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ABSTRACT. Some experience of the use of high-frequency
electromagnetics sofiware on parallel computers is reported.
Types of such computers are reviewed and appreaches to the
pardllelisation of existing serial softwave are discussed A
practical large-scale problem is presented, involving the
modelling in very fine detail of eleciromagnelic penetration
into biological systems. This was lested on state-of-the-crt
parallel computers and important practical and strategic
aspects of the experience derived are discussed. It was found
that considerable programmer effort was required fo optimise
the software to use the computer architecture effectively, but
that efficient acceleration of the run-times of typical
computational tasks could be achieved, provided that the
tasks were large and were partitioned optimally.

1 INTRODUCTION

The computation of electromagnetic field distributions almost
invariably involves the repetiion of a similar set of
computational actions for a large number of data points. For
systems of practical interest, this implics a very large
computational task Although it is possible to construct
certain problems in a way that enables them to be run on
computers of modest power, structures which are large in
comparison with the wavelength frequently require the use of
the most powerful computers available, usually characterised
by the name ‘supercomputers’.

In recent years, some of the problems that stretch such
supercomputers to the limits of their abilities have been
designated as ‘grand challenges’. Lists of such grand
challenges tend to concentrate on applications in pure science
and environmental modelling, such as high-energy physics,
quantum chemistry and atmospheric circnlation modelling,
Computational fluid dynamics (CFD) is also frequently
included in the lists, but other applications of industrial
interest tend to be given less emphasis. Although it is relevant
both to science and to industrial applications, it is frustrating
to find that electromagnetics does not appear to have been
explicitly mentioned in any well-publicised Lst of ‘grand
challenges’ and it is very desirable that this situation be
remedied.

The main exercise used to test both hardware and software
in the present work was the modelling of electromagnetic
wave penetration into the human head, using a head image
classified from a magnetic-resonance image (MRID),
standardised to 1 mm resolution, which gives about 10’
FDTD nodes [1] (Fig. 1). This is a particularty challenging
test due to the discontinuity between air and the vety large
permittivity of living tissue. The source fransmitter was a
representation of a generic mobile telephone handset, which
was essentially a plastic coated box, in the centre of the
top of which was a guarter-wave wire antenna driven at its
base with a continuous wave signal. The two frequencies
of interest were 900 MHz and 1800 MHz, which are used
as the carrier frequencies for most mobile telephone
technology in Europe. Although the model of the head has
been classified to a resolution of 1 mm it was also re-
sampled to resolutions of 2 mm and 2.5 mm to allow the
simulation to be run in serial form on a UNIX workstation
(Sun Sparc 20 with 128 MBytes of RAM), and to facilitate
comparisons of different parallel processing systems. The
majority of this work was undertaken as a contribution to
a broadly-based European Union project (EUROPORT-2)
which aimed to demonstrate good scaleability
performance and ease of inter-platform portability for
several examples of industry-standard software ported to a
range of contemporary parallel computers.

Fig 1 The original (} mm resolution) head dataset, used as a
test piece. Shown here with the generic mobile telephone: the
version used in Section 4.2 included a simulated hand.
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2 PARALLEL PROCESSING SYSTEMS

The idea of sharing a computational task between many
prowssorsinordertoachievehigherspeedorlargertask
capacityhasbeenappreciatedfromthewlydaysof
computing. Unfortunately, it often proved impossible 10
achieve an adequate performance with such systems, except in
a few specialised cases, usually using application-specific
hardware. The mamfacturers of the most powerful hardware
thus concentrated on efforts to increase the speed of
traditional serial processors. An important hybrid techmique
that evolved was ‘pipelining’, in which identical operations
were undertaken on several separate data elements in rapid
SUCCESsion.

The traditional serial processor is categorised as ‘single-
instruction single data’ or SISD and the pipeline processor as
‘single-instruction multiple data’ or SIMD. Computers
empioyingpipeﬁneprocessorsareusuaﬂyknownas‘vector
proo&ssors’:&eyhavesomeoftlmcharacteristicsofpa:aﬂel
pmo&ssingsinoethepipelinedseﬁalopemionsarealmost
indistinguishable from parallel operations. Clearly,
independent parallel processors can also function in
‘multiple-instruction multiple data” or MIMD mode, but it is
rare for different processors to undertake oompletely
heterogeneous tasks as it is extremely difficult to distribute
such tasks efficiently between processors. With the increasing
power of individual processors it has often become irrelevant
to consider tasks at the ‘instruction’ level since a marginal
amount of loss of strict synchronism may mean that
simultaneously. Taking a broader view, it is more relevant to
comparetheprogxamsegmentsthatmchprmsorismnﬁng
and hence the abbreviations SPMD and MPMD are now also
widely used, where ‘P* stands for ‘Program’.

By the mid-1980’s, it appeared that the Vector-processing
architecture was approaching the limit of its ability, and hence
vector processor manufacturers started to incorporate parallel
pmngimoﬂlﬁrmmmhuonlymaﬁmiwdcbgree
(typicallytwotosimecnprocssors,emmpliﬁedbytheCray
X-MP and Y-MP computers). Smaller manufacturers had
continued to develop paraliel computers, many exploiting the
Transputer, a microprocessor optimised for parallel
applimﬁons,hntheirsuco&sswasiimited,bothtechniwlly
and financially. At least two manufacturers (Thinking
Machines and Active Memory Technology) took an extreme
path of developing systems with very large numbers (>1000)
of low-power processors, but this approach did not achieve
widespread success [2]. The 1990°s have seen a revival of
interest in computers with a modestly large number of
processors (typically between 16 and 512 at present) and this
type has at last become accepted as the mainstream
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supercompriter architecture, A re-evaluation of designs with
several thousand processors also now appears to be
developing, based on low-cost personal computer architecture.

Within the class of parallel computers, a new subxiivision
emerged, between those having ‘shared memory’, a single
largedaxastoreusedbyalloftheprmssors,andthosehaving
“distributed memoty’, i.e. standard memory modules attached
to each processor. The shared memory approach appeared
more natural to program, but it suffered from problems of low
speedofaw&ssbytheproo&ssorsandconmleﬁtyinthe
hardware arrangements, The distributed memory approach
enabled a still greater usc of standard hardware, but required
great care in programming since time could be wasted
searching for an item of data in another processor’s memory.
Alternatively, two versions of the same data could exist in the
memory of different processors and there could then be
uncertainty over which was the valid version. In practice, the
hardware arguments favouring distributed memory have
become vety strong, and the software techniques required to
exploit it are slowly developing towards maturity.
Nonetheless, powerful shared-memory machines continue to
be made, and their performance is again becoming
competitive with distributed-memory machines.

In recent vears, another form of distributed-memory parallel
pmoessinghasappearedasar&mltoftheinstallaﬁonoflarge
networks of UNIX workstations in many companies and
universities. These workstations spend much of their time
idle, particularly at night, and hence techniques have been
devised to take control of unused power in a network and
distribute a program across a large number of worlstations,
the results being fed back to a designated master processor.
This form of parallel processing suffers from relatively poor
comnmumications, and hence it is important to partition the
task in such a way that the communications overhead is
minimised On the other hand, the processing power is
available at minimal cost, and hence it has been an atiractive
option for many organisations [3}.

3 PORTING OF LEGACY SOFTWARE TO
PARALLEL PLATFORMS

In earlier years, when attempts were made to transfer (or
‘port’) electromaguetics software from traditional serial
machines to multi-processor machines, it was frequently
found that some speed-up was achieved when using a few
processors in paraliel, but when larger mumbers were tried the
software would not run with the expected speed increase, and
it was not unknown for it to run even more slowly than in its
serial form on a single processor. The number of processors at
which this problem arose could be as small as four [4], and
‘Amdah!’s Law’ was frequently invoked to expiain the effect
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[5, 6]. This law basically states that there is a Limat to the
amount of speed-up that is achievable with paraflel
processing, because real-world software always contains some
serial sections which rapidty come to dominate the run time
when the parallelisable sections have been accelerated. In
practice, the situation is even worse than Amdahl’'s Law
suggests, because parallel sections of the program require
extra time for setting up and distribution of the data between
the designated processors. When rmunning, the parallel
sections can be severely handicapped by commumications
delays in passing intermediate data between processors,
especially if the algorithm is not optimised to minimise
communications requirements.

4 PARALLELISATION OF SOFTWARE

Most single-box parallel computers have been sold with
accompanying software which atiempts to translate existing
serial programs in a standard language (usually Fortran) into
a form which exploits the parallel architecture efficiently,
Similar software has also been provided by vector processor
manuacturers, but for both architectures it has been found
that the automatic vectorisation or parallelisation routines
frecuently make poor decisions on the re-working of a serial
code, or fail to notice a section of code which is capable of
modification. ‘Manual’ parallelisation or vectorisation has
thus usually been used, a highly-skilled programmer making
appropriate modifications to the program based on a deep
ulerstanding of the architecture of the computer and the
operation of the program.

It seems intuitively reasonable to suggest that this situation
should not persist in the long term and that fully reliable
parallelisation software should eventually become available.
This woukd be given information on the architecture of the
machine on which it is running, would then deduce the
structure of the serial program that it had been given and thus
devise an optimum strategy for partitiontng this onto the
parallel system This problem is the subject of several

Fortran 90 incorporated intrinsic matrix manipulation
functions, constituting some of its most significant extensions
over Fortran 77. Unfortunately, the efficient execution of such
matrix operations is very dependent on the structure and
content of the matrices involved and the detailed architecture
of the computer in use. To overcome these problems,
extensions to Fortran 90 have already been adopted by users
of parallel processors and this extended language became
known as High Perforrnance Fortran (HPF), which is now
strongly influencing the emerging Fortran 95 standard.

In attempts to address the particularly difficult but important
problem of efficient partitioning of an algorithm across a
network of UNIX workstations, some new approaches were
devised. The most important of these were PVM (Parallel
Virtyal Maching) and MPI (Message-Passing Interfiace).
Although these methods were generally devised for use with
asynchronous networks of workstations, they have been
adopted equally widely with single-box parallel
supercompmriers. PVM was initially the most popular method:
this loads ‘spawned” replicated versions of the main program
into each of the designated slave processors, which then
proceed to function amonomously [7]. The efficient
partitioning of the problem between processors is still under
the control of the progtammer, aithough separate graphical
performance-indicating tools are available [8] to give an
indication of the way in which the program is functioning, the
key objectives being ‘load balancing’ between the processors,
and minimisation of the communication activity, MPI was
defined later than PVM, but it has now achieved greater
popularity. It functions in a similar way to PVM but does not
use the organic ‘spawning” approach.

Early experience was gained in efforts to vectorise and
parallelise standard Method-of-Momenis (MoM) codes, with
some success [9]. It was found particularly difficuit to
vectorise and parallelise the critical matrix-solution phase of
MoM because of the inherently high degree of interaction
between the elements of the very dense interaction matrix that
is needed in this method This means that there is a high
communication overhead if the matrix elements are
distribaried across a parallel processing system. There is also
‘data dependency’ with both paraliel and vector processors,
forcing some parts of the process to be handled in a sequential
way in order to ensure that the correct version of the input
parameters is being used Filling of the matrix and
computation of the final field distributions do not have the
same difficulties and these operations can be parallelised
relatively easily.

In considering this experience, it became apparent that a
method based on a differential-equation formulation, such as
the Finite-Difference Time-Domain (FDTD) method, would
have an inherent advantage on a distributed (parailel)
processing system. This is because the interaction matrix is
effectively sparse and the updating of an individnal node only
requires data from its immediate neighbours, whereas nodes
in an integral-equation formulation (e.g. MoM) require data
from all of the other nodes in the system. This effect is closely
similar to the dichotomy between the competing physical
approaches of “action at a distance’ (c.f integral-equation
formoulations) and ‘fields’ (cf differential-equation
formulations),
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A very significant overview of techniques for parallelisation
and vectorisation of FDTD algorithms was presented by
Gedney and Barnard {10]. in particular discussing methods
for maximisation of the efficiency of DO-loops, which are the
main parallelisable component of programs writien in a
traditional language.

4.1 Experience with the FDTD Method on a Parallel
Computer with Virtual Shared Memory

The KSR-1 was a novel design of parallel processor, produced
by the Kendall Square Research Company in the USA
Although the company has now withdrawn from the high-
performance computing market, the machine used an
interesting architecture which may influence future designs
and hence experience gained with it is still relevant. The
particular machine used had 64 processors, although the
maximum number that could be allocated to a single job was
48; the standard word length was 64 bits. The machine had a
unique “virtual shared memory’ architecture, in which sets of
processors were connected in hierarchical rings, each having
fast comnmmications. The objective was to give an
approximation to the behaviour of a shared-memory parallel
processing system, whilst using the cheaper, standard,
hargware of a distributed memory system. A cache was
interposed between each local processor memory and the
communications ring to accelerate the accessing of data by
other processors.

The Finite-Difference Time-Domain (FDTD) method for
electromagnetic field computation was used to test the ability
of this computer, the program used being an updated
version of THREDE [11]. The test exercise was the
modelling of electromagnetic wave penetration into the
human head, as discussed in Section 1, uvsing the head
image re-sampled to 2.5 mm resolution, which gives about
10° FDTD nodes.

In converting the program for parallel operation, the
compater manufacturer’s automatic parallelisation tool was
first tried, but this only gave significant benefit on the most
trivial DO-loops (this experience was also found with simiiar
tools on other computers). The virual shared memory was
also found to be a potential source of problems, much like
virtual memory on earlier serial systems, in which inefficient
page swapping could slow down program execution
dramatically if the task was not correctly partitioned Data
was normalily swapped between processors in ‘subpages’ and
it was found that maximum efficiency was achieved in the
FDTD algorithm when the field data arrays were each
arranged to start on a subpage boundary. It was concluded
that, for satisfactory performance, memory must be managed
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procedures cannot be relied upon. Similarly, it was found that
thealnomaucprocedureﬁequenﬂydemdedtousefewerthan
the maximum number of processors for many sections of
parallelised code: explicit control of the number of processors
thus also appears essential. Explicit ‘affinity directives’ were
thus used to instruct the operating system to partition the
arrays in a pre-determined pattern, and to use an identical
pattern for all of the arrays: this enabied remote data to be
located rapidly, rather than time being wasted in a search. It
was necessary to use explicit correlation of the data partitions
and the number of processots, otherwise the defanlt algorithm
in the operating system would tend to make non-optimum,
uncorrelated, decisions on these parameters. To avoid re-
compilation when the number of processors was changed, this
number was configured as a system variable, to be set outside

the program.

Extracting optimum performance from a machine of this type
invariably involves a number of minor code modifications,
based on experience and a detailed understanding of the
operation of the hardware and sofiwarc. In this casc, a
problem was found in that the existing code, optimised for a
vector processor, used separate loops to iterate the FDTD
time-marching equations in the x. y and z planes. When this
was altered to a single loop to update all components at once
for each cell, the amount of data loading and storing required
was reduced by a factor of three (this is discussed more fully
in [10]). Loading and storing is a slow process on this
computer, whereas it is fast on a vector processor. This
modification gave a speed improvement by a factor greater
than ten. It was found that the computer was particularly fast
with multiply operations but slow with division, load, store
anduigoncmeuicﬁmcﬁons.TocircumventthiSproblem,the
number of divisions was reduced by converting commonly-
used denominators into reciprocals which could then be used
with the multiply function. Similarly, commonly-used
trigonometric function results were stored to avoid fresh
function calls.

4.1.1 Scaleability

‘Scaleability” is an important objective of parallel
compaters and softiware. A hardware-software
combination has perfect scaleability if the program runs N
times faster when the number of processors in use is
increased by a factor N. In practice this never happens, but
a viable system can be expected to approach at least about
50% of this ideal performance. Popular measures of
parallelism performance are ‘speed-up’ and ‘parallelism
efficiency’, which are defined thus:

Speed-up §S=— (1)
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T 100% = > x 100% (2)
nT, n

n

Parallelism efficiency n =

where T, is the execution time On One processor and T, is
the execution time oh iz Processors.

Theproductofﬂwmmlberofprooessorsandmeobservedrun
time can also be used to give an indication of the parallelism
efficiency when T) is not known. This procuct is clearly equal
1o T; when the efficiency is 100% and will be greater if the
efficiency falls.

As a test of the scaleability of the modified THREDE
program, the 2.5 mm resolution dataset was run for 250
iterations (not enough for convergence, but adequate for this
test), on 10, 20 and 30 KSR-1 processors. Results are shown
in Table 1: near-linear scaleability was found from 10 to 20
processors, but a substantial loss of efficiency occurred with
more, probably due to an excessive communications burden
resulting from non-optimum partitioning of the data matrix.
The scaleability and speed-up should strictly be calculated
using the run-time with just one processor as the baseline.
However, the task was too large to run on one processor, as is
venroftenthecase.‘fher&sultisthatsmleabﬂityhastobe
assessed from the results with a larger number of processors
(teninthiscase),undﬁtheassumpﬁonthatnw—perfect
performance is achieved up to this number. An alternative
performance measure that has been used in some
circumstances is ‘scaled speed-up’ [12], in which the size of
thecompmaﬁonaltaskissmledinpmportiontothenumber
ofpromors.?hisgiv&smmﬂtsthatappearbetter,bmitwas
hnpractimltosmleﬂlelasksmdiedheredowntothelevei
that could be run on one processor. .

Table 1. Scaleability tests with KSR-1 computer
(One-dimensionat partition; 100x100x100 nodes;

250 iterations)
No. of Run |Processors | Speed-up | Efficiency
Processors | time x Time | (seenote) | (see note)
(mins) | (mins)
10 20 200 10 100%
20 10 200 20 100%
30 15 450 13.3 44%

Note: task too large for one processor, hence speed-up and
efficiency calculated by assuming they are ideal with 10
Processors.

4,1.2 Partitioning of the Problem Space

A diagrammatic representation of the way in which the
problem space was partitioned on the KSR-1 is shown in Fig
2. The problem space was divided into a number of slices,

each to be computed on a separate processor (for simplicity,
only five slices are shown). This is a one-dimensional
partition, but two- and three-dimensional variants are also
possible (see below). It is important to give cach processor
approximately the same workload, as the computational
effort is almost identicat in each node of the FDTD
calculation. An unbalance in workload leads to wasted
processing time on idle processors, thus recucing
efficiency. Since the 2.5 mm dataset had array dimensions of
about 100 in each direction, thj:typmwssorswouldemhonly
behmd]ingthreeorfmrslic&softhedamset,anda
proportionaielyincrwsednumberofdatau-ansferswouldbe
required to access the field data from adjacent processors.
Even if the amount of serial code in a program were to be
zero, it is thus evident that a point would always be reached
where a problem of a given size would start 0 run more
slowlyasmenunlberofprmsomwasmamsed since
communications activity would start to dominate over
computation. This is true of amy parallel processing
architecture, not just the rather unusual case of the KSR-1.

Figure 2: A one-dimensional partitioning of the FDTD
problem space into sub-volumes, each to be handied by a
separale Processor.

A three-dimensional partition is illustrated in Fig. 3. here
the problem space is shown partitioned for execution on a
hypothetical eight-processor computer. Each of the eight
processors is assigned an equal part of the problem in such
a way that inter-processor communications are minimised.

Treating these representations of a three-dimensional data
array as fictitious three-dimensional solids, it can be said
that the ‘surface area’ of any sub-volume is proportional to
the sum of the amount of inter-processor commurication
it will have to undertake, plus the amount of absorbing
boundary condition (ABC) treatment it will need. The
latter only applies to the outer surfaces of sub-volumes at
the boundaries, but this typc of surface will be in a
majority for regularly partitioned cubic volumes having
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fewer than 12 sub-volumes. The ‘volume’ of any sub-
volume is proportional to the amount of internal
calculation it will have to undertake, using data stored in
its own memory. ABC treatments may be expected to be a
little siower than standard FDTD calculations, but
communications are almost invariably very significantly
slower. Thus the optimum strategy should be to aim for
partition sub-volumes that have a maximised ratio of
volume to surface area.

1A

Figure 3: A three-dimensional partition of the FDTD
problem space.

Using the one-dimensional partition, the total surface area
of all of the sub-volumes, measured in datz elements, is:

A; = 2n’(p+2) 3)

where n is the number of data elements in each dimension
of the problem space and p is the number of sub-volumes
(i.e. processors). The factor 2 is included because each
internal surface is seen twice, once from each side. The
problem space is assumed to be a regular cube for
simplicity: the same general conclusions will be valid for
cuboidal volumes except when they are very long and thin.

The total communicating surface area of all of the sub-
volumes (i.¢. excluding external surfaces requiring ABC
treatment) is:

Acy = 20°(p-1) “®
However, for the three-dimensional partition the
equivalent total area is:

As= 6n*3p 5)

And the communicating area is:
Acs=6n*@/p -1 (6)
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since there are 3\/5 —1 internal planes in cach of three co-

ordinate directions, each seen from two sides and each
with area n°.

Taking, for example, the perfect cubes p = 8, 27 and 1000,
these equations give the results shown in Table 2.

Table 2: Typical total areas of sub-volume surfaces,

fram Eqns (3) to (6)
P %f; Ay Ao A Acs
8 2 20n° 14n° 12n° | 6n°
27 3 58n° 52n° 18n° | 12n°
1000 | 10 | 2004n® | 1998n° | 60n® | 54n°

Since the volumes of the sub-volumes are constant in each
row of this table (volume = n’/p), these resulits show that,
whether or not ABC treatments are considered 1© have a
significant ¢ffect on the size of the task, the ratio of
‘surface area’ to “volume’ for each processor will be much
stnaller for three-dimensional ‘cubic’ partitions than for
one-dimensional ‘slice’ partitions.

This shows that the ‘slice’ partition used in the KSR-1
experiments was non-optimal, and it explains the poor
efficiency obtained with 30 processors (it was not possible
to repeat the experiment with cubic partition as support
for the computer was terminated following the untimely
withdrawal of the manufacturer from the parallel
computer business). The KSR ‘virtual shared memory’
architecture is not being perpetuated at present, aithough
it has some similarities with that used in another current
manufacturer’s products. Nonetheless, experience gained
with such experimental architectures is always instructive
in assessing the viability of futare architecture proposals.

It should be noted that the above calculations only give an
indication of the relative amount of time required for
communication of data when comparing the same problem
run on different topologies (an estimate of communication
time relative to computation time is given in {13]). The
basic fact remains, however, that a calculation that
involves data communicated between processors will be
slower than an equivalent one that does not. It therefore
appears that the optimum strategy will always be to
minimise the ratio of communication to internal
processing tasks, per processor.

4.2 Experience with Paralielised FDTD using PVM.

In 1994-95 the Furopean Union's ESPRIT IH action initiated
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a programme entitled EUROPORT, the object of which was
to demonsirate portable and scaleable parallelisation of
industry-standard programs, using automated tools as far as
possible. ‘Portabie’ means that the program will operate,
without substantial modification, on a range of platforms,
including parallel processors from various manufacturers,
and workstation clusters. One of the projects was PEPSE
(Paralle!  Electromagnetics  Programming Support
Environment) [14], which was concerned with parallelisation
of a starkiard FDTD program and a linked graphical input-
output program.

The FDTD program chosen for parallelisation was
EMA3D, which is similar to, and has evolved from,
THREDE [11]. The parallelisation was undertaken using
PVM [7], due to its widespread acceptance in the parallel-
processing community at the start of the project. This
operates by running a supervisory ‘C’ program which
calls appropriate PVM library routines. These ‘spawn’
copies of the main task program (which may be in
Fortran, but called from a C program) onio designated
processors. The partitioning of the computational task is
controlled by passing variables to the replicated programs,
chosen to control the portion of the data that is to be
associated with each processor.

The main time-marching FDTD equations and the ABC
treatments were fully parallelised to ensure efficient
execution of the code. However, the thin wire algorithm
used for the handset antenna [15] was parallelised in a
degenerate manner. This means that the thin wire
computation was carried out on the root processor (the one
assigned for supervisory code and serial parts of the
program), and the results of this distributed to the relevant
processors. Many of the problems used as test cases for the
parailel FDTD code make use of thin wire sections in the
code and could be slowed down by this. It is not, however,
a computationally significant part of the modelling of
these problems and thus it does not greatly affect the
efficiency of the parallel code.

A small scaleability test, involving the modelling of
simple dipole radiation, was undertaken with the FDTD
software on two Meiko C8-2 parallel computers: the size
of the problem space was 120x240x50 (=1.44x10% nodes,
run for 500 iterations. Results are shown in Table 3: the
‘topology’ indicates the way in which the x, y and z
indices of the data matrix were partitioned between
PrOCESSOTS.

The generally constant value of the product of the number
of processors and the run time indicates that the
scaleability is near-perfect under these conditions, except

with only three processors, where the poor result obtained
is probably due to the necessarily poorly-matched
topology, in which there has to be a one-dimensional
partition with one portion of the task requiring twice as
much communications traffic as the other two. The
comparative results with different topologies for eight
processors are interesting, as the differences are small,
although the (nominally) coptimum topology (2x2x2)
actually gives the poorest result, albeit by a negligibly
small margin. It is more interesting to note that the least
optimal partition (1x8x1) shows no degradation of
efficiency in this case, indicating that processor workioad
imbalance is negligible in this case, and that the “slice’
partiions are not so thin as to be dominated by
communications. These particular results may have been
influenced by the relatively ‘long and thin’ problem space
considered. Amdahl’s law suggests that the scaleability
will be degraded with a large number of processors, and
this effect is starting to appear with sixteen processors, but
not to a great degree.

Table 3. Scaleability tests with Meiko CS-2 computers

pl| L Run | Top- |pxtime | Speed- | Efficiency
MHz | time | ology | (mins)| upf T
ming

3| 50 | 6533 | 1x3x1}| 1967 15 49%

4 | 50 | 24:00 | 2x2x1 26 4 100%

6 | 50 | 16:57 | 2x3x1 | 1017 | 5.7 94%

8 | 50 | 1248 | 2x2x2 [ 1024 | 75 94%

8 | 50 | 12:40 | 2x4x1 | 1013 | 7.6 95%

8 | 50 1241 | 1x8x1 | 1015 76 95%
16 | 40 8:12 | 2x4x2 | 105.0* | 14.6* 91%

tTAssumes ideal scaleability for <4 processors. *Clock
frequency (f.) normalised to 50 MHz,

The head-telephone interaction model was ultimately run
using the parallel FDTD code on a 128-processor IBM SP-
2 parallel computer to assess the effectiveness of the
parallel port. Figure 4 shows three sets of results for
speed-up of the code. Test 1 was for a 2.5 mm resolution
model of the head, hand and mobile tclephone, Tests 2
and 3 being at resolutions of 2 mm and 1 mm respectively.
Table 4 shows the FDTD problem size for each of these
test cases and Fig. 5 shows a typical slice of the computed

output.

It should be noted that it was not possible to run the 1 mm
problem on fewer than eight processors on this computer
since the data quantity then became too large for the
memory of the processors in use. Therefore the results for
one, two and four processors were extrapolated from the
result at eight processers using the efficiencies found in
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the 2 mm test case. The curve labelled ‘ideal’ in Fig. 4
illustrates the speed-up that would be achieved with a
100% efficient system.

Figure 4. Speed-up results from the head-telephone test
cases, running on a 128-processor IBM SP-2.

Table 4. Memory Requirements for Test Problems

Test | Resolution | Problem Size Memory

No. (cells) Required
1 2.5 mm 1.3 x 10° 45 MBytes
2 2 mm 2.5 x 10° 90 MBytes
3 1 mm 20 x 10° 720 MBytes
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Figure 5 A typical slice of the computed output: electric
field magnitude through the centre of a head adjacent to a
1.8GHz mobile telephone handset.
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Figure 4 demonstrates that efficient massively-parallel
processing of electromagnetic problems is now a mature
and viable technique, whereas early efforts frequently
showed little gain after a very small number of processors
was exceeded. It also shows two very important effects:
firstly, the larger the computational task, the greater is the
efficiency of the parallelisation, because the ratio of
computational to communications tasks is increased.
Secondly, when a task is subdivided over too many
processors the efficiency of the parallelisation reaches a
limit because the computational task is attenuated to a
point where it becomes of the same order as the
communications task: this is clearly seen in the results for
the smallest test case (Test 1) with 64 processors.

The objective of portability has been demonstrated by use
of this software on Meiko and IBM computers, but it was
also successfully tested on one by Parsytec, and on
networks of UNIX workstations.

5 CONCLUSIONS

Electromagnetic field computation is inherentlty a SPMD
(single instruction, multiple data) process which is very
appropriate  for execution om vector and parallel
supercomputers.  Automatic  algorithms for  efficient
exploitation of these are not yet fully developed and some care
is thus necessary in the parallelisation of traditional serial
software, taking account of the structure of the software and
the way in which it interacts with the detailed architecture of
the computer. Ways of doing this have been reviewed: for
differential-equation based methods the PVM or MPI
algorithms appear to offer a uscful and portable approach
which is accepted over a wide range of platforms.

Provided a sufficiently large task is addressed, it has been
shown that efficient massively-parallel processing of
electromagnetic problems is now a viable and mature
technique, at least for differential-equation based
formulations, whereas early efforts frequently showed
little gain after a very small number of processors was
exceeded.

It was found that as the problem size increased the
efficiency of the code increased, the results tending
towards the ideal. It is a paradox that it is difficult to
accurately assess the efficiency of very large test cases, as
they are too large to be run on a small number of
processors. It was observed that when a task is subdivided
over too many processors the efficiency of the
parallelisation reaches a limit because the computational
task is reduced to a point where it becomes of the same
order as the communications task.
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Figure 4 demonstrates that efficient massively-parallel
processing of electromagnetic problems is now a mature
and viable technique, whereas early efforts frequently
showed little gain after a very small number of processors
was exceeded. It also shows two very important effects:
firstly, the larger the computational task, the greater is the
efficiency of the parallelisation, because the ratio of
computational to communications tasks is increased.
Secondly, when a task is subdivided over too many
processors the efficiency of the parallelisation reaches a
limit because the computational task is attenuated to a
point where it becomes of the same order as the
communications task: this is clearly seen in the results for
the smallest test case (Test 1) with 64 processors.

The objective of portability has been demonstrated by use
of this software on Meiko and IBM computers, but it was
also successfully tested on one by Parsytec, and on
networks of UNIX workstations.

5 CONCLUSIONS

Electromagnetic field computation is inherently a SPMD
(single instruction, muitiple data) process which is very
appropriate for execution on vector and parallel
supercomputers.  Automatic  algorithms for efficient
exploitation of these are not yet fully developed and some care
is thus necessary in the parallelisation of traditional serial
software, taking account of the structure of the software and
the way in which it interacts with the detailed architecture of
the computer. Ways of doing this have been reviewed: for
differential-equation based methods the PVM or MPI
algorithms appear to offer a useful and portable approach
which is accepted over a wide range of platforms.

Provided a sufficiently large task is addressed, it has been
shown that efficient massively-parallel processing of
electromagnetic problems is now a viable and mature
technique, at least for differential-equation based
formulations, whereas early efforts frequently showed
little gain afier a very small number of processors was
exceeded.

It was found that as the problem size increased the
efficiency of the code increased, the results tending
towards the ideal. It is a paradox that it is difficult to
accurately assess the efficiency of very large test cases, as
they are too large to be run on a small number of
processors. It was observed that when a task is subdivided
over too many processors the efficiency of the
parallelisation reaches a limit because the computational
task is reduced to a point where it becomes of the same
order as the communications task.
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