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ABSTRACT. This paper presents an efficient simu-
lation tool for conventional, microwave and combined
heating. Two heat transfer mechanisms are included:
conductive and radiant heat transfer. The conductive
heat transfer is modeled by a finite difference algorithm.
A modeling technique for radiant heat transfer in non-
uniform grids has been developed and is here presented
for the first time. A finite difference scheme is not ap-
plicable for the radiant heat transfer, as radiation from
a material surface is not bounded to the immediate vi-
cinity as is conductive heat transfer. Therefore ray op-
tical methods are used. Rays connecting mutually vis-
wble surfaces are obtained by e new fast method. Ne-
cessary but acceptable simplifications allow fast compu-
tations. The algorithms are conveniently integrated to-
gether with an electromagnetic FDTD program into one
simulation tool. Representative simulations are presen-
ted for an oven heated conventionally, by microwaves,
and by a combination of both.

1 INTRODUCTION

Thermal modeling is mandatory for the optimization of
heating processes in ovens. Especially in combination
with microwaves, the heating process has to be carefully
designed to achieve fast and uniform heating. Various
reports {1, 2, 3, 4, 5, 6, 7, 8, 9, 10] reported electro-
magnetic field computations of microwave ovens, but
only few authors {11, 12] include in their procedures a
thermal model. To the authors knowledge all models
consider only the conductive heat transfer, radiation is
usually neglected. This simplification becomes ques-
tionable at higher temperatures. In fact, with increas-
ing temperature radiant heat exchange becomes more
and more important, since the energy emitted from a
material surface increases proportional to 7. In con-
trast energy transported by heat conduction is only pro-
portional to 7. Radiant heat transfer eventually pre-
vails conductive heat transfer. This paper specifically
includes radiant heat transfer and therefore closes the

gap of neglected radiant heat exchange.

Pure thermal problems are mostly simulated by Fi-
nite Element Programs [13], some of which include radi-
ation. Heating by microwaves is sometimes considered,
but the variation of the electromagnetic field with in-
creasing temperature due to changing material proper-
ties is not. Additionally, these models normally perform
only steady state calculations.

For the optimization of ovens one needs to determ-
ine the dynamic heat process. Hence, a combination of
thermal and electromagnetic simulation must be used.
Both radiation and the influence of increasing temper-
ature on the electromagnetic field must be considered.

The Finite Difference Time Domain (FDTD) method
has been found to be an excellent algorithm for the cal-
culation of electromagnetic fields, especially in closed
structures like ovens. This method needs less compu-
tational resources than methods in frequency domain.
Broadband calculations are easily performed. The Fi-
nite Difference Time Domain modeling of thermal pro-
cesses is also economical in memory usage. A combin-
ation with an electromagnetic FDTD leads to a very
efficient and powerful simulation tool. Self-consistent
modeling is possible as well as analyzing a dynamic
heating process.

Both, the conductive thermal and electromagnetic al-
gorithm are of local character as the temperature and
the fields in one discretisation cell is only related to
its neighbouring cells. This local scheme applies only
to conductive heat transfer. When considering radi-
ant heat transfer, energy may be transported through
the whole computational space. Mutually visible sur-
faces, view factors and material parameters have to be
determined and used for the calculation. This usually
means high computational effort. However, the pro-
posed method reduces this effort considerably.

The main task when including radiant heat transfer
is to determine surface pairs being mutually visible and
exchanging radiant energy. A very fast algorithm has
been developed that is optimized for detecting mutually
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visible surfaces in a rectangular non-uniform grid. This
algorithm determines surface pairs very quickly. They
need to be allocated and stored only once, before the
calculation starts. After this initial step the calculation
of the resulting temperature at each time step is very
fast and easy. :

After discussing the mechanism and the modeling of
the conductive and radiant heat transfer, an efficient al-
gorithm for the computation of view factors and trans-
fer rays is presented. A next section shows the inclusion
of the electromagnetic simulation. A hybrid oven sim-
ulation verifies the applicability of the method.

2 CONDUCTIVE HEAT TRANSFER

The finite difference scheme [14] is applied for the con-
ductive heat transfer in a rectangular non-uniform grid
with cells indexed by (i, j, k). Inside a cell the temper-
ature is assumed to be homogeneous. Heat flux density
vectors describing the heat exchange with the neigh-
bouring cells are defined in the middle of the six cell
surfaces as shown in Fig. 1 for the discretisation cell
(¢,7,k). The calculation of the temperature distribu-
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Figure 1: Discretisation cell (¢, j, k) and the position of
the scalar field components T and the vectors j.

1,k

tion is divided into two steps. The heat flux densities
are caused by the temperature gradients and given by

J(&,T) = ~0 (2,T) grad T (£, T) (1)

with j the heat flux density, and ¢ the thermal con-
ductivity. Considering only the z component of j in
Fig. 2, the gradient in equation (1) is expressed using
the finite difference expression

T(’L,J,k) —T(’L - 11.7’]9)

s )

gradT (%) =
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Figure 2: Geometrical properties for the calculation of
the discretised field component j,.

The thermal conductivity at Z is the average of two
neighbouring cells. With .

a (ivja k) g (l - 17ja k)

— :A
U(l‘,T) zl20'(iaj7k)+lla (2_17.]7k) (3)
one obtains
.. - gi,.,ka'i—l,',k
Jz (i, 4, k) L e “

o (i, k) +ho (i — 1,5, k)
(T(Z - lajak) -T(i’ja k))

The thermal conductivity is assumed to be constant
over the volume of one discretisation cell. As the heat
flux density is supposed to be constant over the surface,
the power P, flowing through the interface between the
cells (¢, 4, &) and (i — 1,4, %) is determined by

P: (i,.k) = [[ Gz dA =j. i,5.k) AyAz  (5)
A

All other components of j and P are obtained accord-
ingly.

The next step is the application of the conservation
of energy. The change of temperature within a discret-
isation cell is derived from the change of energy. When
the conservation of energy

AV (3T + e (B.T) p(ET) 9T (@) =0 (6)

is applied to one cell (i, j, k) the divergence of 7 equals
the power that flows through the surfaces of the cell.
¢v and p are the specific heat capacity and the density,
respectively. The divergence of 5 is expressed by the
discretised surface integral in equation (5).

divj (%) = (7)
fi@aa =
A
+ Py (i,j,k)—Py(i,j+1,k)
+ Pz (7/’]7]‘;) —PZ (i7j7k+1))
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in the finite difference scheme.
The right hand side term in equation (6) applied to
the cell volume leads to

e (ET) p(&T) ST (2) = (8)
fﬂc (Z,T) p(Z,T) %T(:E') dv =
1%

Az Ay Az o (i,3,K) p (6 k) 2T 0,5, F)

Finally the time derivative is also expressed by a finite
difference

5 - Tn+1 (Zajrk)‘Tn(%J’k)

where T™ denotes the temperature at time step n. Us-
ing equations (7), (8) and (9) one obtains

(4, k) + (10)

At _

Az Ay Az ey (i,5,k) p(i,j, k)

(P (4,7, k) — Pe (i + 1,5, k) +
Py(i,5,k) — Py (4,5 + 1,k) +

P, (i,7,k) — P, (i,5,k + 1))

T, 5.k) =

With equations (4) and (10) the temperature is updated
at each time step. The time step At has to be chosen
carefully, since instabilities may arise. The algorithm

is stable for c
At < 5“-’3 Az? (11)
o

where Az is the discretisation with [14]. Equation (11)
has to be satisfied for every discretisation cell.

3 RADIANT HEAT TRANSFER

With increasing time in the simulation the increase of
temperature may cause a variation of the electric and
thermal properties, but the geometry remains constant.
Therefore geometry checks are performed only once be-
fore calculation starts. The checks include the determ-
ination of radiant surfaces, testing for visibility and the
calculation of view factors.

The radiant heat transfer only applies to interfaces
between solid and gaseous materials. Therefore the first
step is to determine those surfaces within the finite dif-
ference grid. The surfaces of the solids are assumed to
be rough. The Stefan-Boltzmann and Lambert equa-
tions determine for this case the specific heat radiation

M= és cos § oT* (12)

of a surface A oriented in a coordinate system accord-
ing to Fig. 3 at temperature T in direction ¢ and 6.

Figure 3: Specific thermal radiation of a surface A.

o is the Stefan-Boltzmann constant, and £ represents
the relation between the emission of the real surface
compared to a black emitter. Obviously, the radiation
only depends on the elevation angle 6 and not on the
azimuth angle ¢ because of radial symmetry.

In closed environments like ovens, all the radiated
energy is absorbed by other surfaces. For the calcula-
tion of the radiant heat all energy exchanges between
surfaces have to be calculated. As shown in Fig. 4 the

Figure 4: Radiation between two rectangular planes.

radiation of surface A; is partially absorbed by sur-
face A;. The absorbing surface A;, however, also emits
thermal radiation. A part of this radiation is in turn
absorbed by A;. The power exchanged between the two
surfaces ¢ and j is

FPrag = @45 — @55 (13)
where
q)ij = A, £; aj F‘,‘j ag; Ti4 (14)
'I)ji = Aj €50y Fji gj T;

where «; and ¢; are the absorption and emission coeffi-
cient of surface A;, respectively. Kirchhoff’s law states
that a; equals ;. The view factors Fj; and Fj; are
coeflicients determined by the geometry only. They ex-
press the part of energy that is transmitted by surface
A; and actually received by surface A;, divided by the
total energy emitted by surface A;. The view factors
F;j are given by

1 COS ; COS Y,
Fy=—r / / B PiaAda (15)

Ai Aj

and are determined by geometrical properties as shown
in Fig. 4. The factors have values between 0 for in-
finitesimal surfaces infinitely separated and 1 for two



parallel, infinitely extended planes. The F;; are con-
stant with respect to temperature.

The final temperature distribution is determined by
the energy exchange between all surfaces. The radi-
ant power flowing through the surfaces of cell (i, j, k) is
now used to calculate the variation of the temperature.
When applying the conservation of energy, equation (6),
to the radiant heat transfer one finally obtains

TG, 5,k) = T"(,5,k) + (16)
At
Az Ay Az ey (i,5,k) p (i, ], k)

Z Pracl

Surface

For maximum versatility, the simulations are based on a
cartesian, but non-uniform grid. This allows an enorm-
ous simplification for the determination of view factors.
An efficient calculation is obtained if the geometrical
properties are checked and the view factors calculated
and stored only once before the calculation starts. Dur-
ing the calculation the stored values are simply pro-
cessed in a look-up table.

The preprocessing is divided into two steps. First the
relevant cells are determined. Only cells representing
solid materials bordered by a gas or vacuum are relevant
as only those cells radiate or absorb energy.

The next step is to determine surface pairs. Two
surfaces are called a surface pair when they exchange
energy. Energy exchanges only apply to surfaces that
are mutually visible. Every possible combination of sur-
faces has to be checked whether they are linked by a line
of sight. Depending on the size and properties of the
oven and the discretisation millions of possible surface
pairs exist. Hence, the visibility check has to be very
efficient.

Here a modified Bresenham algorithm is used which
combines versatility and efficiency. Fig. 5 shows two
surfaces that are checked whether they are mutually vis-
ible. A virtual line connects the surface centers. If each
cell penetrated by the connecting line is gaseous then
the surfaces are mutually visible. Computer graphics
use Bresenham algorithms [15, 16] to draw lines on a
screen. This algorithm determines very fast the pixels
that are penetrated by a line. However, this algorithm
has been developed for two dimensional uniform grids.
Here the algorithm is extended to three dimensional
non-uniform grids.

The check starts from one surface and proceeds along
the connecting line. The first penetrated cell is the one
directly attached to the surface. To determine which
cell is penetrated next the distances I, I, and [, in
Fig. 5 are calculated. These are the distances along the
connecting line until a new cell in z, ¥ or z direction is
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surface
2

Figure 5: Two dimensional Bresenham algorithm in a
non-uniform grid.

reached. The distance [, is calculated by

2, +12
I, :Ax‘/1+—1i“—2—i‘
lza

where Az is the minimum distance in z direction to
the next cell. Az is normally the cell width and there-
fore easily accessible. I;,, ly, and I, are the overall
distances between the surface centers in z, y and z dir-
ection, respectively. [, and I, are also calculated ac-
cording to equation (17).

The minimum of [, [, and I, determines if the next
penetrated cell is in z, y or z direction. In our example
in Fig. 5 the next cell is reached in y direction. This
cell is tested if it is still gaseous. Then I, is increased

by
lga—*’lza
ly=ly+Ay”1+T

where Ay is the new cell width. The square root term
on the right hand side is constant and is calculated only
once. In comparison to the original algorithm only one
additional multiplication of the term in the square root
with the actual cell width Ay is needed. This is due to
the non-uniformity of the grid.

The determination of the penetrated cells is contin-
ued until a cell with solid material, or the second surface
of interest is reached. In the first case, the surfaces are
not mutually visible.

The algorithm only determines whether there is a line
of sight or not. Partial visibility is not considered, since
the computational effort would be very high. However,
as the discretised surfaces are normally very small, only
a slight error arises.

For each surface pair the view factors Fj; are calcu-
lated. Using the reciprocity

AiFij = A;Fji

(17)

(18)

(19)



J.HAALA, J.V.HAGEN,W. WIESBECK: FAST IMPLEMENTATION OF HEAT RADIATION 15

the view factors are calculated only once for each sur-
face pair. As the surfaces are either parallel or perpen-
dicular oriented in the rectangular grid, the integrals in
equation (15) can be simplified. [17] showed a method
for evaluating the view factor without integration mak-
ing the calculation much faster.

4 MICROWAVE HEATING

The heating of materials by microwaves is determined
directly using

Paec = [[[ e @7) p(3,T) (—%T (&T)dvV =0 (20)
v

where Pejec is the microwave power dissipated. As
shown in Fig. 6 there are twelve electric field compon-
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Figure 6: Placement of the electric field components
within the discretisation cell (i, j, k).

ents dissipating power within one cell. The electromag-
netic power

Az Ay Az 2 2
Pelec = _4—7;'€|Enl (21)

is determined by the conductivity & of the material .
Combining (20) and (21) and setting up the finite dif-
ference scheme one obtains

T (i,5,k) = T"(i,5,k) + (22)
At 12 ,

. E,

dey (63, F) p (6,4, F) ,;”' |

The computation of the electric energy dissipated in one
cell is done by a standard FDTD scheme, and includes
linear and frequency-dependent materials.

Additionally, equations (7), (16), and (22) are com-
bined to update the temperature in only one computa-
tional step. The radiant, conductive and electric power
is summed up leading to

T (i, 5,k) = T (i,4,k) + (23)
At

Az Ay Az ey (1,3, k) p (i, k)

(Z Prad+ Z Pcond+
S

urface Surface

> Pelec>

Volume

5 SIMULATION OF A HYBRID
OVEN

In this section the above method is applied to the sim-
ulation of a hybrid oven loaded with material samples.
The oven has the dimensions 400 x 360 x 350mm?® and
is sketched in Fig. 7.

A i‘ — A .
8 conventonaiy et
Casket
BT samples
: 410 x 50-x 50 Microwave Feed
G ey
o Ee oo 1e| Waveguide
8 60 88 ¥y 40x80
Sorad i Lok t
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é . : V'Or/
| @l 3/
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z _ ] ¢3D
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Figure 7: Hybrid oven with casket and samples inside.
The samples are placed on bars. The front and rear

wall are heated conventionally. Dimensions in mm.

The oven is descretised using 34850 discretisation
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Table 1: Material Parameters used in the Simulation

Material Parameter Value Tin K
Samples Specific 765 300
Heat ¢, 940 400
: 1110 600
Density p 3970 0-1000
Thermal 36 300
Cond. o 27 400
16 600
10 1000
Emission-, 0.78 400
Absorption- 0.69 600
Coefl. e = a 0.61 800
0.51 1000
Rel. Perm. g¢ 9.6 0-1000
Cond. & 0.5 0-1000

Casket same as samples except
+bars Conductivity & 0.1 0-1000
Oven Thermal Cond. ¢ 138 0-1000
(Carbon)  Emission-Coeff. & 0.29 0-1000
Conductivity & 105 0-1000

Units: [ev] = J/kgK, [p] = kg/m?, [0] = W/mK,
[e,0] =1, [ge1] = As/Vm, [k] =S/m

cells for the thermal model. For the electromagnetic
modelling 66400 cells are used. The discretisation dif-
fers in the areas where air is present as for thermal mod-
elling a course mesh is used. For areas filled with ma-
terials the same discretisation is used for thermal and
electromagnetic modelling. 3 Mio. surface pairs which
exchange radiant heat transfer are detected within the
structure. The determination of them takes 85s on an
HP workstation C240. The calculation of the electro-
magnetic field and the 600s heating period lasts 200s
and 40min, respectively. To model the oven 90MB com-
putational memory is needed.

The walls of the oven consist of Carbon. Inside the
oven an Al,Ojs casket carries four samples on Al,Oj3
bars. The electromagnetic and thermal material para-
meters of the casket and the samples are summarized
in Tab. 1.

5.1 Conventional Heating

The front and rear wall of the oven are heated conven-
tionally to a constant temperature of 2000K. Computa-
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tional results are given in Fig. 8 for t = 0s, t = 240s and

Heated Wall

Heated Wall

Temperature in °K

<300

Figure 8: Results for the conventional heating at time
steps t = 0s, ¢ = 240s and ¢t = 600s for a view plane at
= 165mm

t = 600s. One observes that first the casket is heated
by radiation of the hot walls. The energy is then trans-
ported inwards through the casket walls by conduction.
Once the interior of the casket is heated up, the samples
are heated by radiation from the casket. A closer look
at the temperature distribution inside a single sample
is shown in Fig. 12. A discussion of the distribution is
given below.

5.2 Microwave Heating

The microwave power is fed through a waveguide with
dimensions 80 x 40mm? located in the middle of a side
wall. The generator has a frequency of 2.45GHz and
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produces 1.5kW microwave power. In Fig. 9 the electro-
magnetic field distribution at f = 2.45GHz in the fre-

>4 103

Elec. Fieldstrength in V/m

(=)

=

Figure 9: Electric field strength within the oven for a
view plane at £ = 165mm

quency domain is given in a view plane at £ = 165mm.
Clearly seen are the resonances arising within the cas-
ket.

In Fig. 10 the temperature distribution is given for

>500

Temperature in °K

<300

Figure 10: Results for the microwave heating at time
steps t = 240s and ¢ = 600s for a view plane at z =
165mm

240s and 600s. The samples near the feed are heated
faster.

5.3 Hybrid Heating

The results of the combination of both heat sources look
similar to a linear superposition of the heating patterns
of the single heat sources (Fig. 11). However, the power
of the single sources need to be adjusted. A quasi-

>500

Temperature in °K

{1 <300

Figure 11: Results for the hybrid heating at time steps
t = 240s and t = 600s for a view plane at £ = 165mm

optimal heating was achieved for 800W microwave
power. The microwaves are heating the samples nearly
uniformly. If the interior side of the casket is kept at
the same temperature as the samples, the exterior of
the samples remain at the same temperature as the in-
terior. This is considered to be the best performance.

5.4 Temperature distribution inside a sample

The upper left sample in Figs. 8-11 is shown enlarged in
Fig. 12 for the three different types of heating at time
t = 240s. The distributions are calculated and shown
in a horizontal cut in the middle of the sample. To see
the temperature differences in the sample more clearly
a normalization is used. The colortable is adjusted to
temperature span inside the sample. The absolute val-
ues are given for each temperature plot.

In the left two figures showing the temperature dis-
tribution for conventional and microwave heating with
800W microwave power one can see clearly a temper-
ature gradient. It is also obvious that the microwave
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Figure 12: Temperature distribution within the upper
left sample at time ¢ = 240s. The colortables are ad-
justed to the temperature span within the samples.

heating produces a higher heating rate at this paper.
The hybrid heating leads to a more homogeneous and
faster warm up than the single heat sources. However,
if desired one could also optimize for a temperature
gradient or any other heat pattern.

6 CONCLUSION

A new method was presented to simulate heating pro-
cesses including thermal energy exchanges by conduc-
tion and radiation. The algorithms are implemen-
ted within an electromagnetic FDTD-code, allowing
the calculation of conventionally heated and microwave
ovens. For the conductive heat transfer a finite differ-
ence scheme is used. Ray optical methods are intro-
duced to check visibility of surfaces and consequently
the possibility of radiant heat exchange. The result-
ing simulation tool is very powerful and mandatory to
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design high quality ovens. It allows the determination
of temperature distribution inside materials and an op-
timization for any desired heat pattern. Especially for
hybrid ovens where different heat sources have to be ad-
justed, the developed software package has been proven
to offer an excellent opportunity to simulate heating
processes and to support hybrid oven designs.
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