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Abstract—We give an alternative description of a recently
published moment-method algorithm, which uses
divergence-free and rotation-free basis functions to
maintain accuracy down to very low frequencies. The
basic algorithm is restricted to simply-connected and
non-self-intersecting surfaces. But this restriction has
little practical impact—we show how multiply-connected
surfaces, self-intersecting surfaces, and one-sided surfaces
can easily be converted to the required topology without
changing the solution. We examine a claim that the
impedance matrix is diagonally dominant, which implies
a guaranteed-to-converge Jacobi type of iterative solution
of the matrix equation. Finally, we show how to control
catastrophic-cancellation errors that occasionally appear
in the voltage vector.

INTRODUCTION

In moment-method algorithms finite computer memory and
CPU time impose a high-frequency limit at about the first or
second resonance of the body being tested. Typically,
WfA, =1, where W is some representative linear
dimension of the body. A popular algorithm for finding the
current on arbitrarily shaped conductors was described by
Rao, Wilton and Glisson over ten years ago {1]. With this
algorithm, a finite computer resource of another kind—word
length—sets a low-frequency limit. Typically, WfA__ =
1073, which limits the usefulness of the algorithm as a tool
for studying electrostatic or magnetostatic problems.

Wilton, Lim, and Rao have recently described a new
algorithm that has a much smaller low-frequency limit [2,3].
It is very effective and has an appealing structure. We think
it deserves wide exposure and, therefore, we present here our
own description of it and of the problem that it cures.

The basic algorithm is restricted to surfaces that are simply-
connected and not self-intersecting. But this restriction has
little practical impact—we show that multiply-connected
surfaces, self-intersecting surfaces, and even one-sided
surfaces can easily be converted into the required topelogical
form without altering the solutions obtained for them.
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The new algorithm also has a feature that may make it
superior over the entire moment-method bandwidth. Tts
impedance matrix is closer to being diagonally dominant
than the one from the earlier, Rao-Wilton-Glisson algorithm.
This makes the matrix equation more likely to yield to an
iterative method of solution. We discuss this possibility.

Finite word-length can occasionally corrupt some of the
voltage vector of this new algorithm. We present a simple
and effective fix based on the Faraday law.

THE CAUSES OF THE LOWER LIMIT

In the Rao-Wilton-Glisson algorithm a set of “rooftop”
functions approximates the J field on a triangulated surface
of the body [1]. There is a rooftop function for each interior
edge of the triangulation. The domain of a rooftop is
restricted to the pair of faces that share the interior edge.
See Figure 1. The definition for the rooftop anchored to thei
interior edge is

Figure 1 Parameters for defining a rooftop function.
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where k" is the height of face F;", when measured from the
anchor edge to the free vertex; and p* is {+1)x{the vector
from the free vertex to r). The area of face F;" is a;". The
length of the anchor edge is I,

The rooftop function has four nice features: (1) it
automatically satisfies Kirchhoff’s current law at the anchor
edge; (2) there is a charge density of p; = I,/ (-jwa;) on
each face, yet there is no ner charge deposited—no need to
test for conservation of charge on the body; (3) it is simple
enough to permit efficient, robust, and accurate computation
of the potential integrals [4]: (4) it imposes no restriction on
the topology of surface—the surface can be open, closed,
simply-connected, disjoint, multiply-connected, one-sided,
two-sided, or self-intersecting.

There is a testing integral associated with each rooftop
function. Its domain is an open path, beginning at the
centroid of F* and following a streamline of A(x) across
the anchor edge to the centroid of F~. Figure 2 shows the
set of paths from a typical triangulation of a square plate.
For each path there is a comesponding equation in the
moment-method matrix equation Zx = b stating that the
tested scattered field JE__dl is equal to the negative of the
tested incident field -/E__-dl.

But the scattered field is computed in two parts:

E,,. = -VV(p) - jwA(J). The first part, VW(p), is

Figure 2 Integration paths for testing a rooftop model of a
square plate.

inversely proportional to the frequency, because
p; = zl,/(-jwa;}). The second part, jwA, is directly
proportional to the frequency. So, as the frequency goes
lower, the E scat field becomes more dominated by V¥V and
testing integrals of E,_ become more path-independent
(because VV is a conservative vector field). Ultimately, an
integral over any given path in Figure 2 becomes identical
to one over any concatenation of other paths having the
same endpoints. The corresponding effect on Z is that any
row becomes identical to a linear combination of other rows.
In other words, as the frequency goes lower, Z becomes
more ill-conditioned. Ultimately, it becomes singular.

Increasing condition number is one cause of the poor
accuracy at low frequencies. Another cause is the loss of
information about jwA, due to insufficient word length.

As the irequency goes lower, the two quantities V¥ and
jwA become increasingly different in magnitude, yet their
sum is stored in the same word. The recoverable precision
of the smaller quantity, jwA., is inversely proportional to the
square of the frequency.

But jwA is no less important than VV, even at extremely
low frequencies. Although all of the paths in Figure 2 are
open there are linear combinations of them that form closed
paths. This implies that there are linear of combinations of
equations in Zx = b stating that the closed-path integral
JE__-dl is equal to the closed-path integral -fE_ -dl. But
VV has no curl (because it is a gradient of a scalar). By
Stokes theorem it contributes nothing to a closed-path
integral. The only contributor is jwA.

The algorithm ignores this. While numerically computing
the integrals -fE_-dl, it needlessly computes the
theoretically vanishing integrals fVV-dl. The influence of
jwA is lost in the resulting, unnoticed, catastrophic
cancellations.

An ill-conditioned Z and loss of precision in jwA are the
two causes of poor low-frequency accuracy. They, and the
cure, were first described in [2] and [3].

HOW THE LOW-FREQUENCY ERRORS
ARE REMOVED

To prevent catastrophic cancellations Wilton, Lim, and Rao
explicitly create each closed path, which allows them to
replace the numerical integration of fVF-dl with the exact
value of zero. They finesse each closed-path integral into
existence by designing a basis function with that integral as
its testing integral. The new basis function is a
superposition of original rooftop functions so that the new
testing integral is a superposition of original testing integrals.
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In this way, most of the original algorithm, and its
corresponding computer code, stay the same.

But how to find all possibie closed paths? The answer is to
make a set of generator loops, that is, a set of closed paths
from which all other closed paths can be assembled. Then,
avoiding (numerical computation of) fVF~dl integrals on
every loop in the set will avoid them on all possible loops.
Making a set of generators is easy. A set of rooftop
functions sharing a common node will, if they have the
proper reference directions, have a testing integral whose
path is a generator. To see this, pick an interior node in
Figure 2 and reverse some of the nearby integration paths so
that they all bave the same sense of rotation around the
node. This is a “loop function”.

Loop functions do an excellent job of preserving the
information contained in the jwA field. But they are an
incomplete cure for low-frequency errors. There are two
reasons. First, loop functions do not address the condition-
number issue. Second, the charges deposited on each face
of a loop function tend to cancel. In fact 2 body with
equilateral  triangulation would produce complete
cancellation. (Recall that p; = I/ (~jwa;).)

A second basis function needs to be invented; one whose
testing path cannot become part of a concatenation of paths
in a path-independent integral, and thereby increase the
condition number. And the second function should be
guaranteed to contribute to the charge—the charges from
contributing rooftop functions should accumulate rather than
cancel. The set of rooftop functions sharing a common face
will do both of these things, if their reference directions are
propetly chosen. As an illustration, pick a face in Figure 2
and reverse some of its integration paths so that they all
have the same sense, outward or inward. The charges on the
chosen face will accumulate because they all have the same
sign. This is a “star function”, Notice that the testing paths
of star functions cannot be concatenated to form a non-
reversing path around a loop.

Star functions anchored to interior faces are made from three
rooftop functions. Those anchored to faces on boundaries
are made from fewer rooftop functions.

Loop functions describe most of the rotation fJ-dl of the J
field. Star functions describe most of the divergence V-J of
the J field. The duties of rotation and divergence usually
would be shared by both functions, since the triangulation is
rarely equilateral. Wilton, Lim, and Rac remove this
awkward feature by adjusting the intensity of the
contributing rooftop functions to compensate for unequal
edge lengths. They define the loop function anchored to the
i* interior node as follows:
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Making a Loop
from Weighted
Rooftops

Figure 3 Making a loop function from weighted rooftop
functions.
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where A,. is the n® member of the set of rooftop functions
whose common node is the anchor node of O;; o = ¢1;

and I is the length of the n % edge attached to the anchor
node. ‘On each face there are two contributions to the charge
density; 1/ gives them identical magnitudes; ¢, makes
themn cancel. " In doing so, o, also forces each rooftop
current to have the same dlrecuon as the loop orientation.
The 1/1 weighting causes the J streamlines to form closed
paths around the anchor node (rotational flow). See Figure
3.

Wilton, Lim, and Rao define the star function anchored to
the i# face as follows:

*®= ¥ )

neface, n,

A,, (r)

where A, is the n® of the set of rooftop functions whose
common face is the anchor face of ¥;; v = x1; and I

is the length of the n% edge of the anchor face. On the
anchor face there are (usually) three contributions to the
charge; 1/I gives them equal magnitudes; v, makes
them accumufatc In doing so, v, alsc forces all rooftop
currents to flow out of the face. The 1/1 weighting causes
the J streamlines to emanate from the centroid of the anchor
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Figure 4 Making a star function from weighted rooftop
functions.

face (but only when there are three contributing
rooftop functions). See Figure 4.

HELMHOLTZIAN COMPLEMENTARITY

When defined this way, loop and star functions have
pure Helmholtzian complementarity [5]. Loop
functions describe only the rotation of the J field;
star functions describe only the divergence of the J
field. This feature is unaffected by the triangulation
of the surface. A loop function’s contributions to a
star function’s irrotational flow come in self-
cancelling pairs. Hence, no superposition of loop
functions can produce an irrotational flow of current.
Similarly, a star function’s contributions to a loop
function’s rotational flow also come in self-cancelling
pairs. Hence, no superposition of star functions can
produce a rotational flow of current.

There is no coupling via JVF-dl between the two
kinds of functions; star-to-loop coupling is zero
because the path is a loop; loop-to-star coupling is
Zero because the integrand is zero. The only vehicle
for mutual influence between loops and stars is the
integral ijA-dl. Hence, the two sets of functions
become mutually independent as the frequency goes
to zero.

Loops and stars form a complete description of the
J field on a simply-connected surface, as does the
original set of rooftop functions from which they were
assembled. Hence, a moment-method equation
Zx = b will have the same number of unknowns

-1, (Adm)

whether it 1s based on a loop-and-star model or on a rooftop
model. But only if the surface is simply-connected. This is
the source of a lingering difficulty with the definition of the
loop function. (See MULTIPLY-CONNECTED SURFACES
below.)

PERFECTLY CONDUCTING SPHERE IN
A MAGNETOSTATIC FIELD

Figure 5 shows a perfectly conducting sphere of 1 m radius
immersed in a static magnetic field of | A/m. The exact,
analytical solution for this problem is J, = -1.5 H, sinfu,
(6].

To do a numerical simulation we illuminated the sphere with
a 377 V/m plane wave at 30 kHz. We then sampled the
current that crossed the dashed line. The results show that
the loss of information in jwA and the large condition
number of Z have made the rooftop model useless, and that
the loop-and-star model suffers from neither of these
ailments.
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Figure 5 Comparison of surface currents computed by rooftop
and loop-and-star models of a conducting sphere.



CONDITION NUMBER

Figure 6 shows the LINPACK estimate [7] of the condition
number from a rooftop modet and from a loop-and-star
mode! of the sphere in Figure 5. The condition number
from the rooftop model is inversely proportional to the
square of the frequency, down to about 100 kHz. Below
100 kHz the curve becomes more complicated. We suspect
that the roundoff error in the entries in Z actually prevent
the straight 1/f2 trend towards total dependence below 100
kHz.

The condition number from the loop-and-star model is
frequency independent down to at least 3 Hz, showing how
effectively the condition number has been controlled.

The LINPACK estimate of the condition number is most
accurate when all entries in Z have the same absolute error.
Since the error in each Z; is roughly proportional to its
magnitude, we meet this requirement by scaling the rows
and columns of Z so that all entries on the diagonal have
unit magnitude. (Both rows and columns were scaled to
preserve the near symmetry of the matrix.)
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less if the surface is closed (to avoid making a redundant
generator).

The number of star functions is whatever is needed to make
the total number of unknowns equal to the number of
unknowns from a rooftop modet.

DISJOINT BODIES

Both the original Rao-Wilton-Glisson rooftop model and the
new loop-and-star model compute the mutual influence
between sources on arbitrarily located faces. It does not
matter that those faces might reside on disjoint surfaces.
(However, each surface must be simply-connected if the
loop-and-star model is to be used).

MULTIPLY-CONNECTED SURFACES

When the surface is multiply-connected the loop function
definition (2) yields an incomplete set of generator loops.
As examples, it misses a loop for every aperture, and on a
torus it misses two loops.

The most obvious solution would be to broaden the
definition in some manner to include the missing
loops. But each missing loop is just one of a
large set of topologically equivalent loops; any
one of them can be used. It might not be
possible to design software that reliably and
efficiently finds the required sets of topologically
equivalent loops and then picks only one of them.

A workable alternative would be to supply the
missing loops by hand after inspecting a three-
dimensional view of the trianguiated surface.
Each loop could then be supplied to the program
in the form of the set of faces that are traversed.
The software would need to be capable of
assembling the faces into a loop function, which
would then be processed the same as the original
loop functions.
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Figure 6 Comparison of condition numbers from the rooftop and loop-

and-star models.

SIMPLY-CONNECTED OPEN AND
CLOSED SURFACES

When the surface is simply-connected there is no difficulty
with the loop-and-star model. The loop function definition
(2) forms a complete set of generator loops. There is a loop
function at each interior node if the surface is open; one

Another alternative also involves some manual
labor. 1t is based on the fact that loop functions
and star functions are assembled from rooftop
functions. Suppose there was some way (o
change the topology to simply-connected without, in any
way, changing the set of rooftops. The solution would then
be identical to that produced by either of the previous
alternatives, because the same set of rooftops would be used
to assemble the loops and stars.

Exactly that happens when the surface is “cut” along a
selected sequence of edges in such a way that the
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CUTTING A MUTIPLY-CONNECTED SURFACE
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Figure 7 Cutting a multiply-connected surface into a simply-connected

surface.
overlapping rooftop functions on each face
become topologically, but not physically,

delaminated. See Figure 7. The surface becomes
simply-connected vet the size, shape, and position
of its rooftops are not changed.

Three new edges, and one new face, are added
for each edge in the cut. But the number of
interior edges is not changed. There are new
nodes but no new node coordinates.

We use the cutting option because it changes
only the triangulation of the surface; the
algorithm temains in its basic form. Cutting
involves manual work, which takes time. But
creating the triangulated surface itself usually
involves manual work, and sometimes a ot of it.
This is at least as time consuming as the cutting.

ter Cutting ===
\ ==

Before Cutting

number of unknowns in the matrix equation
would be greater than the number of interior
edges in the triangulation. This method would
leave the triangulation intact and would change
the code.

The original Rao-Wilton-Glisson  rooftop
algorithm could easily be encoded to use this
method but the loop-and-star algorithm might
present some trouble. It might be hard to write
code that reliably assembles loop-and-star
functions in the vicinity of a generalized edge.

For us, a better method is to cut the self-
intersecting surface into surfaces that are not self-
_intersecting. See Figure 8. The cut surface is
then digjoint and can be treated by the basic
Jorms of either the rooftop model or the loop-
and-star model. (See DISJOINT SURFACES
above.) As with multiply-connected surfaces,
cutting a self-intersecting surface does not change

CUTTING A SELF-INTERSECTING SURFACE

Figure 8 Cutling a self-intersecting surface into a disjoint surface.

SELF-INTERSECTING SURFACES

When a self-intersecting body is triangulated, some edges
will have more than two faces attached to them. There are
(at least) two methods that could handle this situation, both
of which satisfy Kirchhoff’s current law at each edge.

In one method, each edge at a self-intersection could be
treated as a generalized edge: an edge with f faces attached
to it would be assigned f-1 rooftop functions. No special
care would be needed when choosing which pair of faces to
assign to which rooftop function—rooftop currents could
even pass through each other at a generalized edge. The

in any way the fundamental set of rooftops, so the solution
does not change either.

ONE-SIDED SURFACES

A one-sided (non-orientable) surface, like a Moebius strip,
can always be cut into a two-sided surface in the manner
already shown in Figure 7. Once cut, the surface becomes
simply-connected, allowing the basic loop-and-star model to
be used. As always, cutting changes the triangulation and
leaves the encoded algorithm intact.
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Although the encoded version of the original rooftop
atgorithm of Rao, Wilton, and Glisson is not the main topic
of this paper, its popularity and the present heading make
it appropriate to now discuss some pertinent details.

The original Rao-Wilton-Glisson rooftop code cannot be
applied 1o a one-sided surface; nor was it intended to be.
Its authors chose to give the user another way to check the
integrity of the triangulation: they designed the code to
compute the volume whenever a closed surface was
encountered. So a consistent normal had to be assigned to
every face. For simplicity this was done for every type of
surface, even open ones. It then seemed convenient to use
the normal to help set a reference direction for each rooftop
function. Each rooftop current was made to cross its
anchor edge in the same direction as & xii, where & is the
{(arbitrarily defined) direction of the anchor edge.

But a basis function’s reference direction is arbitrary in any
algorithm. (In the Rao-Wilton-Glisson algorithm it depends
on an arbitrary choice of the direction of €.) There is no
need to involve the surface normal in an arbitrary decision.
By removing it from the decision process, the rooftop
model of Rao, Wilton, and Glisson immediately can be
applied to cne-sided surfaces (and it can still compute the
volume of closed surfaces).

Finally, we note that the subroutine that sets the surface
normais (and, hence, the reference directions) is quite
complex and contains a subtle bug, which takes effect only
on some triangulations.

DIAGONAL DOMINANCE AND ITERATIVE
SOLUTIONS OF Zx =b

It turns out that a matrix from a loop-and-star model is
closer to being diagonally dominant than one from a rooftop
model. Z is said to be diagonally dominant when the
“diagonal-dominance” ratio (DDR)

iz

@

is greater than 1 for all i=1,-.N [12].

The explanation for the greater DDR lies in the shape of the
paths of the testing integrals: in loop-and-star modeling the
paths are made from directed line-segments whose
orientations tend to cancel; in rooftop modeling the
crientations tend to accumulate. This makes the off-diagonal
integrals smaller, relative to the diagonal integral, than those
in a rooftop model.

FLATEIL80.GEO
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X
Figure 9 The square plate used to study diagonal
dominance.
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Figure 10 compares the DDR from a rooftop model to the
DDR from a loop-and-star model. (The device-under-test is
the square plate in Figure 9.) The rows that test the loops
(rows 1 to 72) have DDRs consistently greater than 1. The
DDRs of the rows that test stars are about half as big and
are usually less than one. Other structures that we have
studied also show this behavior. (Perhaps star functions
could be redesigned to produce DDRs as high as those of
loop functions.}

The DDR is insensitive to the frequency as long as the
triangulation is demse encugh to allow an adequate
description of the sources on the surface. See Figure 11.
Also, it is totally independent of the direction and
polarization of the incident field, because Z itself is totally
independent of these parameters.

Wilton, Lim, and Rao claim that the Z matrix is diagonally
dominant [2,3]. We have found no geometries where this is
$0. We can only say that the Z from a loop-and-star model
is closer to being diagonally dominant than one from a
rooftop model.

In any case, the improved diagonal dominance may have a
practical benefit at all frequencies (below the upper limit).
The standard method for sclving Zx = b is by LU
decomposition, for which the required CPU time is
proportional to N°. (N is the number of unknowns). The
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Figure 10 Comparison of diagonal-dominance ratios for a square plate.
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Figure 11 The effect of frequency on the diagonal-dominance ratio.
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CPU time for an iterative solution, such as Jacobi iteration,
is proportional to N?, a great advantage when N is large.
Solution by point Jacobi iteration is guaranteed to converge
when Z is diagonally dominant [8,9,10,11]. A matrix
equation in which Z is not diagonally dominant can
sometimes permit a converging Jacobi ileration. Intuition
suggests the closer Z is to diagonal dominance the more
likely the iteration will converge and, if it does converge, the
faster it will converge.

The number of iterations needed to get a solution depends
on the initial guess. Hence, an iterative solution has an extra
advantage when doing a sweep of a spectrum since each
solution is a good initial guess for the next.

Zx = b could also be solved by block Jacobi iteration. Loop-
and-star analysis permits a natural way to divide Z into
submatrices, if the loops are numbered from 1 to Nioops and
the stars are numbered from N, +1 to N. The equation
then becomes

ZOO Z*O aQ bo

b*

x

(3}

AL Z** x*

which can be solved by block Jacobi iteration, if Z 1s well
behaved. Good behaviour is guaranteed at 0 Hz because
Z*2 and ZO9% are then filled with zeroes.  (See
HELMHOLTZIAN COMPLEMENTARITY above.) It may
be that the Helmholtzian complementarity of loop functions
and star functions will guarantee the convergence of this
iteration at higher frequencies.

The potential speed-up is not as great as that for
point Jacobi iteration because both Z9 and
Z** peed to be LU decomposed. The required
time, relative to an LU decomposition of Z, is
(1/3)® + (2/3)®> = 1/3 (since the numbers of
loops and stars are approximately N/3 and 2N/3,
respectively).

CATASTROPHIC CANCELLATIONS IN

law to replace the closed-path integral fE, -dl with the
surface integral —jw/;B, -iida, where § is some surface
bounded by the path. A convenient choice for § is the part
of the triangulated surface enclosed by the testing path, We
do the numerical integration by sampling B,  at the
centroids of the four-sided “facelets™ inside the testing path.
See Figure 12. The centroid of each facelet is at
5/12r, + 7/12x, . The area of the n™ facelet is one-third
the area of the n® face.

There are some path integrals for which the Faraday
alternative is hard to implement. They are the testing
integrals of those loop functions that are lost whenever the
surface is multiply-connected. The paths of these integrals
will not enclose any triangulated surfaces at all! In these
cases the Faraday alternative would require the construction
of special (non-conducting) surfaces on which to sample
B, .. Also the basic loop-and-star model would have to be
modified to handle multiply-connected surfaces. We avoid
these problems by cutting the multiply-connected surface
into a simply-connected one. {See MULTIPLY-
CONNECTED SURFACES above.}) Then no testing path
will enclose an untriangulated surface.

It is conceivable that a numerical evaluation of the Faraday
surface integral can also suffer from catastrophic
cancellation. It could happen when the loop function is
anchored at the tip of a very sharp cone or at a very sharp
edge on the surface. But cases like these will not occur if
the surface is triangulated so that there are no acute angles
between adjacent faces. The no-acute-angle rule is implied
by the standard rule for a good triangulation: it must be

jAnchor Node of X Y
/i Loop re Centroid of n™ Face
r i of i* Loop

MAKING b°

Each entry in b9 in equation (5) is the integral
SE,_-d1 around the closed testing path of a loop
function. Sometimes the orientation of the
surface and polarization of the illumination can
combine so that the integral vanishes. This will
happen, for example, when a uniform plane wave
is normally incident on a flat plate. Since the
integral is computed numerically, the zero is
crudely approximated by catastrophic

cancellations. To avoid this, we use Faraday’'s  loop.

Centroid of n™ Facelet
of i* Loop

Facelets Enclosed by
Integration Paths

Figure 12 Computing the centroid of a facelet inside an integration
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dense enough to adequately describe the surface and the
sources on it

The CPU times needed to compute the &9 vector by either
side of the Faraday equation are roughly the same and are
minuscule when compared to the time needed to fill Z.

PROGRAMMING

Each entry zZ; in Z is the integration of E scat® due to the
j™ basis function, over the testing path of the i* basis
function. The most straightforward way to fill Z is to
compute an integral for each permutation of i and j
encountered in a column-wise scan of Z. (Row-wise if the
language is not FORTRAN.) But this is not the most time-
efficient way. Each integration calls a potential-integral
routine [4], which computes the potentials at a single field
point due to a source on a single face. Because basis
functions overlap and testing paths overlap, a scan of Z
would actually call this routine many times with the same
combination of source face and field point. Tt is therefore
much faster te do the computation for a given combination
only once and to then add the result to all the Zy that are
affected by that combination. This requires a scan of the
geometry for all permutations of faces taken two at a time
(since there is a field point at the centroid of each face.)

Notice that the scan is independent of the choice of model;
the faces of loop functions, star functions, and rcoftop
functions all carry the same Rao-Wilton-Glisson source
function (to within a weighting factor). Hence, it is natural
to design the program to do either loop-and-star modeling or
rooftop modeling. There is only a small amount of code that
actually depends on the choice of basis function. It
determines which z; (and which b,) are to receive an
accumulation. It also determines the weighting of each
accumulation.

In our program this basis-function-specific code is executed
before any entries in Z or b are computed. It simply fills
two identically dimensioned arrays. One array links each
edge of each face to the weighting factors, +1fI, of the four
possible functions (two loops and two stars) that cross that
edge. The other array supplies the corresponding indices,
i = 1N, of the loops or stars. The inner dimension of each
array is four because there can be up to four basis functions
that can cross each interior edge.

The rest of the code operates without any knowledge of the
type of basis function being used. It simply uses the two
generic arrays of weighting factors and indices to fill Z and
b, and then solves Zx =b. For example, if the program is
to do reoftop modeling then there is only one weighting
factor, 1, and one index per edge. The remaining three

locations along the inner dimension are simply filled with
zeroes so that the other accumulations amount to nothing.

The time to execute the basis-function-specific code is very
insignificant when compared to the O(N®) time needed to
solve Zx = b and the O(N?) time needed to fill Z.

CONCLUSIONS

The loop-and-star algorithm of Wilton, Lim, and Rao
effectively controls the catastrophic cancellation errors and
condition number that corrupt the low-frequency results from
the rooftop algorithm of Rao, Wilton, and Glisson. The
high-frequency limit of the loop-and-star algorithm is as
large as that of the rooftop algorithm, W/A = 1; and the low-
frequency limit is much smaller, at least W/A =2x1078.
Electrostatic and magnetostatic simulations can now be done
with confidence.

The basic loop-and-star algorithm can treat only simply-
connected surfaces. But this restriction has little practical
impact because multiply-connected surfaces, self-intersecting
surfaces, and one-sided surfaces can be readily “cut” into the
required topolegy without altering the set of rooftop
functions that they carry.

The impedance matrix from a loop-and-star model is not
diagonally dominant. But it is more 50 than one from a
rooftop model. In fact, the rows of Z that test the loop
functions all have a diagonal-dominance ratic greater than
one. It is only the rows that test the star functions that have
a diagonal-dominance ratio less than one. It might be
possible to redesign the star function so that all rows of Z
are diagonally dominant. In any case, the matrix equation
Zx = b from a loop-and-star model is more likely to be
solved by a converging Jacobi iteration.

Catastrophic cancellations can corrupt those entries in the
b vector that participate in loop testing. This can be
avoided by using the Faraday law to replace the closed-path
integral §E, -dl with the surface integral -jw/;B,, -iida,
where § is some surface bounded by the testing path.
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