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Abstract: It is a basic premise in electromagnetic field modelling that the tangential
electromagnetic field on the surface of ideal conductors must vanish. When point matching
13 used to impose this condition, the location of the matching points must be chosen. This
paper treats the special case of thin wires. It is shown that for common approzimations of
the wire currents, the optimum locations of the matching points are well defined and that
forcing the boundary condition beside these well defined matching points would increase
the errors. For both piecewise-linear and staircase approvimation of the current, explicit
formulae for the optimum location of the matching points are given.

Introduction

To find the current in a wire one uses an equation of the form
E, =0, (1)

where F, is the longitudinal tangential component of the electric field on the surface of
the wire. If the wire is thin, E, is small compared to other field components at the
same location. Nevertheless it is the only component to be matched. For an approximate
solution, E, will never be zero on the whole surface of the wire, but only in particular
points. The most simple procedure for finding an approximate solution of (1) is point-
matching, where the wire is segmented and then one matching point is placed in the
center of each wire segment. MMP [1] uses an extended point matching technique and lets
it up to the user to place any number of matching points. (A minimum of one matching
point per segment is necessary.) Equations (1) are then solved in the sense of least squares.

It has been found that the results obtained by the MMP-program are unstable in
certain cases. In particular, an increase of the number of matching points did not lead to
better results [2]. A closer look at the error of (1) along wires shows a great regularity of
the error distribution.

In this paper, we shall show that the behavior of the error of E, along the wire is
well defined. Depending on the expansion functions of the current, there are zeros of E,
at certain points. Besides these points, E, should never be forced to be zero, since such a
forcing would affect the current in a highly unintended manner.

The following scheme gives the principal way to find the results:

Calculate of E, of an arbitrary current I(z) on a wire (analytically)

Approximate I{z) by a staircase function (like MININEC) or a piecewise-linear func-
tion (MMP) and calculate E, of the approximated current (analytically)

Define the systematic error as the difference E, — E,

Use zeros of the systematic error as optimum locations for matching points
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The reason why the zeros of the systematic error are optimum locations for matching
points is quite obvious: if one would try to push down the error at a location, where the
systematic error is nonzero, the error of the solution is increased, since the systematic error
cannot be eliminated. '

As a principal result, we shall find that these optimum locations are highly independent
of the global shape of I(z), but only a consequence of the local ‘misfit’ of the expansion
functions vs. the exact field. As a matter of fact, the optimum locations of the matching
points depend on both the expansion functions and the unknown field. Therefore, both of
them have to be considered to find good rules for the placing of the matching points. To
get rid of this highly contradictory situation — the unknown field must be known — we
shall consider that class of unknown current distributions which can be represented by a
converging Taylor series. It i1s worth noting that the behavior of the expansion functions
alone is not sufficient to find the optimum locations of the matching points.

Taylor-Representation of the Exact Current- and Charge Distribution

Let us consider a straight (thin) z-oriented wire with radius r which is carrying a current
Lexact(2). On a piece of finite length L of this wire, the current may be represented by a
power series’

N
Lgact(2) ® I(2) = > ans™ 2)
n=0
We assume, that the finite power series (2) is able to represent the function Iexact(z) within
the length L so that no further error considerations are necessary. Later on, we shall divide
up the length L into segments and we shall focus on the local effects of this segmentation.
From this point of view, the assumptions are reasonable,
Due to the charge conservation principle, the current distribution I(z) is accompanied
by the charge distribution?®

N
a2) = = = L3, 0m (3)
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As a further assumption, we state, that L is much smaller than the wavelength A, so
that the electric field E may be caleulated from ¢(z) by means of electrostatics. Slnce we
are only interested in local effects, we do not consider the field, which is produced by the
currents and charges beyond the length L. This field is not necessarily small but almost
constant along L. In particular, it does not vary on a segment of L. For this reason, it
has no importance for the loca.tlon of the matching points relative to the segment.

The z-component of the E-field is obtained from ¢(z) by Coulomb’s integral:

L L
2 N 2 e
E’zg('r,z) — 1 / Q(zi)(z — z!) dz = 1 § :nan (z') l(z B z') dz' (4)
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Convergence is given, if L is suficiently small and I(z) is smooth.
? Time dependency of e~i*? is assumned1
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Figure ! Diflerent current distributions cause different distributions of the z-component

of E. The pictures show the four parts of F, for n =

1...4 with a,, = 1,

r = 0.1 and L = 10. At the middle and at the bottom, details of the interval
0 € z £ 2 are shown. The numerical values are obtained from (3), omitting the

factor 1/(4miwe). We focus on the area around z = 0.

The integral on the right hand side may be solved analytically for any n. These solutions
and the plots of these functions have been obtained using Stephen Wolfram’s ‘mathemat-
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ica’. [3] (See fig. 1!)

Due to the superposition principle, each term may be treated alone. Provided that
the optimum locations for matching points being the same for each n, these locations are
optimum for any I(z). This is exactly what we shall find.

At the ends of L, we assume a constant continuation of the current. Otherwise, the
steps in the current distributions would cause point charges at the ends, which would
disturb the results in producing an additional large electric field.

Staircase Approximation

The wire of length L is cut into J segments of equal length [ = L/J. Then the function
I(2) is approximated by a staircase. (See fig. 2!) The same approximation 1s used in
MININEC [4]. Note that the point-matching technique which is described in this paper is
different to the (more sophisticated) procedure used in MININEC.,

polygon\
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Fiqure 2 The smooth current [(z) is approximated by staircase (like MININEC) or
piecewise-linear functions (MMP). Each type of approximation is accompa-
nied by its typical (erroneous) charge distribution. It is this charge distribution
which causes a relatively big error in the local distribution of the longitudinal
electric field.
Let?
. J . J
z; =13l —— <3< = 3
7 74 9 — J = 2 ( )

be the z-coordinate of the boundary between the j-th and the (7 +1)-th segment. In the

¥ For simplicity’s sake, J is assumed to be even!
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j-th segment the current is constant and equal to

I(zj—%) for—l+1§j§;’-
I; == ¢ I(z;) for j = —4 (6)
I(z;-1) for j = 4 +1

Le., we assume the approximation being exact in the center of the segment. The special
definition of the last two currents is due to the constant continuation beyond L. This
current distribution leads to point charges @}; located at the segment boundaries z;. One
has

1
Qi = i+ = 1) (7)
From that, we obtain for the z-component of the resulting electric field

A
1

[

Qi-(r—z) 1

1
E.s(r,z) = — = —
dme =g \/T2 + (Z _ Zj)23 driwe .

(Liv1 = L)z — =)
\/7.2 +(z — ZJ‘)23

(8)

(X

The sum has J + 1 terms, because a line of J segments has J + 1 boundaries. Figure 3
shows the big variation of E, along the wire and in particular along a single scgment.

Let us define now the systematic error F' as the difference between the “exact” result
(4) and the approximation (8):

Fi(r,z) = B (r,z) — E(r, 2) (9)

where the upper index n denotes the power of the current: I(z) = z". It is clear, that
FY must vanish, since the staircase approximation of a constant function is exact. Figure
4 shows the functions FJ' along the segments 1 and 2. The values around z = 0 are
not typical, because of the superimposition of a non local effect due to the symmetrical
situation: With odd powers of the current distribution (i.e., even powers for the charge
distribution), the far action of the discretization errors are cancelled due to symmetry.
However, with even powers of the current distribution (i.e., odd powers for the charge
distribution), these actions add together and cause a vertical shift of the curve. For these
reasons, the behavior in the second segment is more typical.

In general we can say that for all powers n, the systematic error has a relatively flat
zero in the middle of the segment. For that reason, it is optimum to place the matching
points in the center of the segment. The second zero (close to the segment boundaries)
is not useful for this purpose, because the error function is much too steep in this area.
Considering the exact values of E, (see fig. 1!), we find that the error is not negligible at
all.

As a preliminary conclusion we state: For staircase approximation it is optimum to
place matching points in the center of the segments — and nowhere else. This is duc to
the fact that the systematic error cannot be eliminated. A placing of a matching point at
a position with a high systematic error would increase the global error of the field in such
a sense, that the sum of the two vanishes.
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I'iqure 3 The staircase approximation of the current gives a much less smooth behavior
of £, than the smooth current in fig. 1. See particularly the big values in the
center (near z = 0)! The picture shows the four parts of E. for n = 1...4 with
an, =1,7=0.1, L =10 and J = 10 (— segment length { = 1). At the middle
and at the bottom, details of the interval 0 < z < 2 are shown. The numerical
values are obtained from (9), omitting the factor 1/(4miwe).
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Fiqure 4 The systematic error F;' of E, (using a staircase approximation of the current)

depends on the wire radius r. Since the length of the segments has been kept
constant, the ratio length/radius of a segment is actually varied. The change of
the vertical scale at the bottom of each picture shows the poor flatness of the
zero. As expected, the absolute value of the errors decreases with increasing
radius, Note that the numerical values in fig. 1 are related to a wire radius of
r=10.1
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Figure 4 Continued, see above!

Piecewise-linear Approximation (MMP)

As it has been already done in the previous section, the wire of length L is split up
into J segments of equal length ! = L/J. Other than before, the function I(z) is now
approximated by a piecewise-linear function4. In the j-th segment, the current is a linear

function:

Ii(z) = I(zj1) + 1) _[I(Zj_l)(z — zj-1) (10)

4 In the MMP-programs, I(z) is approximated using the functions coskz and sinkz, where k is the
wave number of the surrounding medium [2]. Since the segments are small compared to wavelength, these
two functions tend to 1 and z.
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Figure 4 Continued, see above!

1.e., we assume that the approximation is exact at the segment boundaries. (See fig. 2!)
This approximation of the current distribution leads to a constant charge distribution g;
on the j-th segment:

_ 1 I(z) = I(z5-1)

%= 5 {
and the z-component of the resulting electric field is

(11)

nae,

zj
(o
E.ulr,z) = L 9 (2=7) dz'

dre /2 AV
=—it+1, VT +(z—2")
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Obviously, this sum has one term less than the one in (8). Figure 5 shows the variation of
E. which is now much smaller than the one shown in fig. 3.

Again, the systematic error F}* is defined as the difference between the “exact” result
(4) and the approximation (12):

Fln(r’ z) = E?l("“v z) - E:’O(T,Z) (13)

where the meaning of the upper index is the same as in (9). It is clear, that both F}? and
F} vanish, since the piecewise-linear approximation of a linear function is exact.

Considering the systematic error we find —- as in the staircase approximation — a
great regularity, which is qualitatively equal for all powers. On the other hand, there is
a fundamental difference: The zeros of the systematic error do not occur in the middle of
the segments, but more close to the segment’s boundaries. (See figs. 6 and 7!)

Due to the global effect in the middle of L (vertical shift of the even order curves and
a zero at z = (0 for the odd orders due to symmetry), the first zero after z = 0 is not
used. (For the numbering of the zeros, see fig. 6 at the bottom.) The exact location of the
zeros of the systematic error is a function of the radius r; the order n and the number of
the zero. Figure 8 shows this locations as a function of the wire radius r. Note the great
regularity!

Due to the fact that the lowest order (here n = 2) is most important and, on the
other hand, curves for different zero numbers are — at least for small radii, i.e. thin (long)
segments --- almost equal, it makes sense to use e.g. the third zero of the second order as
a reference. The bigger variation at r/l-ratios more than 1/3 does not matter, since the
absolute values of the systematic errors decrease with increasing wire radius.

We conclude: For piecewise-linear approximation, matching points in the center of the
segments should be avoided. There are two optimal locations for each segment, symmet-
rically placed at a distance d away from the segment’s boundaries.
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Figure 5 Compared with fig. 1 the plecewise-linear approximation of the current still
gives an unquiet behavior of E,, but the improvement with respect to the stair-
case approximation (fig. 3} is obvious. The pictures show the four parts of E,
forn =1...4withe, =1, r =01, L = 10 and J = 10 (— segment length
[ = 1). Al the middle and at the bottom, details of the interval 0 < z < 2
are shown. The numerical values are obtained from (12), omitting the factor
L/ {(Amiwe).
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Figure 6 The systematic errors F7° (in the case of a piecewise-linear approximation for

the current) are very similar for dJifferent powers. At the top, the figure shows
the systematic errors of the order n = 2...4. At the bottom, the most im-
portant order 2 is given individually. The numbering of the zeros (numbers in
circles) starts at the second one. This is due to the symmetry caused fact, that
the even curves (from 4-th order on) are vertically shifted down around z = 0,
while odd curves have a zero at z = (0. The distance between the zeros and the
segment boundaries (here integer valued z’s!) is the important parameter for
placing matching points.
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Figure 7 The systematic error FI" of E, when using a piecewise-linear approximation
of the current depends on the wire radius ». Since the length of the segments
has been kept constant, the ratio length/radius of a segment is actually varied.
Note that the numerical values in fig. 1 are related to a wire radius of r = 0.1,
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7 Continued, see above!
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Figure 7 Continued, see above!

Polynomial Approximation of the Zero's Relative Position

We have chosen as a reference the zero number 3 of the quadratic term of the current. It is
located at a distance d3 away from the segment’s boundary. This distance dj is a function
of the wire radius r: d3 = ds(r). ‘Mathematica’ [3] does the job to expand the function
d3(r) into a power series of m-th order. We normalize the segment length to 1 and find:

d3(r) = 0.1246832 + 0.572177r — 0.7090428r*
dj(r) = 0.1085357 + 0.8932547 — 2.043528r% + 1.48029473 (14)
d3(r) = 0.0978577 4 1.245951r — 4.679222r% + 8.298414r° —~ 5.672312r*
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Figure 8 The relative position of the zeros of the systematic error varies only little.

The pictures show the distance d; between the i-th zero and the next segment
boundary as a function of the wire radius . Only the second and the third or-
der is shown. The position of the zeros with higher numbers are inaccurate due
to end effects of the model (only 10 segments).

The upper index denotes the order of the approximations, which are valid within the
interval 0.001 < r < 0.6.

The deviation of the true value is maximum at the border of this interval. We denote

the biggest deviation downwards (approximation smaller than true value) with l,. and the
biggest deviation upwards (approximation bigger than true value) with u,,. Mathematica
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delivers

l> = 0.05406; uy = 0.00926
I; = 0.03824; uz = 0.00634
{4 =0.02791; g = 0.00471
[z = 0.02208; us = 0.00396

Comparing these numbers with the true value (& 0.2) and considering the variation be-
tween the different zeros (see fig. 8!), an approximation of ds(r) of 4-th order is sufficient.

Summary

We have found that the positions of matching points along thin wires must be chosen
carefully. Depending on the segmentation and the type of the approximation of the currents
in the wire, optimum matching point positions are different. The results have been found
by examining the error produced by a ‘best fit’ of some expansion set (staircase and
plecewise-linear expansion functions) to an arbitrary current distribution.

The free choice of matching points in the MMP-code is an error source which could be
avoided. Using MMP one should set two matching points for each segment, symmetrically
located at a distance d away from the segment’s boundaries (see eq. (14)!). This choice is
optimum at all locations where the current I{z) is either concave, convex or linear.

As a further result, we find that the point matching technique is preferred to any other
method to satisfy boundary condition (1), as long as the current is a) approximated by fixed
functions and b) strictly coupled to the electric field through Maxwell’s equations. This
second point is not fulfilled, e¢.g., by MININEC: it uses a piccewise-constant approximation
of the charge distribution, which would be related to a piecewise-linear current distribution.
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