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Abstraci—In this articie, we present a method of sensitivity
analysis based on high order derivatives and Taylor
expansion. The principle is to find a polynomial
approximation of the finite element solution in terms of the
sensitivity parameters. We present this method on two
dimensional linear magnetostatic and linear magnetodynamic
problems. The sensitivity parameters can be either physical
parameters or geometric ones. Once the high order derivatives
are found, the Taylor expansion allows evaluations for a new
set of parameters. The time needed to obtain a new solution is
negligible compared to a standard finite element re-analysis.
This implies a dramatic change in the use of computational
tools. Moreover, the availability of fast evaluations allows a
wide use of optimization algorithms.

I. INTRODUCTION

The finite element method is now well known, largely used
and able to solve a wide set of partial differential problems.
Nevertheless, there is still a major restriction: it is
unbearably time expensive when you want to do sensitivity
analysis, or, in other words, when you need the solutions for
several values of parameters. And more and more, the finite
element method is considered as a design tool rather than a
simple validation tocl. To sum up, the sensitivity analysis
must be outperformed.

We purpose here to use the high derivatives to construct a
polynomial approximation of the finite element solution. The
idea was already presented [1], [2], [3], but we add a new
aspect : the entirely analytical calculus of the derivatives 4],
[5]. This approach is more powerful and flexible than a
simple automation of successive re-analyses to perform the
sensitivity analysis. We present the method on two
dimensional linear magnetostatic and linear magnetodynamic
problems using vector potential formulation. We purpose to
use high order derivatives for the "solved variable” (the
vector potential) from which we can deduce any dependent
quantity (force, losses, etc.).

Compared to our previous presentation [6], which was
dedicated only to high derivatives with respect to physical
parameters, the present article gives also high derivatives with
respect to geometric parameters. Some realistic applications of
sensitivity analysis are presented. We present moreover the
possibility of automatic optimization, particularly the
coupling with genetic algorithms. This is often impossible
because of the cost of the test function, but here it is not the
case thanks to the Taylor expansion.
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11. FORMULATION AND PARAMETERS

A. The FE solving

With the magnetic vector potential A such as B=curiA

and the magnetodynamic formulation, Maxwell equations lead
o :

()

where v is the given magnetic reluctivity, o is the given

curi(vcurl 3)+ O"Z—f =1J,.

electric conductivity and J, is the given current density.

For a linear problem and with a harmonic excitation current
of pulsation @, we can use a complex representation to
separate the space and the time dependencies. Moreover, in a
two dimensional problem, we can define only the componenis
of the magnetic vector potential A and the current density Js
which are normal to the section of the device :

0 0
A= 0 , = 0 (2)
real(A(x, )')ej“”) real(]s(x, y)ejw')
Then, equation (1) becomes :
~V(vVA)+ jwcA=1J,. 3

Using the finite element method and the Galerkin process, we
obtain an approximate solution by solving a complex matrix

equation :

M.{A} =S, (4)
where {A} is the set of the N unknown nodal values.
By introducing real part P and imaginary part Q of the NxN
complex matrix M, we write

M=P+jQ. (5)
Global matrixes P,  and global vector S are assembled from
local element terms P,, Q. and S, :

p= Y p=3 J'J;l‘ viVaH{Va} ddy,  (6)
elements elements
0= ZQe'"—" z ”ﬂmc{a}{a}rdxdy, (7)
elements elements ¢
and  S= 3.5= 3 ”QJS{a}dxdy, (8)

elements elements

where {o} are the trial functions.

B. The high order derivarive parameters

It may seem curious to speak about high order derivatives,
since the finite element method is based on low order
polynomial trial functions. In fact, the space interpolation is
only a first or second order approximation, but we speak here
of high order derivatives with respect to the design



parameters. Qur FE problem is continuous with respect to the
physical parameters. Even for geometric parameters, it is
possible to derive at high order, because we use a derivation
of the equilibrium equations.

We purpose to use high order derivatives of the "solved
variable” (the vector potential A). Using state adjoint
variables, the process could be generalized to all the derived
guantities of the FE problem [1]. For instance a Taylor
expansion of the dissipated thermal energy in a conductor, or
of a magnetic force could be derived. However, just with the
main variable, we consider we have the most general
approach, but probably not the most efficient in many cases.

We consider the derivatives versus either physical
parameters or geometric parameters.

The linear problem under study is constituted of sub-
domains D, where the magnetic reluctivity vy, the electric
conductivity o and the current density Jy have different
values but are uniform. Any of the value vy, @0y, or J5
inside any sub-domain Dy could be taken as a physical
parameter.

We can note that the 3 elementary terms (6), (7) and (8)
are linear towards the physical parameters v, wd, and J,.
These simple algebraic dependencies will facilitate a direct
differentiation. For the physical parameters, the first
derivatives are constants and the higher order ones are zeros.
Notice however that if a linear dependency on the source term
(8) implies a linear dependency on the solved variable, it is
not the case for the linear dependencies acting on the matrix
terms (6) and (7).

For geometric parameters (for instance : air gap thickness,
slot dimension), the dependencies are introduced throughout
the nodal coordinates which affect both the elementary area

£, and the trial function gradients {Va}. In the general case,

there is no obvious simplification and higher order
derivatives of P,, Q. and S, versus geometric parameters
could exist.

111. CALcULUS OF HIGH ORDER DERIVATIVES
A. One parameter study

Thanks to the principle of stationarity [7], [1], (4) is true
for any value of each parameter. So we can differentiate (4)
with respect to any parameter p, and then find the new
equation 1o solve to obtain the derivatives of the solution
vector A :

M‘éﬁ_=§§_a_ﬂd_”4, 9

It must be noted that the derivative of the solution is
obtained by solving a matrix equation, with the same matrix
as in (4). Moreover, we need the solution A to calculate the
new right hand side vector and then the derivative.

Recursively, we can calculate an arbitrary high order
derivative of A4 by differentiating (4) and solving with a new
second member calculated with the first derivatives of A :

I"A_O"S ~ . I'M I"T'A

: =—- e 10
c.?p"‘ apm mn 3}3‘ apm—t ( )

i=l

; m!
where C! =

— and C2=C" =1.
i (m=i) " m
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Finally, with the derivatives of A, we construct a
polynomial to evaluate the solution for any value of dp, from
an initial solution for the value py :

SA Sp™ VA
Alp,+0p)=A + Op — +. . — ,
(Po P) (Po) Pap(Po) Np! BpN" (Po)
N . .
L 8 J'A
A(po+89)= Y, == (o). an

& 1 op'
where N), is the Taylor expansion order for the parameter p.

B. Mulri-parameter study

In the case of a multi-parameter study, with high order
derivatives, we must calculate the cross derivatives of M and
S before calculating the cross derivatives of A.

Just look at the generalization of (10) and (11} with only
two independent parameters p and g :

9" A B Fmrag _ i icr Cj ai-?-jM am—i+n—jA
m

M. = A A A—
dp"og" dpTog" St dp'dq’ dp™'ag"™
i+j=>0
(12)
Ny Ny 6pi sqj ai+jA
A(Po+5P,Qo+5¢?):z z_i—'—'?':?p‘Tq}_(po’qo)'
i=0 j=0 "7 ’
(13)

Of course when the number of independent parameters
increases, (13) becomes quickly very long because of the
cross terms !

C. Derivatives of M and S versus physical parameters

Obviously in the general case, the main difficulty is to
caleulate the derivatives of the matrix M and those of the
vector 5. But if p is one of the previously described physical
parameters {V, W¢. or Jy), this is no longer any difficulty. For
the reluctivity v, of the sub-domain Dy, we deduce from (5)
and (6):

%"Z: Y| L‘{Va}{Va}dedy

Q.eD; (14)
"M =0, forn=2
vy
and 0 f:O,fornZl (15)
vy

For the product @wa;, taken as a whole parameter, we have :

—"—a(iﬁk) = jngb I} el dxdy

- (16)
———in— =0, fornz2
o(woy )
[
and —C?-i—-;:O,fornzl (17)
d(woy )
Finally, for the current density Jg, we obtain :
a—]‘;d—=0,forn21 (1)
a‘].ﬁ‘k



= 3 [[ferea

3Jsk

and by (19)
'S =0, fornz?2
o,

The summations are restricted to the elements £2, belonging
to the sub-domain D,

As previously mentioned in section ILB, the higher
derivatives are equal to zero and consequcntly there is no
cross derivative between the physical parameters.

D. Derivatives of M and § versus geometric parameters

The derivatives towards geometric parameters could be
obtained using the local jacobian derivative method [7].

First we consider the second member S. Using parametric
finite element integration, its expression (8) becomes :

s= Y 7 {0} |Gldudv,

all elements “
where Ae is the reference element corresponding to the actual
element £ and|G]| is the determinant of the jacobian matrix
G of the transformation from local (u,v) to global (x,y)
coordinates.

During the modification of a geometric parameter p, the
topology of the mesh is unchanged but some finite elements
are distorted. This is due to the moving of the nodes linked
to the parameler,

Because, in (20), |G| is the only term depending on the

actual geometry (e is the reference element and {a} are
functions of (u,v)), the first derivative of S is :

a8 _ Z J’J‘AJ{ }3|G]

ap distorted

elements
The high order derivatives can be obtained using the same
method. For instance, with two geometric parameters p and g,

(20)

(21)

we have :
am-ﬂ:s am+n| |
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distorted
elements

The summation is restricted to the elements simultaneously
concerned by the parameters p and g. In the general case, if an
element is not distorted by at least one parameter, its
contribution is equal to zero. This property allows the
amount of computations to be dramatically reduced.

For the matrix Q, we can apply to (7) exactly the same
process as for S.

Finaily, we study the matrix P. This case is more
complicated than the preceding ones due to the gradients

{Val under the integral sign (6). In each element, the
gradient Ver; of any function @; can be expressed as :

20, | [u M][da
Vo~ g |-\ % || & e me @

ERRCEEIT:

where G™' s the inverse of the jacobian matrix G and V.o

is the local gradient in the reference element. The gradient
expression inside (6) becomes :

{Va}{Ve}' ={v,a}c GV, a}.
Then, {6) can be rewritten as :
= —1T =l T
P=3Y jL vV, a}IGLGTT.6™ Y, &) dudv (25)

elemenrs ¢

(24)

In the previous expression, the product [|G].G'”.G'1] is the

only term depending on the actual geometry, so the
derivatives of (6) can be calculated by deriving only it. For
instance, high order derivatives relative to two geometric
parameters p > and g are :

mHhp z
man
ap aq distorted

elements

HA v{v,al. -‘%[IGL GG ] (v, o} dudv

(26)

The expressions of G and |G| depend on the finite
element type and on the nodal coordinates. If we know the
derivatives of the nodal coordinates, we can compute the
derivatives of G and |G|. From the property G™'G =1, we
can deduce the derivatives of G~ knowing the ones of G.

For instance the first derivative of G~ is
-1
oG % @7
op
So, any derivative at any order of the product [|G| G G_l]
can be expressed as a function of G,|G|, their derivatives and
G

E. Cross derivatives between physical parameters and
geomelric parameters

As noted in section III.C, the cross derivatives between
physical parameters are zero. However, the cross derivatives
between physical parameters and geometric parameters exist
and can be obtained using the same process as in section
IIL.D. Although, they are restricted to the first order for the
physical parameters.

For instance, resuliing from (14), the high order cross
derivatives for the parameter v, and two geometric parameters

pand g are :
81‘”’"*" M Z
Mmoo
avk a‘p aq distarted
elemenrse D,

”A, {V,a}-aj:—;[lGl-G"T-G" 9.0} duav

(28)

Similar derivatives arise from (16) and (19)

al+m+ﬂM m+nr ]Gi
—_— a dudy
a(mfc)ap maqn dts.rorted J-I { }{ } "’a "
clementsel,
(29)
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a]+m+nS

30
3J L p" 0" ,\Bp’"aq (30)

> Il iy

distorted
elemenrsel),

IV. USE OF HiGH ORDER DERIVATIVES
A. Steps of the construction of the polynomial

Following the formula given in sections IIL.C, IIL.D and
IILE, the first step in the method is to find the derivatives of
the matrix M and of the vector § at the central values pg,
4o - -. for the parameters.

In order to have a general approach, capable of treating big
problems, we save all these terms in files instead of managing
them ail in the memory. The finite element matrix M is
naturally sparse. Moreover, its derivatives and those of the
vector S are more and more sparse as the derivative order
increases. So, we use a specific file format for sparse
structures.

Then, the high derivatives of A are calculated recursively,
by solving the systems {12). All these systems have the same
mairix M but different right hand side vectors. It is worth
using a direct method (i.e., a factorization of the matrix M), to
solve all these systems. Iterative methods (e.g.,
preconditioned conjugate gradients) are superior for a single
solution, both in terms of storage requirements and
computational efficiency. A direct method is more expensive
for the first solving (the computation of A}, but then all the
derivatives only cost a forward and backward substitution
each. Finally, the derivatives have a very low cost when
using a factorization.

For the storage of the derivatives of the vector A, we still
use files, but with a set of plain vectors. So accesses, for both
write and read, may be random.

Finally, for any variation &p, &g, ... of the parameters, using
(13), we construct a polynomial to evaluate the solution.

Because evaluation of a polynomial is instantaneous, it can
be used interactively, and it allows a new approach of the
sensitivity analysis.

Parameier
modifigation

h
Instantaneous
| Polynomial Polynomial

terms evaluation FEM
Solution

Mand 5§
derivatives

Standard
FEM solver

One FE analysis

B B

FParameter
maodification

Fig. |. Compared steps between standard finite element solver and
polynomial approach.

Fig. 1 shows how we introduce new developments in the
finite element program. Calculations of the derivatives of the
matrix and vector need to be coupled with the assembling
function. Construction of the polynomial is an independent
program. Evaluation must be interfaced with the post-
treatment module,
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To sum up, the initial cost of this method is quite high,
but affordable. After an important investment, we obtain a
polynomial which provides fast evaluations (Fig. 2.).

Re-analyse
with FEM
(proportional

Time A
cost

Polynomial
evaluations

>

Construction of
the polynomial

(=]

10 20
Number of tested configurations

Fig. 2. Compared time costs between re-analyse and polynomial approach.
B. Precision and convergence radius

It is important to distinguish the precision and the
convergence radius. Obvmusly, inside the convergence radius,
the more terms are taken, the better the reconstructed solution
is. Outside, the more terms are taken, the worst it is. For the
current density J;, the convergence radius is infinite (it is a
source term). For the other physical parameters v and @@,
which act on the matrix M, if v g and (@0G)g are the central
values of the Taylor expansion, the domain of convergence is
10, 2vg[ and 10, 2(wo)gl.

Here is a beginning of a proof for a one parameter study
only. As the vector S is independent of the parameter v and
wo and only the first derivatives of M are non zero, (10)
becomes :

m m~1
J A:—ma—M _____8 A. (31)

" ap” dp dp™ !
This recursively gives :

J ,’::(—1)%5[114“.%} A, (32)
dp
Then, the Taylor expansion (11} 1is :
N i
. 1 oM
Alp,+8p)= Zli—&pM ’—a—:l .A(po)
=0 P
1 N,+1 (33)
- o+
=[1+5pM_] a—M} 1—[—6 M".%A;-] .A{py)

To insure the convergence when Np tends to infinity, the
following condition must be verified at the central parameter
value pg :

oM

—SpM <1. (34)

Because we have a linear dependency of M(p) relative to the
parameter p, we can write (when pg#0) :

oM _ M(py)~M(0) _ M- M(0)

dp pg—0 Po
where M{(0) is the matrix obtained when the parameter
(reluctivity or conductivity) is set to zero inside the
parameterized sub-domain.
Then, for the first member of (34) we have :

(33)



<

(36)

o 2
dp Po
The previous inequality is obtained thanks to the properties
of finite elemenits matrixes M, M(0) and [M-M(0)] which are
symmetric and, when meshes are of good quality, with real
parts which are non-negative definite and diagonally
dominant.

So, from (34) and (36), we obtain a sufficient convergence
condition on &p :

--@.M".[M-M(O)]
Po

|69} < |Pol- G7

This conclusion is confirmed in {6] on the study of an
analytical solution for the physical parameters. The domains
of practical use, fora reasonable accuracy of 5% with a 10 to
20 order Taylor expansion, are J0.2v g, 1.8v ol and
10.2( o), 1.8(wo)ol (see section V for and example).

Concerning the geometric parameters, we have no general
result. The second example (section VII) gives some idea of
the behavior of the method in this case.

V. VALIDATION ON INDUCTION HEATING PROBLEM
(PHYSICAL PARAMETERS STUDY)

A. Presentation of the studied problem

We choose an induction heating process (Fig. 3) where
inductors produce eddy currents in the steel tubes. Tubes so
become malleable and can be extruded to the desired form. We
do not treat the problem with geometric parameter, but just
develop the magnetic solution with the threc physical
parameters Vv, @, and J; under a hypothesis of linear
magnetization. The first parameter is the characteristic of the
steel and the two last are the command parameters for the
heating process. The mesh, used for this process, contains
2686 nodes and 1017 second order finite elements.

Inductors

Oopon  Tubes
e .

| Drift I

|

Fig. 3. The 2D induction heating problem.

B. Validity of the polynomial approach

We achieved an implementation of the high order derivative
method within the multiplatform and pluridisciplinary S.I1.C
(Systeme Interactif de Conception) finite element program
[8]. Thanks to this example, we proved that the polynomial
method runs on a realistic multi-parameter problem. We
verified the previously cited convergence limits and confirm
the conclusion on the order of development given in [6]. The
2D example diverges for values of the reluctivity and
frequency superior to twice the initial ones. In any case,
reasonable orders (10 to 20) are sufficient for good precision
for the computation of common problems (5% between
polynomial solution and standard solution). In conclusion,
the polynomial is valid for the domain }0.2v ¢, 1.8v ol and
10.2(wo)g. §.8(we)gl. Table I shows the costs for classical
finite element analysis (using direct method) and polynomial
approach.
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TABLE I
TIMES FOR EACH STEP :
COMPUTER CLOCK INDICATOR AND MINUTES MEASUREMENTS

Classical FE Derivatives Calculus of the Evaluation of
analysis o polynomial  the polynomial
2500102800 190010 2100 27000 to 30000 lto3
about 25 jess than 25 about 5 min instantaneous
____seconds seconds

VI. VALIDATION ON SMES OPTIMIZATION
(PHYSICAL AND GEOMETRIC PARAMETERS STUDY)

A. Presentation of the studied problem

In recent years, Genetic Algorithms [9], [10] have been
applied successfully in many fields of optimization. These
algorithms present numerous advantages over classical
gradient methods. They are able to locate the global optimum
and they do not reguire the use of the derivatives. However,
Genetic Algorithms require thousands of evaluations in order
to reach the optimum, and thus, they are particulary penalized
- in terms of cpu time - when the objective function is
calculated by a Finite Element Method. To reduce such
computational constraints, we propose to link a Genetic
Algorithm with an accurate enough, but less expensive
approximation method, based on Taylor expansion.

‘Z

(0,10) line a

axis of rotation

Fig 4. SMES design parameters

The test case problem deals with the optimization of a
system, consisting of two coils, for a Superconducting
Magnetic Energy Storage device (SMES). This problem isa
simplification of a more complex one [I1] and is
schematically shown in Fig. 4. The simplifications are due,
not to the sensitivity analysis method, but to some
limitations (mainly the maximal number of parameters) in its
first implementation [12]. The SMES configuration has six
degrees of freedom (four geometrical and two physical) and
shall be optimized with respect to these objectives :

- Stored Energy should be 180 MJ,

- Magnetic field along two given lines should be as small
as possible.

It is also subject to the following constraint:

- Magnetic field within each coil must satisfy a certain
Physical condition in order to guarantee a superconductivity
behavior.

The two ohjectives were coupled with a weighted sum to
form a single objective (0.8 for relative stored energy and 0.2
for relative magnetic field). Then the constrained problem was



rransformed into an unconstrained one by associating a
penaliy with all the constraints.

B. Polynomial approach

In order to avoid Finite Element solution for each different
configuration, an approximate objective function can be
obtained with Taylor expansion. We use the FLUX-PARAM
package [12] for the polynomial computations. The procedure
requires an initial configuration of the design parameters and
an initial mesh. In our study, the initial values of the
parameters were chosen near the center of the domain where
they are able to evolve (Table II). It must be point out that a
good mesh should be able to support the greatest variations
of parameters. The mesh perturbation is handled by the
ADOMESH package {13] build in FLUX-PARAM. When
this is achieved, the Taylor expansion of the "solved
variable" is constructed in about thirty minutes and gives
second order derivatives for geometrical parameters. Accuracy
has been tested by comparing the energy in the device
between polynomial development and a Finite Element re-
analysis: worst cases - when parameters are far from initial
Taylor point - give reasonable accuracy of 4 %.

TABLE Il
PARAMETERS SPACE DOMAIN AND TAYLOR POINT
Rl Ro hy/2 dy I J2
fmm]  [mm]  {mm} [mm]  (A/mm?] [A/mm?}
nun. 600 60 500 100 10 -30
max. 1400 500 350 600 30 -10
Taylor 1000 300 650 350 20 -20
point

C. Optimization using genetic algorithm

The Genetic Algorithm used has the following main
characteristics: Real coding, Linear ranking selection, four
crossover operators (1-point, 2-points, Uniform, Arithmetic),
three mutation operators (Uniform, Non Uniform, Gaussian)
and a roulette wheel, depending on weights, to select
Operators.

TABLE Il
AVERAGE AND BEST TRIAL
Bstray* Energy
Average 2.54E-9 173.4
Best 0.61E-9 180

Table III and Table IV summarize the resuits from different
wrials with different population sizes and operator weights. In
these tests the width of the first coil was fixed o 594.3 mm
and the length of the second coil fixed to 1418.4 mm. Bssrgy
represents the average of the magnetic field along line @ and
line k. The genetic approach requires at least 8000
evaluations to reach the optimum but a search with a uniform
grid of twenty points in each dimension in parameter space
would have required 64,000,000 evaluations.

TABLE IV
BEST SOLUTION
R} Ry hy/2 dp 3y I
(mm] [mm] [mm}  (mml [Amm?]  [A/mm?l
Best 35857 13952 72004 2583 1170 1154
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VII. CONCLUSION

We obtain a polynomial of the finite elements solution
towards the design parameters. This is a hybrid approach: a
centinuous solution versus the design parameters through the
Taylor expansion and a discrete solution in space through the
finite elements method. This allows 2 quick evaluation for
new values of physical and geometrical parameters and a
sufficient precision for design. It provides a good tool to
perform physical and geometrical sensitivity analysis in case
of linear problems.
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