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0. ABSTRACT

Problem solving in electromagnetics, whether by
analysis, measurement or computation, involves not
only activities specific to these particular categories, but
also some concepts that are common to all. Fields and
sources are sampled as a function of time, frequency,
space, angle, etc. and boundary conditions are satisfied
through mathematical imposition or experimental
conditions. The source samples, usually the
unknowns in a problem, are found numerically or
analytically by requiring them to satisfy both the
appropriate form of Maxwells Equations as
relationships between them, together with the
applicable boundary conditions. Alternatively, source
samples may be measured under prescribed
experimental conditions. These sampled relationships
can be interpreted from the viewpoint of signal and
information processing, and are mathematically similar
to various kinds of filtering operations. It is this
similarity that is discussed here in the context of model-
based parameter estimation, where the dependence of
electromagnetic fields and sources that produce them
are both regarded as generalized signals.

MBPE substitutes the requirement of obtaining all
samples of desired quantities (physical observables
such as impedance, gain, RCS, etc. or numerical
observables such as impedance-matrix coefficients,
geometrical-diffraction coefficients, etc.) from first-
principles models (FPMs) or from measured data (MD)
by instead using a reduced-order, physically-based
approximation, a fitting model (FM), to interpolate
between, or extrapolate from, FPM or MD samples.
When used for electromagnetic observables, MBPE
can reduce the number of samples that are required to
represent responses of interest, thus increasing the
efficiency of obtaining them. When used in connection
with the FPM itself, MBPE can decrease the
computational cost of its implementation. Some
specific possibilities for improving FPM efficiency are
surveyed, specifically in terms of using FMs to
simplify frequency and spatial varations associated
with FPMs. Examples of MBPE applications are
included here as well as speculative possibilities for
their further development in improving FPM
performance.

1.0 BACKGROUND AND MOTIVATION

The computational basis for solving most problems in
physics and engineering, including computational
electromagnetics (CEM) derives from first-principles
mathematical descriptions, or first-principles models
(FPMs), of the applicable physics. The computer
models which derive from a FPM are developed using
numerical analysis, a process that, as has been
observed by Oppenheim and Schafer (1975), can be
logically interpreted as generalized signal, or
information, processing.  Consider, for example,
solving the LaPlace equation using finite differences,

where V2V = 0 = (fie1 +6i1 - 2f]-)/112 1s equivalent to
f; = (fj; 1 +fi_1)/2, showing that the potential at point 1

is the average of its neighboring values, with similar
results obtained in two and three dimensions. Thus,
the LaPlacian operator has the property of acting as a
spatial, low-pass filter More elaborate differential
equations and numerical treatments produce different
“computational molecules” or filters but ultimately lead
to expressing a sample of an unknown from the
applicable differential equation evaluated in terms of
weighted sums of the unknowns in its neighborhood.
In this sense, their computational molecules are
equivalent 10 generalized spatial filters.  Similar
observations apply when solving integral equations
numerically, but where the weighted sums that yield a
sample of a specific unknown involve all other
unknown samples.

Since numerical analysis does exhibit properties in
common with signal processing, and also considering
that one of the most productive uses of EM fields is the
transmission of information, it seems reasonable to
inquire about whether there may be possible benefits of
examining CEM from a signal-, or information-
processing, perspective. As discussed in part | of this
article [Miller (1995)], referred to hereafter as RI, EM
observables, however obtained, are well-
approximated, or exactly described, by series of
complex exponentials or complex poles. When the
independent variables in the exponential and pole series
are the time-frequency transform pair, their sums yield
transient waveforms and frequency spectra, while other
independent variables (see Table I of RI) are associated
with different kinds of observables. For convemence,



the terms waveform domain (WD) and spectral domain
(SD), respectively, will be used as generic descriptions
whatever are the actual observables given by the
exponential and pole series.

Continuing the theme begun in RI, we denote the
exponential and pole series as “fitting models” (FMs)
whose unknown cocfficients are obtained numerically
by their being “fitted” to samples of a FPM that they
are intended to approximate and replace and which we
denote as “generating models” (GMs). This procedure
1s known as model-based parameter estimation
(MBPE). Although MBPE is discussed here
specifically with respect to some representative EM
applications and particular FMs, it should be
appreciated that it is a very general procedure that is
applicable to essentially any process, physical or
otherwise, for which a reduced-order, parametric
model can be deduced. Also, it must be noted that
MBPE is not “curve fitting” in the sense that term is
nommally used, which also can involve finding the

eters of some function which is fit to the
available data. The essential difference between MBPE
and curve fitting is that the former uses a FM based on
the problem physics, while the latter need not do so,
which is why MBPE might be characterized as “smart”
curve fitting. When curve fitting includes the goal of
finding the correct FM for the process that generated
the given data, this approach can also be described as
“system identification.” It’s worth emphasizing that
MBPE is not limited to physical processes but forms
the basis for variously named analytical procedures
{e.g., Kummer’s method, Richardson extrapolation
and Romberg quadrature [Ralston (1965)]} whose
purpose 1s to speed the numerical convergence of
mathematical representations involving integrals and
infinite sums and wherein the integrand function or the
sequence of partial sums can be regarded as a
generalized “signal.” In discussing a non-linear
procedure he developed for a similar purpose, Shanks
(1955) referred to such phenomena as “physical” and
“mathematical” transients. In essence, any process that
produces a sequence or set of samples is a candidate
for MBPE.

In the first part of this article, RI [Miller (1995)], the
mathematical background of MBPE is presented for
WD and SD signals, showing that the associated FMs
can be quantified using function sampling, derivative
sampling, or a combination thereof. The second part,
RII Miller (1996)] demonstrates use of MBPE for
developing approximate, reduced-order representations
of a variety of EM observables in the WD and SD, an
example of which is included in this special issue [de
Beer and Baker (1995)]. In this article we discuss
application of MBPE to improving the computational
efficiency of a FPM.

2.0 MBPE APPLICATION TO A
FREQUENCY-DOMAIN INTEGRAL-
EQUATION, FIRST-PRINCIPLE MODEL
Almost all EM boundary-value problems involve
finding the fields over some surface or throughout
some volume due to sources distributed over that same
surface or volume. When using an integral-equation
formulation, these source-field relationships are given
by a Greens function or some equivalent field
propagator, whereas a differential-equation model
employs the Maxwell curl equations as the propagator.
The spatial behavior of the fields might be viewed for
some purposes as a generalized signal, as can angle,
time and frequency dependencies of such fields as
well. Such a perspective can suggest alternate ways of
representing the fields in signal-processing terms for
numerical purposes to simplify whatever computations
that must be done, a viewpoint that is explored here.

For moment-method models based on a frequency-
domain integral equation (FDIE) (other FPMs can be
analyzed in a similar context), the number of arithmetic
operations or operation count (OC), required for
solution at a single frequency f;, OC;, will depend on
the number of unknowns, X, used in the model

approximately as

OC; ~ A X2 + By X (1a)
or, in terms of frequency, f, as

OC; ~ Agf* + Bf;® (1b)
for a three-dimensional object requiring two-

dimensional sampling (i.e., sampling over its surface).
When a solution is desired over some frequency
interval, as is usually the case, then the total operation
count, OCr, can be estimated as

OCT~3Ad*+Bf6,i=1,... F )

where there are a total of F solution frequencies.

The “A” terms here account for filling the “system”
matrix [known as the impedance or Z matrix when an

electric-field integral equation (EFIE) is used}, and the
“B” terms account for solving the system matrix in
factored or inverted form as a “solution” matrix
(known as the admittance or Y matrix when using an

EFIE). Use of iterative solution techniques changes
the above B terms to B’K}(Si2 and B’ffi4 but where
By’ can be much larger than By. Various, so-called
“fast”techniques are being developed with the goal of
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reducing the highest-order terms in Eq. (1a) to of order
X gilog(Xgy). Clearly, any means of reducing F would
also be helpful in decreasing the total computational
cost, a point that is considered in detall in Sections 4
and 5. First, let’s consider how the impact on OC; of

the individual terms in Eq. (1) can be mitigated.

It can be observed that as the frequency increases from
zero for a given problem, OC; at first grows in

proportion to FXi2 or Ffi4, but it eventually becomes

proportional {0 FXi3 or Ffi6 when the higher-order
term begins to dominate, assuming a constant spatial
sampling density per % By reducing both the number
of impedance matrices that need to be computed from
the defining formulation when impedance-matrix
computation dominates OC;, and the number of

admittance matrices that need to be solved from the
impedance matrix when solution time dominates OC;;, it
should be possible to significantly reduce the OCy
required to cover a specified bandwidth. This might be
done by modeling the frequency behavior of the
impedance matrix for smaller problems, and the
frequency behavior of the admittance matrix for larger
problems, in both cases with the goal of reducing the
number of FPM evaluations needed, i.e. to reduce F in
Eq. (2), and to thus minimize OC+. It should be noted

that the “crossover” point in X; between fili-time and
solution-time domination of OC;, can vary from as few
as 200 unknowns to as many as 10,000 unknowns.
Thus, the Z and Y matrices, or their interaction

coefficients, both become candidates for MBPE, albeit
using different kinds of FMs as is considered below.

In addition to modeling the frequency behavior of Z
and Y, it is also worth considering whether the spatial

behaviors of either of these matrices can be modeled.
From a signal-processing perspective, the spatial
variation of the field over an object due to a given
localized source (e.g., asubdomain basis function) on
that object might be regarded as a generalized signal. If
this field “signal” can be predicted or estimated using a
FM that is computationally simpler than using the
defining equations normally employed for calculating
the exact interaction coefficients, the magnitude of the
Ag term in Eq. (2) could be commensurately reduced.

Alternatively, if a first-principles evaluation of only a
subset of the st interaction coefficients needs to be
done, say CXg where C << X, and the rest can be
estimated from the rigorously computed coefficients,
then the effect would be to change the Ast2 term 1o
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of order CA Xy, if the cost of obtaining the estimated

values is much less than that of the ngorously
computed coefficients.

A specific example of reducing the Ag term in Eq. (2) is

to compute none of the st interaction coefficients in Z

from first principles, but instead to estimate them using
some appropriate FM based on a small set of
precomputed, first-principles field samples. Ths
approach, summarized in Section 4 below, was used
by Burke and Miller (1984) for reducing the cost of
evaluating the Sommerfeld integrals that arises when
modeling objects near an interface where the FMs are
analytical approximations to these integrals. Their
approach is an extension of earlier work described by
Miller et al. (1977) where linear interpolation of
sampled Sommerfeld integrals for the matrix
coefficients was used as a curve-fiting procedure
rather than MBPE. Other problems having special
Greens functions are also candidates for this
procedure, another example of which is provided by
modeling sources between infinite parallel planes
[Demarest et al. (1989)). In tihese instances, the
reduction in OC; is reflected in a decrease in the Ag

coefficient in Eq. (1).

Another way of reducing the effect of the Ag term is to

exploit the fact that, as the source and observation
points become more widely separated, the complexity
of their interaction fields is reduced. This is easy to see
by considering that the fields in the vicinity of a linear
source distribution of a few wavelengths in extent are
to be pointwise sampled along a line parallel to, and a
distance £ away from, the source. In order to develop
an accurate-enough representation, it would necessary
to sample the field at some minimum density per
wavelength. Now consider the situation as the
sampling line is moved further and further away from
the source. The field variation along that line will
become less complex as the near-field components
decrease with increasing distance and finally only the
1/r field remains. Furthermore, with increasing
observation distance, the spatial variation of the field
along a line of fixed length further decreases in
complexity because the angle subtended by this line at
the source monotonically decreases. In other words, at
a great enough, finite distance away from the source,
the field varation becomes a function of subtended
angle rather than of linear distance over some fixed
observation range.

Thus, the effective rank of the interaction between
sources of given size decreases as their separation
distance increases, reducing the complexity of that
interaction, and, consequently, the amount of
computation needed to determine it to some specified



accuracy. This idea is exploited in techniques such as
the fast multipole method [Coifman, et al. (1993)],
impedance-matrix localization [Canning (1990)],
recursive models [Chew (1993}], etc., where rank
reduction is explicitly employed, or where more distant
interaction coefficients are approximated by simpler
expressions [Vecchi et al. (1993)]. Such approaches
effectively employ exact interaction coefficients when
the source and observations points are close and
controlled approximations as their separation distance
increases. This results in an Ar coefficient that

becomes smaller as source-observation distance
increases, or a reduced matnx-fill tme. In addition,
because the interaction complexity decreases with
increasing distance for fixed source and observations
spans, the complexity, or effective number of
interaction coefficients also decreases, reducing the
OC; of multiplying the impedance matrix by a source
vector from of order (Xi)2 to of order X;. The OC
associated with solving a matrix having X; unknowns

by iteration thus trends towards order X; or X;logX;

from being of order (Xi)2.
f

T(®)

Whether spatial variations in the solution or admittance
matrix might be exploited in a similar fashion is not so
clear.  Certainly, a valid solution t the original
problem must cxhibit spatial dependencies consistent
with the geometry and exatation involved and be
consistent with Maxwell’s equations.  Graphical
examination of the Y matrix for simple objects like a

straight wire[Miller et al. (1981) and below] reveals
that it exhibits a standing-wave character, not a
surprising result in that the currents on such structures

are well-known to have such behavior. In other
words, the “lraveling-wave” nature of the Green's
function in the formulation domain, reflected in terms
like exp(ikR)/R, is converted o a standing-wave
response 1 the solution domain, where amplitude
maxima occur at resonances associated with the object
poles. Thus, an appropniate FM for the admittance
matrix should apparently be expected to be of wave-
domain type as well. These kinds of ideas are now
explored from the perspective of MBPE in the
following section.

Agnf* > Bgopyet®

Formulation-domain modeling:
reduce complexity of coefficient
computation and minimize number of
matnx-fill frequencies.

Figure 1.

Aﬁllf4 < Bsolvcf6

Solution-domain modeling:

reduce cost of matrix solution

and minimize number of matrix-solution
frequencies.

llustration showing where matrix-fill and matrix-solution operation counts dominate for a

frequency-domain integral equation solved using L-U decomposition and assuming that a fixed sampling
density per wavelength is used as frequency is increased. At lower frequencies a compurtational benefit
can be realized by finding ways to compute interaction coefficients more efficiently or to reduce the
number of rigorously computed Z matrices. At higher frequencies, a computational benefit results from

reducing the number of solutions, or Y matrices.

3.0 THE TWO APPLICATION DOMAINS IN
INTEGRAL-EQUATION MODELING

We have discussed MBPE mm CEM from the
perspective of whether the quantities of interest exhibit
wavelike or polelike behavior, referring to their

respective occurrences by the designations waveform
domain and spectral domain, respectively, determined
by the mathematical description that applies to a given
quantity. There is another domain pair that is also
useful for problem categonization, one describing the
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domain wherein a boundary-value problem is defined,
and the other describing the domain wherein a solution
to that problem is presented. We refer to the former as
the “formulation” domain, in which a formal
mathematical statement originating from Maxwells
Equations is developed for a problem, and to the latter
as the “solution” domain, in which that original
formulation has been mathematically solved. In the
formulation domain we begin with known exciting
fields to which to-be-found induced sources are
required by Maxwells Equations to satisfy the
appropriate boundary conditions.  Finding these
induced sources requires inverting the original source-
field relationship. For all but the simplest problems the
inversion requires numerical computation.

A potential approach to alleviating the computational
requirements that arise in either the formulation domain
or solution domain is to exploit the underlying physical
and mathematical behavior of EM fields, as is
embodied in first-principles analysis of wave-equation
problems, through a simplifying, reduced-order,
signal-processing formalism. Of course, knowledge of
the problem physics is required to begin with as any
solution process, analytical or numerical, can not be
initiated without having the applicable physics captured
in appropriate mathematical form, something that in
terms of Maxwell s Equations might be characterized as
a microscopic description. But the physical behavior
of greater practical interest is usually macroscopic in
nature, as it is not generally the fine details of the
current distribution on an antenna or the near fields
around a scatterer, but the antenna input impedance and
gain, or scattering cross section, that are needed for
system design. The macroscopic description is
naturally a reduced-order one and provides the context
for MBPE.

As previously observed, MBPE involves fitting
physically motivated analytical approximations (the
model) to accurately computed or measured EM
observables from which unknown coefficients (the
model parameters) are numerically obtained. These
fitting models can then be used in subsequent
applications to more efficiently characterize time,
frequency, angle and space responses as well as to
provide more insightful access to the underlying
physics. In the solution domain, MBPE can be applied
directly to the spatial and frequency dependencies of
the computed observables themselves, such as currents
and fields as discussed in RIl, or instead to the solution
matrix from which these quantities are obtained, as is
discussed here.

Alternatively, we might also employ MBPE in the
formulation domain, where it is the behavior of the
first-principles analytical representation that is being
approximated by reduced-order FMs. In that case, the

frequency and space dependence to be represented
would be that of the defining source-field relationships
as contained in the system matrix. In contrast to
working in the solution domain, where resonance
effects dominate the EM behavior, growing phase
change and geometric atienuation of the fields of
increasingly distant sources dominate the behavior
when working in the formulation domain. While the
most appropriate FM will depend on the particular
quantity being modeled, exponential- and pole-series
models are widely applicable. For example, the
frequency and spatial variations of a FDIE are suitable
for exponential, or WD, FMs in the formulation
domain, whereas in the solution domain pole-series
FMs are suitable for frequency and angle varations and
exponential-series FMs for their spatial variation.
Formulation-domain approaches are described by
Newman (1988) and Benthien and Schenck (1991),
and solution-domain approaches are presented in Burke
et al. (1988, 1989). Other kinds of FMs can be found
useful, e.g. based on the geometrical theory of
diffraction, for other analytical formulations and
solutions. Some of these possibilities are discussed in
the following sections. Each of these two FMs and
problem domains are considered in the following.

4.0 FORMULATION-DOMAIN MODELING
4.1 Waveform-Based MBPE in the
Formulation Domain
The question to be considered here is how
waveform-based MBPE might be used for improving
the numerical solution of a FDIE. First observe that
the coefficients that appear in the impedance matrix for
an FDIE model can be expressed in the generic form

Zm,n(('0 ) =J; Sn(m )KR,m,n(m)KA ,m,n(m )dAn
(3)

where m and n denote the observation and source
patches, respectively; 8, is the source on patch Ay:

KRmn is the patch-to-patch (or P-P) part of the IE
kemel; and Kp 1,  is the in-patch (or I-P) part of the

kemel, where we have assumed a subdomain
numerical model is being used. These terms refer,
respectively, to that part of the kernel function whose
frequency and spatial dependence is driven by an
exponential phase change due to the P-P distance as
contrasted with those variations due to variable
positions  within the source (and, possibly,
observation) patches. Because increasing the P-P
distance and increasing the frequency both increase the
phase of KR,m,n’ changes in one or the other of these

variables have similar effects on interaction phase, an
effect that is exploited in using scale models in making
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experimental measurements. Considering frequency
variations specifically, except for the patches that are
close to each other (with respect to the wavelength), the
P-P term would normally represent a faster frequency
variation while the I-P would always represent a
slower frequency dependence because paiches need to
be small relative to a wavelength while the interpatch
distance can be arbitrarily large. The X xX. set of

interaction coefficients defined by Eq. (3) provides all
the information needed to represent an object’s EM
characteristics, to the degree permitted by a numerical
model based on it, but the source-field, integral-

equation relationship represented by Z'1 = V must be
inverted to ] = Y- V to obtain the desired solution.

The P-P, or fast, term always has the form, for IE-
based models,

Krmal(®) = &/ Tmsy Tm,n (4)

where ty, , the separation between the origins of the
source- and observation-patch local coordinates, is
assumed to be a far-field distance and k is the
wavenumber, a form that emphasizes the traveling-
wave nature of the impedance-matrix coefficients.
Integration over the source patch {and, possibly, the
observation patch if using other than delta-function
field sampling; though here we explicitly consider only
source integration) involves changes in the fast term of

order exp(jkAry, ), where KAr - « 1is the distance

variation caused by scanning over patch n. The
interaction coefficient Z, ,, can, thus, be rewritten as

Znn(0) = ei““mf Sa(0)Kp m o(@)dA,
Ay (5

with Rm,n + Armn =TImn and KA,m,n a modified

slow-variation kernel. This form of interaction
coefficient suggests that we can estimate Z, (w5) ata

new frequency w- from an accurately computed value
at frequency w1 as

Zm,n((DZ) ~ Zm,n(ml)ej(%—W!)(RmnIC)Mn,n(wZ—ml) ©

where Mm,n(("Z'wl) is an interpolation model that

accounts for the slowly varying part of the kernel
function whose specific form would depend not only
on object geometry but on whatever frequency
dependence might have been incorporated into the basis

and testing functions that are used. Exploiting a
capability for modeling the spatial variation and its
decreasing complexity with increasing distance is more
involved, but is essentially embodied in “fast” methods
which seek to reduce the OC of filling Z and

performing Z'1 multiplies from of order st to of
order X Log(X;) [e.g., see Canning (1990), Chew

(1993), Coifman et al. (1993)]. The specific problem
of modeling the frequency variations in Z is considered

next.

4.1.1 Modeling Frequency Variations--
Antenna Applications. The model
My n might be represented in various ways including

using low-order polynomials (the model) whose
coefficients (the parameters) are computed from
samples of Zp, ;, at selected frequencies [Newman

(1988), Benthien and Schenck (1991)]. When
sinusoidal bases functions specifically are used, it may
also be advantageous to develop a recursive form for
Mp, n- BY accurately computing the impedance matrix
at widely spaced frequencies and using estimated
values at intervening frequencies, the goal is to obtain
acceptably accurate results across a wide bandwidth
without the cost of computing the impedance matnix at
all sampling frequencies desired. As an example
application, the analytical behavior of the impedance-
matrix coefficients has been approximated for small
variations in frequency about the computation point w ;

by [Newman (1988)]

M, n(® - ©limag = Aj + Bila(w - 1)

+ G(w - wq) (N
Mm,n(“) - ml)lreal =Ap+ Br(m -wq)
+ Co - m7)2 (8)

A result obtained by Newman is presented in Fig. 2
where the input impedance of a center-fed dipole
antenna is plotted as a function of frequency over its
first two resonance frequencies. Two different curves
are shown, one for a GM sample interval of 300 MHz
and the other of 600 MHz.

Virga and Rahmat-Samii (1995) used Z-matrix

frequency modeling for more complex communications
antennas, one result for which is shown in Fig. 3.
There the input impedance of a 4-turn helical antenna
on an infinite ground plane is plotted versus frequency
as obtained by direct evaluation and from two
interpolation methods. The interpolated results are
obtained using a simple quadratic FM and a second FM
that incorporates the singularity of interaction
coefficients for segments closer than one-half
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wavelength and otherwise uses Egs. (6) o (8). The
authors report an approximately 30-to-1 computer
savings results from modeling the Z matrix as

compared with direct evaluation at a total of 301
frequency samples.

4.1.2 Modeling Frequency Variations:
Elastodynamic Scattering. Benthien
and Schenck (1991) have used an approach similar to
the above for modeling elastodynamic problems whose
frequency responses, it should be noted, can be much
more complex in structure than typical EM spectra.
One interesting aspect of their work is that they are able
to span a bandwidth that includes several resonances

with only two FPM system-matrix computations at its
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endpoints while using MBPE for frequencies between
them, in contrast to modeling the solution (admittance)
matrix where the equivalent of two samples per
resonance are required [RII]. The resonance structure
is manifested only when the solution has been
developed, or the source-field description has been
inverted. This difference stems from the fact, so long
as phase changes are handled accurately enough across
a given frequency interval over which the phasor
between the most widely spaced points on the object
being modeled rotates through several (say n) times
27, then n to 2n resonances can be predicted by using
only 2 FPM samples. Examples of Benthien and
Schenck’s results are included in Figs. 4 and 5.
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Figure 2. Results from using MBPE and two different FMs to represent the interaction cosfficients of the £ matrix of a

center-fed, half-wave dipole antenna [Newman (1988)]. The FMs employ the approach of Egs. {31) to (33) and are based
on GM samples spaced 300 MHz apart (the solid line) and 600 MHz apart {the dashed line). The discontinuily in the
impedance curves ocours at the point where a FM replaces a GM sample at one end of its span with a new one at the

other as successive GM samples are employed.

4.1.3. Modeling Spatial Variations:
The Sommerfeld Problem. A
computationally demanding problem is that of

determining the Sommerfeld fields that result from the
interaction of elementary sources with a half space and
which become part of the Green’s function in an IE
model for antennas near ground, microstrip structures,
etc. One of the first approaches to this problem to
incorporate numerically the rigor of the Sommerfeld
integrals while avoiding their computational complexity
used a two-dimensional mesh of pre-computed
Sommerfeld integrals [Miller et al. (1977)]. This
permitted evaluating the impedance-matrix coefficients
for wire objects located on one side of an interface

from simple bivariate interpolation, since the fields are
then functions of only two variables, their lateral
separation p and the sum of the vertical coordinates, z’
and z, of the source and observations points relative to
the interface, respectively. This essentially curve-
fitting approach, used in NEC-2, reduced the matrix fill
time to being litdle more than what is needed for a
perfectly conducting ground where image theory 1s
analytically rigorous. An example of the field variation
on the same side of the interface as a fixed source
located near an interface is shown as a function of
observation position in Fig. 6. Clearly, the field is
quite well-behaved and can be accurately approximated
using linear interpolation.
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Figure 3. Results from using MBPE and two different FMs of the interaction coefficients of the Z matrix for a helical

antenna. Values obtained from straight-line interpolation of 301 GM samples (solid line) are compared with a quadratic
FM (dot-dash line) and a FM defined by Egs. (6) to (8) (dashed line) [Virga and Rahmat-Samii (1995)]. The GM samples
used for the FM results are indicated by the starred points.
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Figure 4. Results for acoustic backscattering from the end of a drcular cylinder as a function of frequency
obtained from the basic model without interpolation (solid line} and using MBPE on samples spaced 1.0
unit apart in ka {dotted fine} [Benthien and Schenck (1991)]. A iinear interpolation model is used for,
Mmnlwz - ©q) in Eq. (6) to obtain the estimated interaction coefficients. The Z-matrix FM samples

themselves are spaced too far apart to adequately resolve the fine structure of the response. A second
series of pole-based FMs might be used to rectify this problem, as additional FM samples developed
in the solution domain would require much less computation than using the formulation-domain FMs each
of which involve solution ot a large matrix.
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Figure 5. Results for acoustic backscattering from the end of a circular cylinder as afunction of frequency
obtained from the basic model without interpolation (solid line) and using MBPE on samples spaced 0.4
units apart in ka (dotted line) [Benthien and Schenck (1991)]. The Z-matrix interaction coefficients are
estimated between their rigorously computed samples using a linear-interpolation model in Eq. (6), but
absorbing the “scaling” factor, exp[j(wz - @ 4)Rm /el N Mmplwo - ©4). Comparison of Figs. 5 and 6

emphasizes the importance of including the dominant functional variaions of the quantity being estimated
in the MBPE process.
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Figure 6. These plots exhibit representative electric fields due to a delta-current source located on the air side of an air-

earth interface as a function of radial distance R 4 and elevation angle 0 for alossy, (a), and a tossless, (b), lower medium,

ble than the mathematical complexity of the Sommetfeld integral
which gives it might imply. An interference between the different-wavelength above-surface and below-surtace fields can

respec

tively. The field is seen to be spatially less varia

be observed along the interface (where 8 =0).
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Later, in extending NEC-2 to model objects interacting
across an interface, a problem where three-dimensional
interpolation would have been required since the fields
are then functions of lateral separation and the distance
from the interface of both the source and observation
point, an unattractive prospect, MBPE was then
employed. The analytical “models” in this case are
extracted from various asymptotic and other
approximations that are applicable to the parameter
range of interest so that Sommerfeld integrals of the
form

oY -7y 2
Vo=2("= —Jo(hp)Adh,
O kZy, +kiy_ (9)
are replaced by expressions like
i_;,z —imung kf /1= sinB) —SoosB]jR_l,
4n i ki"‘ K \ cost |
where
, \ 2 .2
o=tan’ 222 5.2 amak-EK
P K+ K
(10)

with the details described by Burke and Miller (1984).
Finally, the fields needed for the integral-equation
model are then approximated by

E(rz,z") = ZAn fn(p,z,z'); n=1,... N 1

where the fn(p,z,z') functions comprise the model and
A, are the model parameters. This MBPE approach

for the interface problem provides an essentially
rigorous numerical model for objects interacting across
an infinite, planar interface at a cost of increasing the
matrix fill time by only 5-10 times over what modeling
the same object(s) in free space would require. An
example of one electric-field component transmitted to
a lower medium from an above-surface source is
shown in Fig. 7.

An alternate approach for the half-space problem based
on a series of complex images developed using Prony’s
Method is described by Shubair and Chow (1993).
For a verticallly oriented antenna, a series of three to
five image antennas are found to be adequate for the
one-sided problem (antenna on one side of the
interface). A similar approach for a horizontal antenna
is reported by Fang et al. (1988).

2. .5
12

Figure 7. The MBPE FM results for the TpV field as a function of radial and vertical location beneath an

interface for a source located above it [Burke and Miller (1984)].
Sommerfeld-integral values used as GMs for the FM approximation.

Also shown by the dots are the
Although not clearly shown

because they overlap, the exact and MBPE results are both plotted in this figure.
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4.1.4 Modeling Spatial Variations:

Waveguide Fields. Other opportunities
for Green’s-function applications of MBPE arise from
separation-of -variables solutions for exterior problems
involving cylinders, spheroids, etc. where infinite
series of special functions occur and for interior
problems where the Green’s function can then involve
an infinite series of images. An example of the latter
application is reported by Demarest et al. (1989) for a
wire antenna located in the region between infinite,
parallel, perfectly conducting planes for which some
results are shown in Fig. 8. The microscopic source-
field description contained in the infinite-series Green’s
function for this problem is replaced by low-order FMs
of the spatial field behavior that provide a much more
efficient, yet acceptably accurate, numerical
representation of these fields. These FMs substantially
increase the efficiency of computing the interaction
coefficients in an FDIE model by a factor of about 20
for the example shown. We note that the Green's
function for this particular problem has the
characteristics of both the WD and SD FMs, since the
contribution of each image is pole-like, having a 1/(x -
Xp) amplitude multiplied by a wave-like phase factor

exp(-ik(x - xp). The signal fields of this kind of

Green’s function might be described as having a hybrid
character, with the goal of the FM being to replace both
with a simpler analytical description.

4.1.5. Modeling Spatial Variations:
Moment-Method Impedance
Matrices. The preceding examples deal

with modeling the frequency variation of the
coefficients of a FDIE system mafrix as a means of
reducing the number of needed FPM-matrix
evaluations when spanning many resonances across
some frequency band to reduce the overall operation
count. Alternatively, we might examine the feasibility
of reducing the number of FDIE-matrix coefficients
that need FPM evaluation at a given frequency as way
to reduce the OC at a given frequency. This kind of
approach is described by Vecchi et al. (1994) and
demonstrated by application to a microstrip line with a
coupled dipole, an example of which is presented in
Fig. 9. According to Vecchi et al., there is no
appreciable difference between resulis obtained using
the FM and the exact results.

Spatial variations of impedance and admittance matrices
can be better appreciated by presenting them as surface
plots, an example of which is included in Fig. 10a fora
straight wire where the numbering of the subdomains
used for this model is sequential from 1 to N. The
axes represent the matrix rows and columns and the
normalized height of the surface at row = m, column =

n above the row-column plane represents the
magnitude of a given interaction coefficient, &, .

The plotting routine passes a smooth surface through
the set of lZm,nI values, and so may introduce a

“fractional” interpolation between the discrete set of
row-column indices. It's well-known, of course, that
the impedance matrix for a straight wire or a strip is of
Toeplitz form and so this particular matrix could be
fully displayed by a single row or column. The matrix
for the same wire bent to form a polygonal
approximation of a circular loop would look very
similar on this same linear scale except that there would
be large components near the comers opposite the main
diagonal, assuming the wire segments are numbered in
order as well. Were a spatial FM to be used for these
impedance matrices, the phase variation would also be
needed, or as an alternative the real and imaginary parts
might be used instead. The use of magnitude and
phase for modeling Z seems the more appropriate since

they are “smoother” [Brown and Prata (1994)].

AelG, ) (o source) O

Z

ReiG,,) {wio source) 0
Figure 8. Results for the G, , component of the

dyadic Green’s function (x-directed source
perpendicular to waveguide walls, and x-directed
field) as obtained from direct evaluation of the
defining equation, (a), and as evaluated using a FM
consisting of two multiplied 3rd-order polynomials
inx and z, (b) [Demarest et al. (1989)]. The curmrent
on a dipole antenna located midway between the
waveguide walls obtained from using (b) are within
5% of those resulting from (a).
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Figure 9. Example of modeling the spatial variation of an interaction coefficients for an integral-equation
system matrix of a microstrip line with a coupled dipole using a Galerkin subdomain [Vecchi et al. (1994)}.
Result in (a) is 1ogqg of the static, singular part of the self-impedance matrix for the line as a function of

the difference between the source and observation subdomain indices. The +'s show the points where
the interactions are sampled for the FM, the solid fine is the exact resuft and the dashed line is the FM

result. The FM in this case is a polynomial applied

to Zg[log(q)]. The results in (b) are obtained for the

frequency-dependent part of the interaction coefficient, where the solid line is the exact result, the
dashed line is FM approximation, again using a polynomial, and the o’s and +'s indicate the real and

imaginary samples used for evaluating the FMs.

An example for a more interesting structure, an 8-turn
helical spiral having a total wire length of 16
wavelengths, is shown in Fig. 10b, also using a linear
magnitude scale. A “splitting” of the coefficients along
the main diagonal may be observed, due to the
changing orientation of the neighboring wire segments
as they spiral around the helix. This effect can be seen
o continue as a ripple in the coefficients further away
from the main diagonal.

More information is conveyed by plotting the log of the
matnix coefficients, for which two examples are
included in Fig. 11. The first, in (a), is for a wire two-
free-space wavelengths in length, located parallel to,

and 10~4 free-space wavelengths beneath, the interface
between an upper free space and a lower half space
having a relative dielectric constant of 10. There the
interference between the waves propagating above and
below the interface is seen in a somewhat different way
than demonstrated in Fig. 6 for the Sommerfeld field
alone. Aside from the fact that this matrix is also of
Toeplitz form, and therefore more simply filled and
solved than an arbitrary matrix, the regular variation of
the coefficients in a given row or column indicates the
feasibility of using a suitable spatial FM for reducing
matrix-fill complexity.

When the same two-wavelength wire is rotated 90

degrees to penetrate the earth-air interface normally at
its midpoint, the impedance matrix shown in Fig. 11b
is obtained. The matrix is now block-Toeplitz but is
otherwise nearly as simple spatially as is the case for
the same object located in free space.

A much more complicated structure because it has a
surface, rather than a linear, geometry is a wire mesh
for which an impedance matrix is presented in Fig. 12.
This plot dramatizes the problem encountered when
attempting to visually display source-field relationships
over a two-dimensional surface (or a three-dimensional
volume) in terms of a two-dimensional matrix of
interaction coefficients. The interactions are dependent
on the four spatial coordinates that define observation-
and source-patch locations Ap, and A, respectively,

as well on other details of the numerical model, and
when projected onto the two-dimensional surface of the
impedance matrix their associated spatial relationships
are disordered. The field “signal” is no longer simply
discerned by observing the behavior of a row or
column from Z but instead requires following a path

through the matrix determined by the numbers assigned
to the individual unknowns. This does not mean that
the spatial variation of the fields can no longer be
modeled, but that matrix indices can no longer serve as
the FM variables.
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Figure 10. Surface plots of the magnitudes of the impedance-matrix coefficients of a straightwire 2
wavelengths long, (a), and an 8-turn helical spiral 16 wavelengths long, (b).

4.2 Using Spectral MBPE in the Formulation Domain )
A spectral FM would not be expected to be applicable to an integral equation based on a space-based
Green’s function, but could be appropriate for a transformed or modal Green’s function where the variable is

spatial wavenumber rather than distance. That possibility is not considered further in this discussion.
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(b)

Figure 11. Surface plots of the magnitudes of the impedance-matrix coefficients of a straight wire 2
wavelengths long infree space when parallel to, and 104 wavelengths beneath, an air-ground (s, = 10)
interface, (a), and the same wire oriented normally to the interface with half its length in each half space,
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Figure 12. Surface plots of the magnitudes of the impedance-matrix coefficients of a 5-wirex 5 -wire

mesh of wires whose total iength is two wavelengths.

The irregular appearance of this matrix results

from the factalthough the unknowns can be numberedin a sequential fashion, their separation is no
longer linearly dependent on their respective indices.

5.0 SOLUTION-DOMAIN MBPE
5.1 Using Waveform MBPE in the
Solution Domain
At least two kinds of CEM quantities in the
solution domain possess wavelike nature, the source
solutions themselves and the far-field angular
dependence.

5.1.1 Modeling Spatial Variations.

While the spatial forms of the formulation-
domain problem description provided by the impedance
matrices are relatively uncomplicated, due to the basic
simplicity of the Green’s function source-field
description, their solution-domain counterparts in the
form of admittances matrices are not since the
coefficients of the latter must encompass all possible
source distributions that can occur on a given structure.
Thus, whereas the impedance-matrix coefficients
decline essentially monotonically with increasing
distance, the admittance-matrix coefficients will in
generalnot do this because, unless loss is a
predominant effect, traveling-wave currents must be
included among the distributions that can arise,
becoming standing waves when impedance or other
discontinuities occur on the structure being modeled.
Never-the-less, the “signal” represented by the spatial
variation of the induced sources, which is generally the
current for conducting objects, is basically comprised
of exponential waves and is therefore a potential
candidate for MBPE using a WD FM. The potential
significance of this possibility is that were a model for
the spatial current response to be available, the number
of parameters needed to quantify this current could be

22

substantially less than the X coefficients otherwise

used when developing an iterative solution, or the st

when the system matrix is factored. By combining
iteration with MBPE of the spatial current, it may be
feasible to obtain an acceptably accurate solution via
iteration that requires ~ KX operations per iteration

step rather than the st normally involved, whereK is

the number of spatial current samples actually
computed from the impedance matrix, an 0C
comparable to some of the “fast” methods mentioned
above.

In orderto explore the possibility of modeling the
spatial variation of the admittance-matrix coefficients, a
number of admittance-matrix, or [Y; ,j}’ plots for some

simple wire objects are plotted below.! The admittance

' Note that since the current on a structure
represented by Y is given by I = Y-V, the current that
results from exciting it as an antenna at a single point,
orsegmenti=e,isI;=Yj . Ve. Consequently, the

current for this excitation is proportional to columnn “e”
of the admittance matrix, and so as the excitation 1s
scanned from ¢ = 1 to e = X, the current that results

can be discerned from observing the spatial behavior of
column 1 to X of [Y; JI- We can thus refer to the plots
of the admittance matrix as simply displaying its
coefficients, or alternatively, a current distribution on
the structure for which the matrix has been derived.



matrices for a two-wavelength straight wire and two-
wavelength circular loop are shown in Fig. 13. It’s
clear in Fig. 13b for the loop that the spatial current is
invariant in shape with respect to where the loop is
excited, but simply rotates around the loop as the
excitation point changes. It's not as clear, but
suggestive from Fig. 13a for the straight wire, that the
shape of its current distribution is also largely
msensitive to where the the wire is excited, but that the
magnitude of that current varies periodically with a
changing excitation point. For these simple objects, it
appears that not only might the current
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Figure 13. Surface plots of the magnitudes of the admittance-matrix coefficients of a two-wavelength-long straight
wire, (a), and a circular loop, (b). Although the impedance-matrix magnitudes exhibit no explicit wavelength

dependence (refer to the impedance matrix for the straight wirein Fig. 9a)

spatial dependence be described by a low-order, WD
FM, but that, for the case of the straight wire, the
dependence on excitation point can also be modeled.

Admittance-matrix plots for an 8-turn helix of total wire
length 4 and 16 wavelengths, respectively, are shown
in Fig. 14. The dramatic difference between the two
results is due to the fact that in the former case, the
helix is below cutoff because the circumference of the
helical turns is less than a wavelength whereas the
latter, being above the cutoff frequency, results in an
attenuated traveling wave. Again, an exponential-
series FM for the current appears to be a good
approximation for either case.
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the effects of standing waves are

clearly evident in the admittance matrices. Also, whereas the field s:gnal" in the formulation domain, as
represented by the impedance-matrix coefficients, falls off with distance, the corresponding current “signal” inthe
solution domain, does not necessarilydo so, instead exhibiting the propagating-wave nature expected on such

structures.

The plots in Fig. 15 show the magnitudes of the
admittance matrix coefficients for a wire two-free-

space-wavelengths long that is parallel to, and 104
wavelengths above and 104 wavelengths beneath, the

interface between free space and a dielectric half space
of e, = 10. The transition between a spatial current

distribution having a  dominant wavelength
characteristic of free space and that of the dielectricis
seen to occur over a very small vertical movement of
the wire.

The results of Fig. 16 are for the same horizontal wire
as Fig. 15a but with a half-space relative permittivity of
= 10 - j10, {a), and for the two-wavelength wire
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oriented perpendicular to the interface with its midpoint
at the interface, (b). The effect of the half-space loss
on the horizontal-wire current distribution of part (a) 1s
seen to cause an increased attenuation, which, in terms
of a exponential-series FM indicates that the effective
wavenumber has developed a larger real part. In Fig.
16b, the vertical wire can be seen to carry two
dzstmctly different current waves on each half havinga
wavelength appropriate to the medium in which that
wire halfis located. For the cases of Figs. 15 and 16,
an exponential-series FM for the current would again
seem to be a good approximation.

The final result of this sequence, Fig. 17, 1s the
admittance matrix of the wire mesh whose 1mpedancc



matrix is shown in Fig. 12. Not unexpectedly, thereis associated FMs needed for their spatial modeling
no discernible pattern in this plot for the reasons would need to take into account their higher-order
previously stated. Both the graphical presentation of dimensionality, as compared with the one-dimensional
such matrices for two-dimensional surfaces and the nature of wires.
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Figure 14. Surface plots of the magnitudes of the admittance-matrix coefficients for an 8-turn helix of total wire
length 4 wavelengths, (a), and 16 wavelengths, (b). In (a), the structure is below cutoff since the helix

circumference, C, is less than &, whereas for (b), C ~ 2 &, so that the dominant currentbehavior changesfrom a
standing wave to a damped traveling wave.

a b
Figure 15. Surface plots of gh)e magnitudes of the admittance-matrix coefficients for a tvgo?wavelength (in free-
space) wire parallelto a dielectric half-space of e, = 10when 104 wavelengths above the interface, (a), and 104
beneath the interface, (b). The damped, standing-wave nature of the current is again evident, with a change from
the free-space value to the half-space value taking piace over a vertical distance of ~ 104 wavelengths, or less.
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Figure 16. Surface plots of the magnitudes of the admittance-matrix coefficients for a two-wavelength
wire in free space when paraliel to and 10 free-space wavelengths above a half space with g = 10-J10,

(a), and for the same wire when perpendicularto a dielectric half space of £, = 10 with its center at the

interface, (b). The influence of the lossy lower half space is evident in the increased current attenuation
exhibited in (a) as compared with 15a. The change in dominant currentwavelength in the vertical wire is
clearly demonstrated in (b) on each haff of the wire. Again, an appropriate Fitting Model for such currents
is an exponential series, or waveform-domain, form.
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Figure 17. Surfaceplot of the magnitudes of the admittance-matrix coefficients for a 5-wire x 5 -wire
mesh of wires whose total length is two wavelengths. The irregular appearance of this matrix results
from the factalthough the unknowns can be numberedin a sequential fashion, their separationis no
longer linearly dependent on the respective indices used to construct the system and solution matrices.
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5.1.2 Modeling Angle Variations of the
Far Field. The far-field approximation
universally used to obtain the distant field of a known
source distribution depends only on the angular
coordinates of the far-field observation point refative to
the coordinate-system origin and the source location
projected onto the line-of-sight from that origin. For a
simple linear array of discrete sources, the far electrnic
field a can be expressed in the general form

E(0) =~ XS explikd,cos(B); n =1, . . N
(12)

where S, and d,, are, respectively, the amplitude and

location atong the array of source n of which there are a
total of N. The radiation pattern is normally developed
by sampling the far fields finely enough in angle such
that a straight-line interpolation between the field
samples can be employed to develop an approximation
continuous in observation angle. Clearly, Eq. (12) has
the form of an exponential series and is a candidate for
a WD FM. Two- and three-dimensional source
distributions have a more complicated far-field
expression, but otherwise retain the basic structure of
Eq. (12), being functions of two observation angles,
elevation and azimuth in a spherical coordinate system.

For extended source distributions, where N exceeds 50
or so, it is not computationally practical to employ a
single FM for the entire pattern since ill-conditioned
data matrices are encountered. Furthermore, a pattern
that is a function of two angles can not be directly
madeled using the basic Prony model described in RI.
Instead, observation windows of limited angular extent
can be used so that low-order FMs can accurately
approximate the pattern over that window. The pattern
can then be developed by employing enough FMs so
that a continuous range of observation angles is
encompassed over the angle variations that are desired.
This approach has been described by Roberts and
McNamara (1994) and is summarized in RI.

5.2 Using Spectral MBPE in the Solution

Domain

In RI, the use of FMs to represent the
frequency dependence of EM observables was
discussed and demonstrated using various examples.
Here we consider the more fundamental problem of
modeling the frequency dependence of the admittance
matrix 1self using both function sampling and
derivative sampling.

5.2.1 Modeling the Admittance Matrix.
As previously discussed, the impedance or
system matrix arising from an FDIE model contains all
the interaction information needed to describe the EM

properties of an object being modeled. In a numerical
model, this information is represented by the fields
produced at observation paiches in response to unit-
amplitude source patches, both sets of which span the
entire object. The relative amplitudes and phase-

changes associated with the st source-field patch

pairs convey object size implicitly in these interactions.
The inverse of these relationships in the form of the
admitiance matrix is needed to establish the absolute
source amplitudes that satisfy the required boundary
conditions. The solution, or admittance, matrix
explicitly includes aspects of object size and shape the
effects of which are exhibited as periodic body
resonances as a function of frequency. Thus, the
model appropriate for MBPE representation of the
admittance matrix must be capable of handling
frequency-dependent resonances.

Since the observables that the solution matiix provides
are well-approximated by pole series, or more
generally rational functions, as demonstrated in RI, it
follows that the solution matrix itself might also be
modeled using rational functions. This conclusion
follows by noting that for a single-port antenna its
input admittance is defined as the ratio of the feedpoint
current to the exciting voltage. For a wire antenna
excited at segment j then, having already shown that
the admittance can be modeled by a rational function,
the Yj,j coefficient of the solution matrix must also

have this model. Similarly, the currents on the other
wire segments for that excitation, given by Y; i where 1

=1, L1+ -’Xs if there are a total X

segments, can also be modeled using a rational
function. These observations extend to exciting other
segments of the wire one at a ime, indicating that each
coefficient in the solution matrix can be represented by
a rational-function FM. Furthermore, since each of
these coefficients shares the same resonance structure
and thus the same denominator polynomial, the
solution matrix can be modeled by a denominator
polynomial multiplying a matrix of numerator
polynomials, as exhibited by
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Z(S)= D(s) X 0 X mys) v omgp(s)

where ni,j(s) is the numerator polynomial for

coefficient 1,j, D(s) is the common denominator and a
and b are the indices of those excitation ports whose
current response have been modeled. This form
permits direct representation of the wire current for an
arbitrary right-hand-side excitation so long as its
frequency lies within the valid bandwidth of the
solution matrix or of the rational function FMs that
comprise its coefficients.

5.2.2 Sampling Admittance-Matrices

Derivatives. The FM approaches
discussed here for estimating frequency responses
require sampled values of the impedance or admittance
matrices from which the MBPE eters can be
computed and from which the FM is thus quantified.
The sampling can be done either as a function of
frequency; as a function of derivative, with respect to
frequency at a given frequency; or a combination
thereof Miller and Burke (1991). Also, since an EM
frequency response has complex-conjugate behavior
around zero frequency, this knowledge can be
employed to provide virtual samples that further
improve the MBPE performance, i.e., negative-
frequency samples can be employed at essentially no
further FPM cost.

For practical reasons of numerical conditioning and
accuracy, however, it is advisable not to cover too-
wide a frequency interval with a single model. The
approach that now seems most aftractive is to employ a
series of frequency windows that slide over the
frequency interval to be modeled. These windows can
be of lower order to avoid the conditioning problems
that can otherwise. Using sliding, and overlapping,
windows also can yield some estimate of the numerical
accuracy of the modeled transfer function by
comparing the results of two, or more, windows in
their region of overlap where they share common
samples, some examples for which are included in RI.
Here, we outline specifically the additional
computational benefits that arise from denvative
sampling.

On writing the moment-method equations that arise
from an integral-equation formulation in matrix form,

[X e X nXSa(S)

nxp(s) |

(13)
the impedance equation
X,
¥ 7 j(@)o) = Vi()
i=1 (14)

is obtained where these various quantities are evaluated
at the frequency w. A solution for the current can then
be formally written as an admittance equation

X,
() = ) Yij(@)Vi()
i=1

(15)

where Yi,j is the inverse of Zi,j- We should note

however that the approach developed here for the
frequency derivatives could be implemented using LU
factorization, iteration, or any other solution method.

Upon differentiating the impedance equation with
respect to frequency there is obtained

X,
W [Zi@)(®) + Zij(@)(©)] = Vi)
j=1
(16)
where the prime denotes a frequency derivative. A

solution of the differentiated impedance equation for
the differentiated current can then be written

- A \
() = EYi,,-(mn\ Vi@) - ¥ Zj(@)l(w) J
k=1
(17)

i=1
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where we observe that while the differentiated
impedance matrix appears as part of a modified right-
hand-side of the differentiated admittance equation, 1’
is given in terms of an undifferentiated admittance
matrix. Computing the differentiated current thus
requires an additional number of computations beyond
those needed for solution of the undifferentiated current

proportional to XS2 rather than the Xs3 that would

apply to obtain another frequency sample (assuming
that LU decomposition is used rather than iteration).

Continuing this process, the n'th frequency derivative
of the current is given by

X

v;wm)—icmfizﬁfcmnawnwﬂ]
)

k=1

XS
() = YY)

=1

m=-1

(18)

where again C; | is the binomial coefficient and the

superscript in parenthesis indicates differentiation with
respect to frequency of the order indicated.

It is especially important to observe that information
about the n'th frequency denvative of the current
continues fo require an operation count proportional to

st. Expressed in another way, each additional

frequency derivative of the solution vector for the
current can be computed in a number of operations
proportional to A(n,N;pc)/ X where A is a function

which depends on the order of the derivative and the
number of right-hand-sides for which the solution is
sought. If the frequency denvatives provide
information comparable to that available from the
frequency samples themselves, it can be appreciated
that there could be a substantial computational
advantage to using the solution denvatives in
estimating the transfer functions. The problem of
mplementing the above approach in the NEC code is
discussed by Miller and Burke (1991).

6.0 CONCLUDING COMMENTS

The applicability of low-order fitting models (FMs) in
computational electromagnetics both to reduce the
sampling density of computed observables and to
decrease the computational cost of obtaining these
observables has been the focus of this and a companion
article [RII, Miller (1995)]. Both of these possibilities
rest on the fact that much EM modeling is redundant, in
that source and field vanations as a function of time,
frequency, angle and space can be accurately described
by physically derived FMs that permit equivalent
information to be determined from fewer computations.

A conclusion to be reached from this observation is that
first-principles modeis (FPMs) need not be employed
in the manner they most often now are to obtain desired
information.  Rather, supplementary information is
available from our knowledge of EM mathematics and
physics, allowing us to employ reduced-order models
to represent observables obtained from a FPM or to
reduce the complexity of the FPMs themselves. This
substitution offers the possibiliies of greatly
decreasing the number of evaluations required of FPMs
and the cost of their evaluation, with a consequent
reduction in the overall computer cost required to
obtain the information desired.

In the context of using an FDIE solved using the
moment method, modeling the frequency variation of
the impedance matrix saves an operation count (OC)

proportional to XS2 for each frequency sample that can

be eliminated. Similarly, modeling the frequency
variation of the admittance matrix produces an OC

savings proportional to Xs3 for each sample

eliminated. Modeling the spatial vanation of the
m ce matrix can reduce the OC of a solution
towards X log(Xy), which forms the basis for the

newer, “fast” techniques. Modeling the spatial
variation of the admittance matrix might offer similar
kinds of savings, but has not yet been tested. For
problems solved using a FPM and requining hours of
computer time for each new frequency sample, the
savings in computer resources resulting from matrix
modeling can be substantial. The models discussed,
especially for the admittance matrix, not only provide a
more useful representation of the physical behavior
continuous in the independent variable, but are valuable
for other purposes such as obtaining transient
responses.
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