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Abstract

In applying the Uniform Geometrical Theory of Diffraction (UTD) to evaluate the
scattering patterns of a doubly curved surface, the determination of correct ray paths
is one of the most important and difficult tasks. In this paper, an efficient numeri-
cal technique to obtain the complete ray path of the creeping wave for the bistatic
scattering of an ellipsoid is discussed. Also, the numerical method to evaluate the
energy spreading factor of the creeping wave and the caustic distance at the diffraction
(launching) point are described. An ellipsoid is chosen because of its modeling capa-
bility to represent the fuselage of an aircraft and similar objects. The same numerical

techniques for an ellipsoid can be extended to a general doubly curved surface as well.

*This work was supported by Naval Weapons Center under contract No. N60530-85-C-0249
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I. Introduction

When the receiver is in the shadow region of an incident ray, or in the lit region where
the rays do not travel a long way around the surface, the surface creeping wave fields can
provide a significant contribution to the total field. Since the creeping wave in the UTD (1]
expression is related to the parameters of the scatterer’s surface, it is necessary to have
knowledge about the differential geometry {2] of a scatterer and to find the geodesic paths
on the given surface. In general, it is a difficult time consuming task to find the creeping

wave paths for a given source and receiver location.

Efficient numerical techniques to evaluate the complete ray path from the source to the
surface geodesic then to the receiver location, the energy spreading factor for the creeping
wave, and the caustic distance at the diffraction point are developed in this paper. Barger’s
algorithm [3] for the geodesic path on a general surface is adopted in this study to trace
the ray path on the ellipsoid surface. The present results are compared with those of an

alternative method [4].

In order to find the complete creeping wave ray path, both the attaching (grazing)
point and the launching (diffraction) point pairs for a given source and receiver location
need to be determined. To find the attaching points for a given scattering direction, one
can use the tangential arc on an ellipsoid which is defined by a zero dot product of the
surface normal vector and incident unit vector from the source to the ellipsoid’s surface.
Once the tangential arc on the ellipsoid is determined, a potential starting point on the
tangential arc can be chosen with its initial condition of the tangential starting direction by
which a unique geodesic path is defined. Having the starting point and tangential starting
direction, the differential form of the geodesic equation can be solved in a numerical way.
After making a small incremental step along the geodesic path, it is necessary to test
whether the geodesic tangent vector will point directly at the receiver location or not. The
same procedure is repeated for the subsequent attaching points along the tangential arc for
the given source and receiver until all the possible attaching and launching point pairs are
found. Usually there are four ray paths for the given source and receiver pairs. Once all
the attaching and launching point pairs and the corresponding geodesic paths are found,
the energy spreading factor for the creeping wave and the caustic distance at the launching

point are determined numerically.

Once the attaching (grazing) and corresponding launching (diffraction) point pairs for

the given receiver location are known, the receiver is assumed to move a small amount,
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then the new attaching and launching point pairs for the new receiver location can be
found by utilizing a bisectional search technique. If the receiver goes into (or comes out
of) the shadow region, or goes through a caustic region, the start-up algorithm mentioned

in the previous paragraph needs to be reinitiated.

In the following sections, a numerical method to determine the ray paths based on the
differential form of the geodesic equation is described. Also, the numerical evaluation of the
energy spreading factor and the caustic distance at the launching point are presented. Some
numerical examples of the geodesic paths on an ellipsoid are given for bistatic scattering.
The full analysis of the UTD approach for bistatic scattering of an ellipsoid are available

in Reference [5,6], it is not repeated in this paper.

II. Geodesic Path on an Ellipsoid

The surface of an ellipsoid, illustrated in Figure 1, is given in vector parametric notation
as

R = asinucosvZ + bsinusinvy + ccosuz (1)

where v and v are the two elliptic parameters defined as shown in Figure 1, and their
definitions are similar to those of § and ¢ of the spherical coordinate system. In general,

the geodesic equation (Reference [2], pg. 234) must satisfy

d*u du dv dv
d 2 Fil(_) 21-‘%2(1 d, P;2(E§)2 = 0’ (2)
and dv du d d
u dv v
ds? + Pfl("‘)2 2Ffzd ds + 1—‘;2(5)2 =0 (3)
where the geodesic arc length is defined by
ds dR-dR = VEdu? 4+ 2Fdudv + Gdv?. (4)
The parameters used in Equation (4) are defined by
E = R, R, (5)
F = R,'R, (6)
G = R,-R, (7)
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where R, and R, represent the partial derivatives of R with respect to u and v, respectively.

The Christoffel symbols of the second kind I'}, (Reference [2], pg. 202) are given by

GE,—-2FF, + FE,

My = 2EG — F?) (8)
r, - %J_—T) (9)
h = Fee— (12)
e Esz(—EZCf‘f’u ; )FG., 13)

where the subscript u and v denote the partial derivatives with respect to v and v, re-
spectively. After some algebraic manipulation of Equations (2), (3), and (4), the geodesic

equation in differential form is obtained as:

d*u du du du
dv? = Ff1(%)3 + (2sz - Fil)(%)z + (ng - 2Fi2)’a - 1";2, (14)
or 7 P J ]
v v v v
;EE = Féz(@)a + (2Fi2 - ng)(&;)z + (F}I - 21132)‘(1—1; - sz- (15)

In order to solve the above geodesic equations, we need two initial conditions, i.e., (%, v)|,=0
and %|,=0, where s represents the geodesic arc length on an ellipsoid. The first initial
condition specifies the attaching point which lies on the tangential arc defined by the scalar
product of the unit normal and the unit vector from the source to the ellipsoid’s surface,
and the second condition defines the unique geodesic tangent vector which determines a

ray path along the ellipsoid’s surface.

III. Complete Creeping Wave Paths

As mentioned earlier, all attaching points will lie on the tangential arc on the ellipsoid’s
surface. The tangential arc for a given source located at (z,,y,, z,) is obtained from the
fact that the surface outward normal vector and the incident tangential vector from the

source to the ellipsoid surface are orthogonal to each other. The outward surface normal
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Figure 1: Geometrical configuration of an ellipsoid.
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vector on an ellipsoid is

fi = besinu cosvE + acsinusinvy + abcosuz, (16)

and the incident tangential vector from the source to the ellipsoid surface is

f; = (asinucosv — z,)& + (bsinusinv — y,)J + (ccosu — z,)2. (17)

Since 7 - §; = 0, we have an equation of the tangential arc, illustrated in Figure 2, as

T,sinucosv yY,sinusinv  z,co8U

. ; — =1 (18)

Note that all the possible attaching points lie on the arc defined by Equation (18). Let
us assume that the field radiated by the source is incident upon a point (u,v)]s=0 on this

tangential arc. (Note s = 0 means that the point is on the tangential arc.)

Now define the incident unit vector I as

I = -I—:.—I_Im+Iyy+Iz
(asinucosv —z,)& + (bsinusinv — y,)§ + (ccosu — z,)2
= (19)
A
where
A = /(asinucosv — z,)? + (bsinusinv — y,)? + (ccosu — z,)?. (20)

The first step to determine the appropriate geodesic path is to project the vector I onto
a finite section of an ellipsoid surface. The projected vector T’ for the geodesic arc-length

As is given by

T = (RuzAu+ RucAv)E + (RuyDu + R,y Av)j + (Ru:Au 4+ R, Av)Z
= La+ILj+1L2 (21)

where the first subscript u and v represent the partial derivatives of R with respect to u
and v, respectively, and z, y, and 2z stand for the z, y, and z components of R, and R,,

respectively. Solving the above equation for Au and Av, we have

(EG — F*)Au = (Rl + R, + R )(Rucl, + RuI, + R,.I}) -
(RuzRvz + RuyRuy + Ru.R..) (R I, + R, I, + R,.I)), (22)
(EG — F)Av = (Rl + Ri, + Ri.)(Rucl, + + Ry, I, + R..I}) —
(

RuwRos + RuyRuy + RusRus)(Rual, + Ruyly + RucL). (23)
Y y Yy
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Figure 2: Tangential arc for a source at (r, = 12X, 6, = 45°, ¢, = 60°). Dimensions of an
ellipsoid are a = 8, b = 4, ¢ = 3.
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In Equations (22) and (23), I, I, and I, can be related to I.,I,, and I as

y Ly ty
I I
A (24)
I I,

Using the above relationships with Equations (22) and (23), we obtain the first derivative
initial condition for the geodesic Equation (14) or (15) as

du Au _Il

EIG:O = Ejla:ﬂ = Tz (26)

where
2 2 2 Iy Iz
T1 = (Ruz + Rvy + sz)(RUE + Ruy'I_ + RUZI_ -
I I,
(Ru:nRaJm + RuyRuy + thRuz)(Rvm + -R'uy'jg + szI_)a
I 1,
T, = (R, + R, + R.)(Ru: + R,,,,}! + R 7") =
I I,
(RumRva: + Ruvay + Rfquvz)(R‘ua: + RuyI_y + }zuzI_)

Once we have the two initial conditions of the attaching point and its first derivative
value given by Equation (26), the surface geodesic path on the ellipsoid is uniquely de-
termined. Now the initial search algorithm can be established in the following manner.
Let the first derivative % at the jth point along the geodesic path be %b, then the first
derivative at the (j+1)th point (i.e. after the small distance increment along the geodesic)

can be approximately obtained using the Taylor series expansion as

du du d*u

£|j+1 o~ %Ia"*'AvE;ba or (27)
dv dv d?v et dv

@lm o~ E|5+Avﬁ|j, if [22] <1 (28)

where -‘%2‘* and g—jﬁ are given by Equations (14) and (15), respectively. By increasing the
value of v (or ©) by a small amount (i.e., dv or du depending on the ratio |94(), the geodesic

Equation (14) or (15) with Equation (27) or (28) can be solved.

Now our task is to find the four creeping wave paths that will go from source to observer
located off the ellipsoid. This is accomplished by first finding a set of creeping rays for
the given source and receiver location by a brute force search. In Figure 2, let @ be

the launching (diffraction) point corresponding to the attaching point Q. Just like at the
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attaching point, where the incident vector I given in equation (19) needs to coincide with
the tangent vector of the creeping wave ray at @, the geodesic tangent unit vector  and
the vector from the launching point to the receiver Q'P must coincide. This can be written

as

QP -ilg =1. (29)

Based on the above fact, the candidate creeping wave paths from a given starting point
can be tested for early elimination during the search process by checking the dot product
of the geodesic tangent unit vector with a ray from the local creeping wave point to the
receiver. If this quantity is converging to unity the search process is continued. If it starts
to diverge, the process is stopped and the next starting point along the geodesic tangent
arc is chosen and tried. The detailed description of the criteria for the search algorithm is
well documented in [6]. Once four paths are found the search stops and the parameters for
the UTD field calculations such as the energy spreading factor, attenuation factor, and the
caustic distance at the diffraction point are evaluated numerically. Note that this initial
searching algorithm needs to be reinitiated if the receiver goes into (or comes out of) the

shadow region, or goes through a caustic region.

Once a given set of creeping wave paths for the initial source and receiver location are
known, the entire ellipsoid need not be searched. The next set of rays corresponding to a
new observation point is found using a bisectional search. The method proceeds by looking
at a tangent start location on either side of the known path. The signs of convergence are
checked. Once the direction is known, another point is taken on the correct side a small
amount over or half way in between paths previously chosen until the right path is found.
A given path is normally found in about four tries. This is done for all four paths. This
can speed up the solution by a very significant amount. Our experience is a speed up of

around 20 times over the brute force search used for the entire pattern cut.

IV. Numerical Examples of Geodesic Paths on an El-
lipsoid

In Figure 3, the geodesic path for a source located at (r, = 12X,6, = 45°,¢, = 60°)

is shown. In this figure, the starting (attaching) point on the tangential arc is defined

by v, = 135° and u, = 90°. The dimension of ellipsoid is 8X X 4\ x 3A. In Figure 4,
four complete ray paths for the given source located at (r, = 12,6, = 45°,¢, = 180°)
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Figure 3: Geodesic path on a a = 8A,b = 4A,¢c = 3 ellipsoid. Attaching point is defined
by v, = 135°,u, = 90°.

and receiver located at (r, = 8,0, = 135°,¢, = 0°) are presented. The ellipsoid has a
dimension of 4X x 2A x 1.

In order to verify the present approach, comparisons are made between the present
results and calculated data given in [4]. Figure 5 shows the geodesic tangent defined by
the radial vector direction (8, ;) for a given 7y on 4 x 6 X 40X ellipsoid. The definitions
for the radial vector parameters (;,#;) and v are illustrated in Figures 6(a) and 6(b),
respectively. Note that the parameter ¢ in Figure 5 is the argument of the Pekeris’ Caret
functions [7]. The solid line represent the perturbation method (4], the dotted line is for the
integral form of the geodesic equation [4], and the black dots are for the present approach.
There exists good agreement between the present approach and the solution using the
integral form of the geodesic equation. Comparisons of the geodesic paths defined by the
surface parameters (fq,¢q) for given vy on 2) x 3) x 20X ellipsoid are made in Figure 7.
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Figure 4: Four creeping wave paths for a given source and receiver location on a 4AX2Ax1A

ellipsoid.
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The surface parameters (8g, ¢g) are illustrated in Figure 6(c). There also exists excellent

agreement among results.

V. Determination of the Energy Spreading Factor and

Caustic Distance

In the calculation of the UTD creeping wave, the proper values of the energy spreading
factor (\/g-f,u:- ) and caustic distance at the diffraction point (p?) play important roles for not
only the amplitude but also the phase of the creeping wave. In general these quantities
are not easy to determine. In this section, a numerical method to determine these param-
eters are described based on the differential geometry information readily obtained in the

complete ray path section.

A coordinate system in which the parameter curves are orthogonal to each other, and
one of the families of parameter curves is geodesic, is called a set of geodesic coordinates.
Let the s- parameter curves be geodesics and w-parameter curves be orthogonal to the
s-parameter curves. Now we define X = X(s,w) as the vector notation of an arbitrary
arc on a surface. In general, if the two parameter curves on a patch are orthogonal, the

Gaussian curvature K is given by

-1 [8(108/G), K6 8 (18VE
x=7ra (5 (5% )+ 5 (Voo )| o
where
X (s,w) 0X (s, w)
E = _0Os . _0Os ’ (31)
0X(s,w) 0X(s,w)
¢ ow  Ow (32)

If X(s,w) is a set of geodesic coordinates on a surface of class > 3 such that s-parameter

curves are geodesics and s is a natural parameter, then E=1 and Equation (30) becomes

_DLdve
)= VG ds?

where K (s) is a Gaussian curvature along the geodesic path, which is a product of the two

K(s (33)

principal curvatures. By noticing that parameter curves are geodesics, one can interpret
VG as the surface ray tube width which is orthogonal to the geodesic. Namely, VG in

Equation (33) is the quantity of our interest to evaluate the energy spreading factor. Since
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Figure 5: Comparison of the geodesic tangent defined by the radial vector direction (6;, ¢;)

for given v on a 4A x 6A x 40X ellipsoid.
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Equation (33) is a second order differential equation, we need two initial conditions. They

are given by

VG@|,=o = 1, and (34)
dvVG 1 |
_d';'-lazo = K= I (35)

where s represents the geodesic arc length and R, is the transverse radius of curvature
of the incident wavefront at the incident shadow boundary in the plane tangent to the

surface.

Let y = VG, then Equation (33) can be written as

d?y
P +K(s)y=0 (36)
with the two initial conditions
y|a=0 = 1 (37)
d
d_f =0 — Kt. (38)

Let @ be the initial (i.e., attaching) point and Q' be the launching (diffraction) point on
the surface. If we know the value of y at the present location (i.e., nth point) along the
geodesic path, then the value of y at (n+1)th point (i.e., after making As increment from
nth point along the geodesic) can be obtained by keeping terms up to second order in the

Taylor series expansion as

As)? "
Yn+1 =~ Yo+ (AS)Y +—£—E;l-yn, (39)

Yni1 = Yn+ (AS)yn (40)

where the prime(/) represents the derivative with respect to the geodesic arc length s.

Finally, the energy spreading factor ,/ﬁ:—:ln* is given by

Yls=o _ 1
Yl - \/a]Q'. (41)

Since the surface ray tube at the diffraction point @' can be localized, as shown in

Figure 8 , we have
(42)
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Figure 8: Local geometry for the calculation of pj at the diffraction pornt Q'
By replacing Y., to dn and y, to drn, in Equation (39),
As)?
dn ~ dn. + (o)ar + S g, (43)

By solving Equations (42) and (43) for p3, the caustic distance at the diffraction point is
obtained approximately as

i o e dnlAs + dny AL
T dptdmyy

o 2

(44)

The parameters used in Equation (44) are defined as

dn : surface ray tube width at the diffraction point Q’,
dn, : surface ray tube width at (sg: — As),

dn : the derivative of dn, with respect to s,

dn!” : the second derivative of dr, with respect to s, and

As is the incremental step size of the geodesic arc length.

VI. Conclusion

Numerical techniques to determine the UTD creeping wave path for the bistatic scattering
of an ellipsoid is investigated. Also the energy spreading factor of the creeping wave and
caustic distance at the diffraction point are obtained in terms of the differential geometry

information furnished by tracing the ray path from the source to the surface geodesic then
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UTD

method of moments

Figure 9: Far zone bistatic scattered field of a 2A x 1A x 1A spheroid with E-plane polar-
ization with the incident field fixed at (8, = 90°,¢, = 15°) and the pattern taken in the
6, = 90° plane. The scale is in 10 dB steps.

to the receiver off the surface. Some geodesic paths on an ellipsoid for a given source
and receiver location pair are calculated and compared to the data obtained by other
methods [4]. There exists good agreement among them. The approach developed can
provide about a factor of 20 speed improvement over a brute force way of finding the

creeping wave paths.

The numerical methods described in the previous sections are not only valid for an
ellipsoid but also applicable to a general doubly curved surface. The major change is in
determining the original attaching points. For a general surface, this may require a slow
search process. The key point, however, is that the solution can be greatly speeded up by

using a bisectional search for the subsequent ray paths.

When these numerical methods are applied to calculate the UTD bistatic scattering
patterns of an ellipsoid, a sphere, and a spheroid [5,6], there exists good agreement between
the UTD results (present numerical approach) and exact or body of revolution method
of moments results except for the caustic regions. As an example of this, the far zone
bistatic scattered field pattern of a 2X x 1A x 1\ spheroid is shown in Figure 9. The
polarization is parallel to the plane of incidence. The field is incident from a fixed direction

of (8, = 90°,¢, = 15°). The observer is at (6, = 90°,¢, = ¢). The UTD results are
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compared to a body of revolution method of moments code. There is excellent agreement

except at the forward scattering caustic of ¢ = 135° and the local caustic where one of the

creeping wave ray tube spread factors converges at around ¢ = 50° in the pattern.
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