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Abstract

In this paper we review a numerical method we intro-
duced recently for the solution of problems of electro-
magnetic scattering. Based on variations of the bound-
aries of the scatterers and analytic continuation, our ap-
proach yields algorithms which are applicable to a wide
variety of scattering configurations. We discuss some re-
cent applications of this method to scattering by diffrac-
tion gratings and by large two-dimensional bounded bod-
ies, and we present results of new applications to three-
dimensional gratings containing corners and edges. In
many cases of practical interest our algorithms give nu-
merical results which are several orders of magnitude
more accurate than those given by classical methods.

1 Introduction

The problem of calculating the electromagnetic scatter-
ing produced by obstacles is one of utmost importance
in science and engineering. Much of what we “see” —be
it through visible light or x-rays, radio or microwaves-
reaches us through a complicated combination of phe-
nomena among which scattering is, in most cases, an
essential element. In accordance with the substantial sig-
nificance of scattering, a great deal of effort has been de-
voted in the last century to treating a variety of instances
of this challenging mathematical problem. Among the
many resulting contributions we mention exact solutions
for simple geometries, high and low frequency approxi-
mations (Kirchoff and Rayleigh solutions) and rigorous
numerical methods.

Consideration of exact solutions associated with sim-
ple scatterers, such as a semi-space or a spherical par-
ticle, has lead to fundamental understanding in optics
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and electromagnetism. Many problems encountered in
practice, on the other hand, are associated with ge-
ometries for which exact solutions cannot be found and
simple approximations cannot be used, and which must
therefore be dealt with by means of numerical solution
of Maxwell’s equations. This is the case, for exam-
ple, for scattering configurations in the resonance re-
gion —where the wavelength of radiation is comparable
with the size of the obstacle. The collection of scat-
tering solvers which have been devised to treat these
problems includes methods based on the solution of in-
tegral equations [17, 27, 35, 25, 22, 11] and methods
based on finite elements or finite differences approxima-
tions [3, 14, 19, 28). In this paper we review a method we
introduced recently. Based on variations of the bound-
aries of the scatterers and analytic continuation, our new
perturbative approach leads to algorithms which are ap-
plicable to a wide variety of scattering configurations. In
many cases of practical interest these algorithms yield
numerical results which are several orders of magnitude
more accurate than those given by classical methods —
see §5.

For several decades perturbation methods have been
considered inadequate for the treatment of problems of
wave scattering, and only few of the many discussions,
mainly in the area scatiering by corrugated surfaces,
have been based on perturbative techniques. Low order
perturbative approaches include the first order calcula-
tion of Rayleigh [31]; see [37] for a more recent contri-
bution. As for higher order methods we mention the
work of Meecham [26], Greffet and Maassarani {16] and
Lopez, Yndurain and Garcia {20]. Low order methods
are only appropriate for very small departures from an
exactly solvable geometry, and they cannot be applied to
scatterers in the resonance region {23, 33]. The high or-
der approach of Meecham produces the scattering from &
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corrugated surface as a Neumann series whose n-th term
is given by an n-fold convolution of the Green’s function.
This method, which Meecham did not implement numer-
ically, was thought to be mathematically incorrect [34]
and dismissed. Later, Greffet and Maassarani studied
these perturbations expansions and proposed that their
convergence is tied with the validity of the Rayleigh hy-
pothesis {16, pp. 1488-1489]; we now know [8] that such
a link does not exist. Lopez, Yndurain and Garcia, on
the other hand, pointed out certain limitations in con-
vergence. They proposed these limitations where caused
by Ppoles of the fields in the negative real azis of the per-
turbation parameler plane. As indicated below, we have
shown poles do not occur anywhere in the real parameter
axis. And, further, we have established that the observed
limitationsin convergence can be effectively overcome by
use of adequate methods of analytic continuation.

(The most comprehensive objection to perturbative
approaches is that of Uretsky [34, p. 411], who con-
jectured that the electromagnetic field for a corrugated
surface does not continue analytically to the fields for a
flat interface. As a specific example of this conjecture
this author proposed an infinite sinusoidal corrugation
of a plane. Uretsky’s conjecture was based on a cer-
tain integral expression, related to the fields, which ap-
pears to become meaningless as the groove depth takes
on complex values. He thus suggested that series expan-
sions in powers of the parameters controlling the shape
of the scatterers could not be used in the solution of the
corresponding scattering problems. As we have shown,
however, the field does vary analytically with respect to
boundary variations [6].)

In this paper we review our thecry and discuss the
performance of our algorithms in a number of two-
and three-dimensional configurations. In particular, we
present results of new applications to two-dimensional
bounded obstacles and to three-dimensional gratings
containing edges and corners. All of our numerical re-
sults are accompanied by reliable error estimates.

The applications to non-smooth three-dimensional
gratings given here required the introduction of a class
of numerical devices which will also be needed in our
forthcoming applications to three-dimensional bounded-
obstacle problems, see §3.3. These methods have cleared
the way for the application of our perturbative approach
to bounded three-dimensional scatterers. We expect the
performance of our algorithms in these problems will be
of a quality comparable to the one they exhibit in the
various configurations considered in this paper.

2 Preliminaries

2.1 Maxwell equations

Consider a scattering configuration in which space is di-
vided in two regions Q% and - containing two different
materials, such as air and a metal, of respective dielectric
constants e and ¢~. The permeability of both materials
is assumed to equal ug, the permeability of vacuum. In
the cases we consider, the region Q% is of infinite extent;
the scatterer £~, on the other hand, may be bounded or
unbounded.

We wish to determine the pattern of diffraction that
occurs when an electromagnetic plane wave

E_:i — A‘ei(am-i-ﬁxg —yi )it

I;{‘g’ — B‘ez’(az,-i-ﬂ:g—qrz:a)—iwt

impinges upon §2~. Here, denoting by ko= (o, 8, =)
the wavevector, we have

-

A F=0and B= —FxA (1)
Wi
Dropping the factor ?, the time harmonic Maxwell

equations for the total fields read

Vxﬁ:iwuﬂﬁ, V-E=0 ,
VxH=—iweE , V-H=0 . (2)

In particular the electromagnetic field
v=(E, H) (3)
satisfies the Helmholtz equations
Av+ (k%)?v = 0 in QF, (4)

where k* = w+/pgeE. The total electric and magnetic
fields are given by

E=Fwt=fF_ L Ft |, BF=H +H" inQ* and
EzEnr=E | H=H imQ-,

where (E+, H*) and (E~, H~) are the reflected and re-
fracted fields, respectively. At the interface

T =80t =80~
the field satisfies the transmission conditions
nx(E%—EF™ =0, nx(H™-H")=0onT, (5)

where n is normal to I". In case the region 2~ is filled by
a perfect conductor the refracted fields vanish and the
boundary conditions reduce to

nxE* =nx(EE+E*)=0onT . (6)
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Finally the field satisfies conditions of radiation at in-
finity, expressing the outgoing character of the scattered
waves, which can be stated either in terms of the eigen-
functions expansions of §2.2, or, alternatively, in terms
of the decay of the field at infinity; see e.g. [4, 18, 29].

In the two dimensional case in which Q7 is a cylin-
der and 8 = 0, the fields £ and H are independent
of 22 and the system of equations (2),(5) (or (2),(6))
can be reduced to a pair of decoupled equations for two
scalar unknowns [21]. Indeed, the functions ui{z;, 23)
and ua(21,23) equal to the transverse components Ey,
(Field Transverse Electric, TE) and H, (Field Trans-
verse Magnetic, TM), which satisfy equation (4), deter-
mine completely the electromagnetic field through equa-
tions (2). The boundary conditions (6), (5) can be trans-
lated into appropriate boundary conditions for the un-
knowns u;. In case ™ contains a perfect conductor, we
have

uy = —et®1~1%  gpg (7)

In case 2~ contains a finitely conducting metal or di-
electric u; satisfies the transmission conditions

uf —ul = —gtaT1=ir%3 - and
o o g

while us satisfies

uf —u; = —et¥F1=ir¥s - and
ouf k+)2 u5 _ _ 8 (iaer-ines
on (F an __Bn(e ) on T. (10)

2.2 Eigenfunction expansions

In addition to Taylor series, our analytic approach is
based on the series expansions of the electromagnetic
field which result from separation of variables. Such ex-
pansions, which we review briefly later in this section,
are most frequently found in solutions associated with
simple objects such as a circle, a sphere or a semispace.
For such simple scatterers the functions resulting from
restriction of the separated solutions to the scattering
boundaries form a complete orthonormal system, and
thus boundary conditions can easily be accounted for by
means of Fourier analysis.

It is interesting to note, however, that expansions in
series of separated variables may be useful even when
their restrictions to the boundary of the scatterer do
not form an orthogonal system. The first occurrence
of an approach of this type can be found in the work
of Rayleigh [31]. After evaluating such expansions at
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the scattering boundaries, this author used appropri-
ate approximations and found first order corrections
to the scattered field for geometries which result from
small perturbations from an exactly solvable one. With
the advent of computers attempts were made to ex-
tend Rayleigh’s approach of evaluating series expansions
at the boundary of the obstacles to general scattering
solvers which do not assume small departures from an ex-
act geometry. These atternpts did not succeed since, in-
deed, the series may not converge at the obstacle bound-
aries, that is, Rayleigh’s hypothesis may not be satisfied.
This fact was first established by Petit and Cadilhac [30]
by consideration of a sinusoidal corrugation on a plane.

Our method, whose theoretical validity for arbitrar-
ily large perturbations has been established [6], is not
unrelated to Rayleigh’s hypothesis. Indeed, we showed
Rayleigh’s hypothesis is valid for sufficiently small per-
turbations. Whereas these “sufficiently small” perturba-
tions may be too small to be of practical utility, they are
certainly sufficient to allow for calculation of the high
order derivatives (with respect to boundary perturba-
tions) that we need in our numerics; our algorithm then
proceeds via analytic continuation.

Let us now review some eigenfunction expansions we
will use. In two dimensions and outside a circular cylin-
der, for example, any solution to the two-dimensional
Helmbholtz equation is given by an expansion of the form

u(p,8)= D Be(=) HP(kp)e™.

r=—o0

(11)

where p and @ are polar coordinates, and where H,gl) de-
notes the first Hankel function of order ». The principle
of conservation of energy can be given a simple form in
terms of the amplitudes B, in this expansion. Indeed,
if u in (11) is a solution to a scattering problem from a
perfectly conducting obstacle of any shape we then have

3 1B > +Re (E Br) =0.

-
Relation (12), which holds irrespective of whether or not
the series (11) converges at the boundary of the obstacle,
can be made into a useful estimator for errors in the
numerical calculation of the fields, see §5.

(12)

For a solution in three dimensional space and outside
a sphere we have

o

E*(R.6,6)= Y Z B, h{ (kR)P? (cos(8))e™*?

r=0s=—r
{13)
where (R, 8, ¢) are spherical coordinates, P} are the Leg-
endre Tunctions of the first kind and h,(pl) are the first
spherical Hankel functions [18].
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Finally let us consider scatterers which are given by a
biperiodic corrugation of a plane

Q ={z< f(z1,z2)},

where f is a biperiodic function of periods d; and ds in
the variables z; and z, , respectively. The periodicity of
the structure implies that the fields must be («, 3) quasi-
pericdic, i.e., they must verify equations of the form

(14)

v{z) + dy, T2, 23) = e'*¥y(zy, ze, 73) and

v(zy, 22+ d2, %3) = e®y(2), 29, 23).

In this case, separation of variables leads to expansions
of the form

oo [e]
E* = Z Z B eia,x1+i,@,x;:hi-y,*,,za
rs ‘

r==—00 $=—00

(15)

The expansion for £+ (resp. E~) converges to the
field in the region {zs > max(f(xy,z2))} (resp. {23 <
min(f(z1,z2))}). Here we have put

a, = atrKy , B = ftsKy , o2 +87+(1E) = (FF)?

(16)
>0,

where vZ, is determined by Im(+%,) > 0 or v%,
(k) = w?eFpo

and
27

dy

_211'

K 2=

It is clear from (16) that only a finite number of modes
propagate away from the grating, since the remaining
modes decay exponentially. The main quantities of in-

terest here are the grating efficiencies
BF 24E

et = |;5+_7_f3. (17)

Yo,0

for the finitely many propagating modes, i-e. the modes
(r,s) such that &, is real.

In this case the principle of conservation of energy can
be stated as follows: if we let U* denote the set of indices
corresponding to the propagating modes in QF, then

> et D =l

(rs)elU+ (rs)eU—

(18)

provided the dielectric constants € and ¢~ are real.

In the two dimensional case we shall consider gratings
of the form

Q- = {1.'3 < f(:z:1)}, (19)
for which the expansion above reduces to
O
uwk = 3 BEefermidivies, (20)
r==00

20

Scattering via Boundary Variations and Analytic Continuation

The principle of conservation of energy now reads

Seb+ D e =1,

relU+ reli—

(21)

where the efficiencies are now given by e

v |BEP /7T

3 Analyticity and Taylor coeffi-
cients

3.1 Overview

As we said, our algorithms are based on a theorem we
established recently [6] of analyticity of the electromag-
netic field with respect to boundary variations. To de-
scribe our results assume Q; is a family of scatterers,
one for each value of the real parameter § —see e.g.
Figure 1 and equation (28) below. Further, assume the
boundaries ['s of these obstacles admit parametrizations

7= H(s,6) (22)

where the function H is jointly analytic in the spatial
variable s and the perturbation parameter §. OQur theo-
rems state that both the values v = v(¥, §) of the elec-
tromagnetic field at a fixed point in space as well as the
values at a point on the varying boundery depend an-
alytically on the boundary variations. More precisely,
if 7 is a point in space away from I's and 7 € Ts is a
point on the interface which varies analytically with &,
then (7, 6) is jointly analytic in (7, 8), and v(, §) is an
analytic function of § for all real values of § for which
the surface (22) does not self intersect.

It follows from these thecrems that the field can be
expanded in a series in powers of §

o0

vE (7 6) = ) v (Me"

n=0

(23)

which converges for é small enough, and that it can be
continued analytically to all values of § for which the
surface (22) does not self-intersect. The fields vE satisfy
Maxwell’s equations (2) as well conditions of radiation
at infinity. They also satisfy boundary conditions on
Iy = Ts|s=o0 which can be obtained by differentiation
as we show below. Such differentiations and use of the
chain rule are permissible, as it follows from the analyt-
icity theorems mentioned above and related extension
theorems [6]. The explicit solutions v, lead easily to
recursive formulae for the Taylor coefficients of the re-
fracted amplitudes B (see §2.2); together with methods
for analytic continuation, this provides a numerical al-
gorithm for the calculation of the scattered field.
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Formulae for Taylor coefficients associated with the
various kinds of diffraction gratings

Qp = {zz < &f(z1)} (24)
in two dimensions, or
Q5 = {z3 < 6f(z1, 72)} (25)

in three dimension were given in [7, 8, 9}. In the simplest
case of a two dimensional grating (24) in TE polariza-
tion, for example, the recursive formula takes the form

dn,r = _("'iﬁ)ncn,r -

n~1 min{kF,r+(n—k)F)

>

k=0 g=max(~kF,r—(n—k)F)

Cn-k.rwq(iﬁq)n_kdk‘q ’ (26)

(=nF < r < nF). Here dn, are the coefficients in the
power series

o
B.(§) = _di,&* (27)
k=0
of the amplitudes B,(6) in the eigenfunction expansion
of the function u; = Eg,, see §2.2; and Cy ; is the r-th
Fourier coefficient of the f*/rl. In the following section
we derive recursive formulae for the calculation of the
Taylor coefficients of the amplitudes B, = B, (¢) associ-
ated with a two dimensional bounded obstacle

Q =Q; ={p<a+df()}; (28)

the problem of summation of such series is considered
in §5 below. The case of a three dimensional bounded
obstacle

Q5 = {p<a+5f(8,4)}

will be treated elsewhere.

(29)

3.2 Recursive formulae: bounded obsta-
cles in two dimensions

Let us derive formulae for a perfectly conducting and
bounded two dimensional object (28) under TE radia-
tion. The interface s is given by

Ts={(p,8): p=a+8f(8)}.

(Here we view our obstacle as two dimensional perturba-
tion of a circular cylinder. In some circumstances it may
be advantageous to use perturbations from other par-
ticular geometries for which exact solutions are known,
such as, for example, an appropriate elliptic cylinder or
ellipsoid.) In the TE case considered here the transverse
component u = E,_ of E, (v = u; in the notation of §2),
satisfies the Helmholtz equation (4) and the boundary
condition

(31)

(30)

g = —e'®TTTE2 on Ty,
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It is clearly sufficient to consider the case in which the
direction of our incident wave is that of the negative ;-
axis, and we thus have

- , - + ,
E = i.ze—zkz; , Hi= &3 _E___e—:k:n_
\} U

Figure 1: The geometry.

As we said above, our method is based on viewing
the scattered fields as functions of the parameter & and
evaluating the corresponding Taylor series expansions.
From §3.1 we have an expansion

oQ
u(p,8,6) = Y _ un(p,8)8”
=0

which converges for sufficiently small values of 6. The
functions Lo
U
uﬂ(p: 6) = ;!“55_“([)’ g, O)

satisfy the Helmholtz equation

(32)

At +k2u, =0in{(p,8) : p>a}

and conditions of radiation at infinity. In view of (11)
we see that the functions u and u, admit expansions of
the form

u(p,0,6) = i B, (8)(~i) HM(kp)e'™

r=—20
and o
un(p,8) = 3 dn s (=) HD(kp)e™.  (33)
ro——po
We clearly have

1d"B,
nr = e O

so that the amplitudes of the various modes are given by

the Taylor series

Br(é) = i dn,rén- (34)
n=0
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Our approach proceeds by evaluation of the Taylor
series (34}, whose coefficients dn » can be obtained re-
cursively. Such recursive formulae follow from the con-
ditions at the boundary of the obstacle, which in this
case may be written in the form

_e—-ik(ﬂ+e§f(6))cos(6)_

(33)
To obtain our recursive relations we first use the well
known expansion [18] of the composite function e®<°*(f)
in terms of exponentials and Bessel functions J,(z), and
we obtain

u(a +6f(6),6,6) = |p=a+5f(9) =

u(a +6£(0),6,5) = Y I, (k(a + 8£(6)) 7.

Z(

i (36)
Differentiation then gives
— n f(e)n = ™ J ir
uﬂ(aaa) =~k TTZOO( ) dzn (k )B -
n—-I gn-—I
Z SO gy gy

n—Ii
— — 0! ap

Let now the Fourier series of the function f(#) be given

by
F .
Z Cl,re"e
r==F

with either finite or infinite F. Then, substitution in (37)
of w; (0 €1 < n) and their p-derivatives as calculated
from (33) permits us to find all the coefficients dn - in
terms of the coefficients di » with £ < n and the Fourier
series coefficients Cy, of the function f(8)"/!:

HOES

Indeed, from (37) we have

Z dn,q(—)9H(Y (ka)e'?® =

gas —o0
nF o0
" Z Cn1,e£58 E (-:) (k a)e irg
sme=nF r=—c
n=1 (n-DF
_Z Z Cree'*® Z dy (=i B dnd ;H(! )(k 36
=0 a=—(n—-U)F r=—oo

Collecting terms of like powers of €' in the expression
above now yields the desired recursive expression. We
obtain
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g+nF g
dng = —k" Z Crygmp(=$)P "I =22 (ka)/ HED (k)
=g—nF
n—1 q+(n nF —1 (1)
n={ s p— "' H
"Zk Z d:‘.pcn—!,q-p(_‘)p qm&'z_nw—f_(ka‘)/Hgi)(ka)'
p=g—(n—1)F

(38)

The calculation is initialized by means of the relations

do,g = —Jy(ka)/H{(ka) (39)

which follow from the exact expressions for the field scat-
tered by a circular cylinder of radius ¢ (see {4]).

3.3 Calculation of Taylor coefficients

Recursive formulae such as (26) and (38) allow us to
compute Taylor coefficients of a scattering problem to
arbitrarily high orders. To demonstrate the calculation,
let us consider first the simplest case of the two dimen-
sional grating (24) with

f(z1) = 2cos(Kzy) = H7 4 PR (40)

for which F = 1, Cpy = 0if n— k is odd and Crx =

L (a2:) if n—k is even. Then, it is easy to see from (26)
" 2

that the non-zero coeflicients d, ,» are

do’o =-1
di_1 dy
da._3 d2.0 ds 2
dz .3 ds 1 da,1 ds 3
dy_a ds_3 dao d42 daa
ete.

If an N-th order approximation to the Taylor series
in (27) is to be computed, it is clearly unnecessary to
produce all of the coefficients d, » for n < N. In fact, to
compute By with N = 4 we need only generate

doo =~
di, -1 di1
da,_2 dao daz2 (41)
da,_l ds,l
dso

’

Of course, in general we wish to obtain not only Bg but a
number of amplitudes B, {r| < w, which will be in turn
used to calculate the fields with a given accuracy, and
the arrays of derivatives must be augmented accordingly.
Similar considerations apply to functions f given by an
arbitrary finite Fourier series.
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In practice, and in order to reduce the number of op-
erations, one can choose to truncate the inner sum in
equations such as (26) by setting di , = 0 for |g| > go.
The parameter gg has to be chosen judiciously. Qur ex-
periments indicate that in the case of the sinusoidal pro-
file (40), no truncation is permissible (e.g. one cannot
take go < 2 in (41)). On the other hand, for the grating
associated with the function

f(z1) = 2cos(Kz1)+ % cos(3K z1), (42)
for example, the effect of the higher order harmonics
generated by the second summmand can be truncated. In
other words, even though the actual formula (26) for this
profile involves frequencies roughly as high as N + w,
one can take gg = %r + w with errors comparable to
roundoff. This is related to the fact that the height-
to-period ratio h/d of the first term in (42) is larger
than the one for the second term. Thus, in the general
case of a general Fourier series ¢p should be chosen so
that no truncation would occur if all but the principal
terms in it (i.e. the ones with the largest A/d’s) were
neglected. Naturally, as the height-to-period ratio of a
secondary term approaches the ones for the principal
terms, the value of gp should be increased. The ultimate
choice of ¢p must be made by consideration of the actual
errors as measured by the defect in the energy balance,
convergence, reciprocity or other critera.

In the case of the sinusocidal grating considered above,
closed form expressions for the coefficients C, » occur-
ring in equation (26) were found. (Again, Cy » is the
r-th Fourier coefficient of the f*/nl). Of course, it is
not possible to obtain such closed form expressions for
the C coefficients in case the boundary of the scatterer is
given by an arbitrary function f. By appropriate trun-
cation we may always assume f equals a finite Fourier
series containing modes with orders between —F and F,
say; simple iterated multiplication of the series of f then
yields a very stable algoritm for the calculation of Ci, .
Convergence of the calculated scattered field as F' is in-
creased is then the criterion for an appropriate choice of
this parameter.

Now, calculation of complete powers f* in the three
dimensional cases may be prohibitively expensive —even
when F is as small as, say, F = 10. It is therefore for-
tunate that, again, appropriate truncations can be used
with errors comparable with roundoff. The procedure is
very simple indeed: if the Fourier series of f” has been
computed, then all modes of order r with |r| > ¢; are set
to zero, and the resulting series is multiplied by the series
of f. The result is then taken as an approximation to
fr11. Of course, the choice of the parameter g; depends
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on the particular scatterer, on F, on gg, and on the order
n of the Taylor approximaiion. We can assume appro-
priate values of these parameters have been found when
further increases in them do not lead to improvements
in the numerical error.

To complete our algorithms we must now consider the
question of summation of Taylor series such as (27). As
we have said, the functions B,(§) are analytic in a com-
mon neighborhood of the real axis and therefore, the
series in (27) certainly has a positive radius of conver-
gence. It turns out that this series diverges (or converges
slowly) for many cases of interest, and we thus need ap-
propriate numerical schemes for analytic continuation in
the complex & plane. This is the subject of the following
section.

4 Approximation of analytic

functions

Qur understanding of the problem of calculation of the
electromagnetic field by means of analytic continuation
can be presented at two different levels of detail. On one
hand we may accurately state that Padé approximants
have produced better accuracy than other approximators
in all the applications of our method we have encoun-
tered. We therefore view Padé approximation, which is
briefly described below, as an integral element of our al-
gorithms. An interesting insight in the approximation
problem, on the other hand, can be gained by consid-
eration of the spectrum of singularities of the field as ¢
function of the perturbation parameter §. Indeed, singu-
larities play a major role in the approximation problem.
They determine the radius of convergence of the Taylor
series and they are closely related to the speed of conver-
gence of Padé approximants [1]. Further, the spectrum
of singularities determines the conditioning in the values
of the Padé approximants [10], and even partial infor-
mation on such singularities may be used in some cases
to produce a rather dramatic improvement in the Pade
problem: a simple example of this phenomenon is pre-
sented at the end of this section. Padé approximants
and the analytic structure of the field in the & plane are
discussed in what follows.

The [L/M)] Padé approximant of a function

B(§) = i dnb™ (43)

is defined (see [1]) as a rational function

ag + a8+ -+ agé”

LM = T T bar 6™
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whose Taylor series agrees with that of B up to order
L+M+1

&-plane

x5
-0.450.3-02%00 0.1 0.2 0.3 0.4

g © ©
“ ooy

- 0t x ¥

-0.4

(a)

Figure 2: Poles {a) and zeros (x) of the Padé approximants of By (&)
(a) [28/28]-approximant and (b) [48/48]-approximant.

A particular [L/M] approximant may fail to exist but,
generically, [L/M] Padé approximants exist and are
uniquely determined by L, M and the first L + M +1
coefficients of the Taylor series of B. Padé approximants
have some remarkable properties of approximation of an-
alytic functions from their Taylor series (43) for points
far outside their radii of convergence, see e.g. [1]. They
can be calculated by first solving a set of linear equa-
tions for the denominator coefficients &;, and then using
simple formulae to compute the numerator coefficients
a;. For convergence studies and numerical calculation of
Padé approximants see [1, 2, 5, 15].

S-plane

4

Figure 3: The region C of analyticity of the Rayleigh coeflicients
B,#(ﬁ} and 2 lens-shaped region L that is conformally transformed

onto the right-half plane via g(§) = (—‘;‘ﬁf—)“.

In Figure 2 we show the location of the zeroes of the
numerators and denominators of the [28/28] and [48/48]
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Padé approximants to the coefficient B;(8) for the per-
fectly conducting grating with profile

Fs(z1) = 6(e"2™ 4 e71271) = 26 cos(2mz:)

under normal incidence and with light of wavelength
A = 0.4368. In this figure, a circle (‘0’) represents a zero
of the denominator, which is a singularity of the approx-
irnant provided it is not crossed out by a corresponding
zero (‘x’) in the numerator. Very similar pictures are
obtained for other amplitudes B, and for approximants
of other orders. Now, it is well known that, rather gener-
ally, the singularities of the Padé approximants approach
the singularities of the function they approximate [1].
Thus, Figure 2 provides us with an approximation to
the domain of analyticity of the diffracted fields. Note
that no singularities occur on the real axis, as expected
from the theoretical discussion of §3.1.

A domain of analyticity C which is consistent with the
one suggested by Figure 2 was proposed in [7], see Figure
3. This picture lead us to devise a summation mechanism
based on conformal transformations which we called en-
hanced convergence [6, 10], see also [32]. Given a function
B($) and a complex number &y, the method of enhanced
convergence uses conformal mappings to produce an ap-
propriate arrangement of the singularities of B and the
point &p, so that a truncated Taylor series can be used
to calculate B(8s).

To describe this method, let us suppose we wish to
compute the function B(§} at a point o which lies out-
side the circle of convergence D of the Taylor series of B
around & = 0 (see Figure 3). The series is divergent at
§o. If we consider, however, the composition of B with
a conformal transformation,

& = g(6),

the singularities and the point £ = g(fo) at which the
function is sought will show a different arrangement in
the &-plane and, possibly, £ will lie inside the circle of
convergence of the composite function B(g™*(£)). If so,
a truncated Taylor series of the composite function can
be summed to yield the value B(8y). Even if 6y hes
inside the circle of convergence D, this procedure may
result in improved convergence rates {7, 10). In Tables 1
and 2, for example, we compare the convergence of the
power series for e (8) = |B1(6}|?41/ B0 about § = 0 (“Di-
rect”) with that of e1(§) = |B1(€)[*81/80 (“Enhanced”)
obtained by means of an appropriate conformal change
of variables {6]. Again we consider the sinusoidal grating
scattering problem mentioned above. We observe that
even in the case § = 0.075, in which the direct series
converges, the convergence is substantially enhanced by
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the conformal mapping. In case é = 0.1 the direct series
does not converge.

Direct Enhanced

b €] £ €1 €

10 | 0.5034545E~02 1.5E-01 | 0.1735547E-C1 8.3E-02
15 | 0.1073396E-01 5.3E-02 | 0.1204594E-01 1.3E-05
20 | 0.104547T4E~01 4.0E-03 | 0.1157684E-01 5.1E-04
25 | 0.1140532E-01 3.2E-03 | 0.1163189E-01 3.1E-05
30 | 0.1161950E-01 2.2E-04 | 0.1163870E~01 -8.4E-06
35 i 0.1163000E—01 1.1E-05 | 0.1163798E-01 -7.3E-07
40 | 0.1162548E-01 -3.2E-05 | 0.1163793E~01 —4.4E-08
45 | 0.1162059E-01 5.1E-05 | 0.1163793E-01 2.2E-08
50 | 0.1164204E~-01 1.2E-05 | 0.1163T93E-01 2.0E-09
55 | 0.1164090E-01 -1.7E~D5 | 0.1163793E-01 -3.7E-11
60 | 0.1163616E-01 -4.0E-06 | 0.1163793E-01 —4.5E-11

Table 1: Comparison between direct and enhanced convergence.
First order efficiency for a sinusoidal grating in TE polarization,

6 = 0.075.
Direct Enhanced

n ey € € €

10 | 0.3897061E+400 -7.2E-01 | 0.40185253E+00 —4.5E-01
15 | 0.4713435E4+01 -1.4E401 0.1649737E4+00 -7.3E-02
20 | 0.3635994E4+01 -1.5E401 0.1568326E400 3.1E-02
25 | 0.3848452E4+01 -1.2E+01 | 0.1687898E+00 4.8E-03
30 | 0.3357765E+00 -~5.5E+00 | 0.1698172E+00 3.0E-04
35 | 0.1276039E401 —2.4E401 | 0.1701259E+00 -4.0E-04
40 | 0.4143993E+02 -2.2E+402 | 0.1700261E+00 -1.3E-04
45 | 0.1665033E+03 -1.6E4+03 | 0.1699795E-4-00 1.3E-05
50 | 0.1406855E+04 -8.2E+03 | 0.1699760E+00 1.1E-05
55 1 Q.707547T1E+04 —6.9E+04 | 0.1699781E+00 2.5E-06
60 | 0.7R4T034E4-05 —4.1E405 | 0.1699792E4+00 —-4.8E~-07

Table 2: Comparison between direct and enhanced convergence.
First order efficiency for a sinusoidal grating in TE polarization,
é=0.1.

The performance of this summation method depends
strongly on the parameters A and ¢ of Figure 3. The
optimality of a choice of these pararmeters can be checked
through the defect ¢ in the energy relation (21}

e=1- Z el

nel+

(e7 = 0 here, since we are dealing with a perfectly con-
ducting grating.) Alternatively, the optimal values of
these parameters can be calculated [8] by consideration
of the poles shown in Figure 2. The results of these two
calculations for A and ¢ are in close agreement. Further,
note the position of singularities closest to the origin in
Figure 2, which imply a radius of convergence consistent
with the convergence results of the direct series in Ta-
bles 1 and 2. The agreements found in these calculations
constitute an important consistency check in our theory.
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They add substantial credibility to our view that the an-
alytic structure in the § plane is well approximated by
representations such as that in Figure 2.

As we said, Padé approximation does exhibit befter
numerical performance than enhanced convergence; in
the examples of Table 1 and 2, for instance, Padé ap-
proximants permit us to obtain two additional signifi-
cant digits [8]. Interestingly, enhanced convergence can
be used to improve the performance of Padé approxima-
tion. Indeed, the theory in [10] shows that the relative
arrangement of the singularities of an analytic function 1s
closely related to the numerical conditioning of the cor-
responding Padé problem. Further, a conformal change
of variables on a function B($) can lead to a dramatic
improvement in this conditioning. (The Padé approxi-
mants of the functions in the transformed variables will
be referred to as enhanced Padé approximants.) Since
the main numerical weakness of Padé approximation is
its il} conditioning, it is reasonable to expect that en-
hance approximants could lead to improvement in our
solutions of scattering problems.

Whether or not this is the case remains an issue for fur-
ther investigation, since there is a requisite that needs to
be met: accurate values of the Taylor coefficients of the
composite functions must be used. Composition of the
corresponding series, which certainly suffices in applica-
tions such as those of Tables 1 and 2, is not appropriate
for the enhanced Padé application. Indeed, composi-
tion of power series leads to a loss of significant digits
in the Taylor coefficients. This accuracy loss interacts
with the conditioning problem of Padé approximation
in such a way that no substantial improvements in the
calculated values are obtained. If accurate values of the
coefficients of the composite functions can be found, on
the other hand, then very substantial improvements can
be obtained as shown in an example below. Thus, fur-
ther improvement in the performance of our algorithms
could result if an accurate method for computation of
the enhanced coefficients were found.

As we said, enhanced convergence may help obtain
a remarkable improvement in the performance of Padé
approximation. To illustrate this point we conslder
Table 3 below, which shows the values of the [!—g—/ %]
Padé and Enhanced Padé approximants for the function
f(z) = log(1 + z), see [10] for details. This Table shows
that enhanced Padé approximants produce up to 13 cor-
rect digits of log(21) while ordinary Padé fractions do
not produce more than the first four digits. Table 3 also
shows the values of both approximants at z = 200; again

an improvement is observed.
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N =z log(1 + z) Padé Enh. Padé
20 20 3.044522437723 3.043989111079 3.043988784141
40 3.044612164211 3.044522360574
60 3.044477040660 3.044522437596
80 3.044175772366 3.044522437727
100 3.044463021924 3.044522437722
120 3.044489520809 3.044522437724
140 3.044496462919 3.044522437723
160 3.044619592662 3.044522437723
180 3.044362344599 3.044522437723
20 200 5.30330 5.03582 5.03577
40 5.32614 5.28588

60 5.17831 5.30093

0 5.08690 5.30276
100 5.16939 5.30305
120 5.18899 5.30324
140 5.19792 5.30328
180 5.70660 5.30329
180 5.13885 5.30330

Table 3: [£ /L] approximants for log(1 + z)

5 Applications

The difficulty associated with the numerical solution of
a scattering problem depends roughly on two elements:
the ratio P/) of the size of the scatterer to the wave-
length on one hand, and the oscillations and/or lack of
smoothness exhibited by its boundary, on the other. In
short, numerical complexity arises from the need to ac-
count accurately for oscillatory behavior of fields and in-
terfaces. In what follows we present applications of our
method which test its performance in problems of var-
ious degrees of complexity, and we compare the results
of our algorithms with those given by classical methods.

As we have noted, our approach is applicable to con-
figurations which may be viewed as perturbations from
an exactly solvable geometry. Such perturbations need
not be small —as it may be seen from the examples that
follow—, and our analytic method may be considered as
a rather general one. In many cases of practical impor-
tance our approach yields results that are several orders
of magnitude more accurate than those given by classi-
cal methods —such as the method of moments and other
algorithms based on the solution of integral equations.

5.1 Two dimensional problems

We have tested our analytic method in a variety of prob-
lems of diffraction by gratings and bounded obstacles.
Qur method was originally intended as a grating solver;
we therefore discuss applications to grating problems
first. In the following sections the error estimator ¢ is
the defect in the energy balance criterion. For example,
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in the grating configurations ¢ is defined as the defect
in the relations (18) and (21), e.g., for two dimensional
dielectric gratings ¢ is given by

e=1-Ze;"— > er

rel+ rell—

as caleulated by the numerical solver. For a perfectly
conducting bounded obstacle in two dimensions ¢ is de-
fined as the relative error in the calculated value of the
left hand side in equation (12)

. [T, 1B +Re (5, B)|
SBE

These defects provide an accurate measure of the rel-
ative error in most quantities of interest. This is quite
clear in the grating applications, in which the efficiencies
themselves are the quantities sought. In the bounded
obstacle problem, on the other hand, ¢ is closely related
to the relative error in the numerical value of the for-
ward scattering. Of course, the energy balance criterion
is only valid in the absence of absorption; when dealing
with lossy scatterers we generally turn to estimating the
errors by means of convergence tests (see e.g. the first
application in §5.2). Further, ¢ only estimates errors in
far field quantities; for near fields errors one would need
to turn, again, to convergence tables.

(44)

In our first example we consider a problem of diffrac-
tion by a sinusoidal dielectric grating (24) with
flz1) = 2cos(2nz1/d) (45)
and period d = 1um. (Note that the height h of the
corrugations —that is, the vertical distance from the
highest peak to the lowest valley— is given by h = 46.)
The grating has a refractive index »g = 2, and is illumi-
nated under normal incidence with light of wavelength
A = 0.83um. Table 4 contains results given by our al-
gorithms for the reflected and transmitted energy R and
T which results from a unit input energy. This case was
treated in [13] by means of integral equations and the
method of moments; there the authors report the fol-
lowing values of R and T for & = 0.2um:

R =10.117274,

T = 0.882759

and
e=1-(T+R)=33x10"5%

compare Table 4a.
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(a)
T £
(.888889 -2E-16
0.885074 (QE0O
0.832718 0OEO0C
0.895129 1E-14
0.919816 9E-11
0.944098 1E-07
0.961015 -1E-06
0.969848 -5E-04
0.972233 -3E-03

(b)

T €
0.888889 -2E-16
0.895954 -2E-16
0.913645 QE0Q
0.937193 -1E-12
0.960883 -1E-08
0.974363 -6E-07
0.976517 1E-04
0.982000 3E-03
0.999951 1E-02

hid
0.00
0.16
G.20
06.30
0.40
0.50
0.60
0.70
(.80

R
0.111111
0.114926
0.117282
0.104871
0.080184
0.055902
0.038983
0.029619
0.024083

R
0.111111
0.104046
0.086355
0.062807
0.039117
0.025636
0.023655
0.021333
0.016013

Table 4: Reflected and transmitted energies for a sinusoidal
grating with index of refraction 1y = 2, under normal incidence
with a wavelength-to-period ratio A/d = 0.83: [20/20] Padé
approximants. Table 4a.: TE polarization; Table 4b.: TM
polarization.

As it is the case here, the analytic method yields re-
sults of very good definition in most grating problems
of interest. Other results for grating problems obtained
by discretization of boundary integral equations include,
for example, those of Van Den Berg [35] and Pavageau
and Bousquet [27}. These authors considered a perfectly
conducting sinusoidal grating for values of h/d ranging
from 0.3 to 0.56 and illuminated with light of waven-
length A = 0.4368. They report errors of the order of
10~% for a ratio of 0.3 and of order 10~2 for ratios of
0.4 and .56. The corresponding errors in the analytic
method are of order 1012, 10~% and 10~%; similar im-
provements in performance over other methods has been
found in calculations containing lossy gratings and non-
smooth {e.g. triangular) profiles [8]. It must be pointed
out that the largest ratio h/d = 0.56 considered here is
larger than those corresponding to gratings actually used
in applications [24]. For even deeper gratings, say ratios
of 0.7 and beyond (and for this wavelength), our method
in its present form rapidly breaks down due to numerical
ill conditioning, while the integral method deteriorates
more slowly, and it gives results with errors of a few per-
cent for gratings with heights as large as h/d = 1. As we
pointed out in §4, remedies for conditioning problems in
our algorithms may result from a more detailed consid-
eration of the analytic properties and singularities of the
electromagnetic field, see e.g. Table 3.

In our second example we study the scattering by the
perfectly conducting obstacle of Figure 4 (a): a two-
dimensional bounded scatterer without symmetries. The
boundary of this obstacle is given by (30) with f(#) =
0.125sin(46) —0.15sin(36) and é = 1. Figure 4 (b) gives
the amplitude of the bistatic far field coeflicient @ for
the TE polarized configuration indicated in Figure 4 (a)
with perimeter-to-wavelength ratio P/A = 20.
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R

X

@ )

Figure 4: (a) a two dimensional bounded scattering configuration
without symmetries and (b) the amplitude of its bistatic far field
coefficient ®. TE polarization, P/A = 20.

In order to test the ability of our algorithms to com-
pute the scattering by large objects and by objects with
pronounced protuberances we present calculations cor-
responding to the scatterers of Figures 5 and 6. The
boundaries of these obstacles are again given by (30),
this time with

F(8) = 2cos(48),

see equation {28), and the values § = 0.15/4 and § =
0.75/4. In Tables 5 and 6 we give the back-scattering
cross section (BSCS), forward scattering cross section
(FSCS) and total scattered energy (3, |Br|?®) corre-
sponding to these bodies for a variety of perimeter to
wavelength ratios P/A.

P/ BSCS F3C8 Energy [
20 | 1.609e¢4+00 1.006e+02 2.210e401 3e-16
40 | 1.599e4+00 1.930e+02 4.33%9e+01 le-15
60 | 1.597e400 2.85le+02 6.463e+01 5e-14
80 | 1.597e+00 3.768e+02 8.582e+01 4e—13

100 | 1.596e4+00 4.684e4+02 1.070e4+02 Z2e-10

Table 5: Computed values of the back-scattering cross section
(BSCS), forward scattering cross section (FSCS) and total
scattered energy (5 . |B:[?) for the scatterer of Figure 5: [29/ 29]
Padé¢ approximants. (w = 150; gp = 180).

Consider first Table 5 which corresponds to the scat-
terer of Figure 5. (Here, as well as in Table 6, go
and w are the truncation and mode parameters defined
in § 3.3.) Note that excellent accuracy obtained in this
case for wavelengths as small as ——=P. We have been

100
unable to find detailed estimates of the errors produced
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by other methods for problems of this type. Consider-
ation of solutions available in the literature in forms of
graphs does suggest that, for configurations like the ones
we treat here, the analytic method can make a rather
competitive solver.

Figure 5: The domain 35 = {(¢,8) : p € ¢+ §f(§)} for a = 1.0,
§ = .15/4 and f{f) = 2 cos(44).

Finally, in Table 6 we give numerical results corre-
sponding to the cross shaped scatterer of Figure 6, which
constitutes a much more dramatic perturbation of the
circle (46 = 0.75). The results of Table 6 show that, even
for such a complex large scatterer, our solver produces
rather accurate results for a wide range of perimeter-to-
wavelength ratios.

P/ BSCS FSCS Energy €
5 | 4.448e+00 2.868e+01 4.911e400 5e09
10 | 6.453e+00 £.072e4+01 1.024e+4+01 6e-08
15 | 7.691e4+00 8.916e+01 1.519¢401 2e06
20 | 7.984e4+00 1.128e402 1.974e+401 4e05
25 | 7.338e4+00 1.388e402 2.453e4+01 2¢04

Table 6: Computed values of the back-scattering cross section
(BSCS), forward scattering cross section (FSCS) and total
scattered energy (3 _|Br[?) for the scatterer of Figure 6: [29/29]
Padé approximants. (w = 70; gp = 120).

5.2 Three dimensional problems

Previous applications of our method in problems of scat-
tering by three dimensional gratings were restricted to
sinusoidal surfaces due, in part, to the large number of
arithmetic operations involved in a complete calculation
of the Taylor coefficient for large values of . The ob-
vious first step towards extending our method to other
significant three dimensional problems, including those
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involving bounded obstacles, is to tackle the problem
of a general biperiodic corrugated surface. To test our
method in a challenging case we took a scattering surface
with a slowly convergent Fourier series. The results of
our work in this direction are discussed below. Qur first
3-d example, however, is that of the sinusoidal biperiodic
grating first treated in [25].

g
=
oo |

Figure 6: The domain Qs = {(p,8) : ¢t < a+ 8f(f)}fora =10,
§=.75/4 and f(#) = 2cos{48).

Bisinusoidal gratings in gold have been used in the
experimental and numerical studies on total absorption,
see [25]. These are gratings of the form (25) with

Flzy,20) = [cos(z’”:l) + cos (2 )] . (46)

d1
note that the groove depth is again given by h = 44.
These surfaces (with A = 0.040, A = 0.055 and h =
0.070, and d; = d2) were treated in [25] by means of
the integral method of [12]. In Figure 8, where we have
denoted d = d; = da, we show the results given by our
algorithm for this problem. Qualitative agreement with
the results in [12, 25) is observed, but some discrepan-
cies occur. For example, in contrast with Figure 7.17
of [25], our curves 2 and 3 coincide at d = 0.62um.
This prompted us to analyze the accuracy of cur re-
sults. We found that, for this range of parameters, our
method vields extremely accurate results, with errors
in the reflected energy (“E. R.”) which are better than
10~14. This can be seen in Table 7, which contains a
convergence study for the values of the reflected energy
at d = 0.62um for the curves labeled 2 and 3 in Fig-
ure 8. Note that an accuracy better than 8 digits is
obtained by an approximation of order 13. The accu-
racy of the integral method in this problem (A = 0.055

wEa
da
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and h = 0.070) has been estimated to be of the order
of two digits {12]. To demonstrate the range of param-
eters in which our method can be applied, we include a
third column in Table 7 showing the values of E. R. for
a much deeper grating profile of height h = 0.500um,
for which A/d = 0.806. We see that even in this case,
the results are quite accurate: the errors are of the order
of 10~* for a [6/6] approximant (n = 13) and of 107°
for a [14/14] approximant (n = 29) (Padé approximants
with n=15, 19, 23, 27 and 31 are singular for this prob-
lem.) The computing time used for the calculation of
the Taylor coefficients and the corresponding Padé ap-
proximants with n = 13 was of about twenty seconds in
a Sparc station IPX. We find the results in the first row
of Table 7 rather satisfactory, and even more so taking
into account the limited computer power they required.

N\ /[ -

Figure 7: Section of a three dimensional bisinusoidal diffraction

grating.
1
E.R. 1 Y
0.8 9 3
0.6 3
¢.4
0.2
o d
0.61 0.62 0.63

Figure 8: Energy reflected by the bisinusoidal grating of Figure 7
(in gold), with normally incident light of wavelength 0.65um. 1.
h = 0.040um; 2. A = 0.055um; 3. h = 0.070um: [6/6] Padé
approximant.
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n h = 0.055um h = 0.070pm h = 0.500um
13 | 0.0227882361359963 0.02260573614310 0.84148746
17 | 0.0227882361334883 0.02260573598742 0.84202623
21 0.0227882361334891 0.02260573598748 0.84219841
25 | 0.0227882361334900 0.02260573598746 0.84260919
29 | 0.0227882361334896 0.02260573598742 0.84197301
33 | 0.0227882361334896 0.02260573598742 0.84197398

Table 7: Convergence study of the reflected energy for the
example in Figure 7 (gold). The period is fixed at 0.62um and
the wavelength at 0.65xm. [”'1 /== “"1] Padé approximants.

Finally, let us consider the problem proposed in {12],
that is, a crossed grating of rectangular pyramids with
periods d; = 1.50 and d2 = 1, of height k = 0.25, under
incident light of wavelenght A = 1.533 and with inci-
dence angles given as follows: cylindrical angle ¢ = 45°;
azimuthal angle § = 30° and polarization with the elec-
tric field in the vertical plane ¢ = 45°. This is an inter-
esting configuration, which contains a three dimensional
obstacle with corners and edges. A schematic represen-
tation of the grating is given in Figure 9. As we have
said, our algorithm requires the boundary of the scat-
terer to be approximated by a finite Fourier series, thus
effectively rounding its edges. For comparison purposes
we show, in Figure 10, one element of the grating of
Figure 9 together its Fourier series approximation with
F = 10. We can conclude we have obtained the exact
solution for the actual pyramid grating within a given
error tolerance when convergence within that tolerance
is observed as the number of Fourier modes in the ap-
proximation is increased.
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Figure 9: A three dimensional array of square pyramids.

As we explained in §3.3, it is necessary here to choose
appropriately the truncation parameters F', go and ¢ as
well as the order n of the approximation. In the cases
below we found that convergence to the actual numeri-
cal solution within the error estimates indicated in Ta-
ble §(a) is achieved with F =5, g0 =q; =20 and n = 9.
Indeed, additional calculations with 7 = 10 and with
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go = q1 = 22, 24 and 30 result in no changes in the values
of Table 8(a) —exception being made for small changes
in the error estimator. This suggests that the solution
obtained with F = 5 is, within the accuracy shown in
Table 8(a), the exact solution to the sharp-edge problem
under consideration. These results were produced by a
90 second calculation on a Sparcstation 20.

{a) (b}

Figure 10: An element of the grating of Figure 9 (a) Fourier
approximation with F' = 10; (b) exact.

An integral algorithm was applied to this problem
in [12]; the results reported in that paper are listed in
Table 8(b). In addition to results given by the integral
method, which is the one the authors recommend, they
also presented calculations performed by means of two
other solvers based on solution of ordinary differential
equations. These differential methods are known to be
unstable and generally less competitive than those based
on solutions of integral equations [36]. Interestingly, in
this particular case one of the differential algorithms pro-
duced good results with defect ¢ of order 2-10~5; the
other produced 2-1073.

(2) (b)
h = 0.05 0.25 0.50 0.25 (ref. [12])

€r.0,0 0.02500 0.01951 0.00858 0.01984
er,—1,0 0.00010 0.00246 0.00713 0.00254
€t,0,0 0.97432  0.96465 0.93933 0.96219
€:,1,0 0.00012 0.00280 0.00885 0.00299
€1,—1,0 0.00013 0.00294 0.01070 0.00303
€:,0,—1 0.00029 0.00879 0.02241 0.00704
€:,—1,—1 | 0.00004 00086  0.00278 0.00092
€ -2E-12  -1E-06  -2E-04 1E-03

Table 8: Efficiencies for the grating of pyramids described in the
text. First three columns of results: [4/4] Padé approximants.
Last column: values given in reference [12].
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