analysis was performed with
random input parameters by using CST simulation
software.

As shown in Fig. 7, DRA operates at 10.25 GHz
with a bandwidth of 1.14 GHz and return loss of 37.96
dB. When the same input parameters were fed into the

S11 (dB)

-40 L L L L '
6 7 8 9 10 11 12

Frequency (GHz)

Fig. 7. Simulation results for design parameter values ry
=1.5mm, r, =2.5mm, r3 = 3.5 mm, r4 =4.75 mm, r;
=6 mm, Ay = 2.5 mm, Ay = 2.5 mm, and 43 = 4 mm.
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proposed deep learning model, the obtained operating
frequency was 10.30 GHz. It was observed that the two
results closely match.

On a computer with 256 GB of RAM and an
Intel Xeon Gold 6426Y processor and Nvidia RTX
A5000 graphics card, 1000 simulation processes for
this design were completed in approximately 16 hours,
with each simulation taking around 57 seconds. The
entire training and testing of the machine learning was
completed within 150 seconds. Running deep learning
processes took an additional 15 seconds. This process
resulted in an improved MSE value when compared to
the machine learning approach. To achieve better pre-
dictions, the deep learning process was rerun, which
took 2 hours to complete. Once the training model was
established, the prediction results were generated instan-
taneously. While traditional machine learning meth-
ods demonstrated solid performance, the deep learning
model achieved a remarkable improvement, showcasing
its superior predictive capabilities. Deep learning offers a
promising approach for achieving even greater predictive
performance.

IV. CONCLUSION

In this study, a novel approach was implemented
to predict the resonant frequency value of the hollow
shaped cylindrical dielectric antenna operating in the
6-12 GHz frequency band using a combination of tra-
ditional machine learning and deep learning methods.
Through the use of Latin hypercube sampling (LHS), a
diverse dataset of 1000 simulations were generated. Var-
ious preprocessing techniques, including normalization
and standardization, were applied to enhance data rep-
resentation, and multiple machine learning models were
evaluated for performance. Among traditional methods,
the ExtraTressRegressor demonstrated the best perfor-
mance, achieving an MSE of 0.272.

To further improve prediction accuracy, a multi-
layer ANN was developed, optimized using the Adam
optimization algorithm. Advanced techniques such as
early stopping and adaptive learning rate adjustments
were employed to refine the deep learning model. This
approach achieved an MSE of 0.128, representing a
53% improvement over the best-performing traditional
method.

In order to show the performance of the improved
model, a simulation was performed using random input
parameters, and the simulation result was compared with
the model output. The operating frequency obtained
from the simulation was 10.25 GHz, while the model
output was 10.30 GHz. Thus, the difference between the
two results remained at a level of 0.49%. The consistency
between the predicted and simulation results underscores
the efficacy of the deep learning model.
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The findings highlight the potential of integrat-
ing machine learning and deep learning techniques to
enhance predictive accuracy in antenna design. This
methodology not only accelerates the design process
but also improves reliability, paving the way for further
advancements in the field of electromagnetic simulation
and optimization. Future work could focus on expanding
the dataset and exploring alternative optimization tech-
niques to further enhance the prediction accuracy.
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