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Abstract − The inverse scattering of inhomogeneous 
dielectric cylinders buried in a slab medium by transverse 
electric (TE) wave illumination is investigated. Dielectric 
cylinders of unknown permittivities are buried in second 
space and scattered a group of unrelated waves incident 
from first space where the scattered field is recorded. By 
proper arrangement of the various unrelated incident 
fields, the difficulties of ill-posedness and nonlinearity 
are circumvented, and the permittivity distribution can be 
reconstructed through simple matrix operations. The 
algorithm is based on the moment method and the 
unrelated illumination method. Numerical results are 
given to demonstrate the capability of the inverse 
algorithm. Good reconstruction is obtained even in the 
presence of additive Gaussian random noise in measured 
data. In addition, the effect of noise on the 
reconstruction result is also investigated. 

 
I.    INTRODUCTION 

 
In the last few years, inverse scattering problems of 

objects buried in slab medium have been a growing 
importance in many different fields of applied science, 
with a large potential impact on geosciences and remote 
sensing applications. Typical examples are the detection 
of water pipes buried in the wall, power and 
communication cables buried in the wall, archaeological 
remains and so on. However, the solutions are 
considerably more difficult than those involving objects 
in free space or a half space. This is due to the interaction 
between the air-earth interface and the object, which 
leads to the complicated Green’s function for this three 
layer problem. Most microwave inverse scattering 
algorithms developed are for TM wave illuminations in 
which the vectorial problem can be simplified to a scalar 
one [1 - 10]. On the other hand, much fewer works have 
been reported on the more complicated TE case [11 - 17]. 
In the TE wave excitation case, the presence of 
polarization charges makes the inverse problem more 
nonlinear. As a result, the reconstruction becomes more 
difficult. However, the TE polarization case is useful 
because it provides additional information about the 
object. To the best of our knowledge, in TE case, there is 
still no investigation on the inverse scattering of 
inhomogeneous dielectric cylinders buried in a slab 

medium by unrelated illumination method. 
In this paper, the inverse scattering of 

inhomogeneous dielectric cylinders buried in a slab 
medium by TE wave illumination is investigated. An 
efficient algorithm is proposed to reconstruct the 
permittivity distribution of the objects by using only the 
scattered field measured outside. The algorithm is based 
on the unrelated illumination method [9], [13], [15 - 16]. 
In section II, the theoretical formulation for 
electromagnetic inverse scattering is presented. 
Numerical results for objects of different permittivity 
distributions are given in section III. Finally, conclusions 
are drawn in section IV.    
 

II.     THEORETICAL FORMULATION 
 

Let us consider dielectric cylinders buried in a 
lossless homogeneous half-space as shown in Fig. 1. 

 

 
Fig. 1. Geometry of problem in the x-y plane.  
 
 ( ii σε , ) ,3,2,1=i denote the permittivities and 
conductivities in each region. The permeability is µ0 for 
all material including the scatterers. The axis of the 
buried cylinder is the z-axis; that is, the properties of the 
scatterer may vary with the transverse coordinates only. 
A group of unrelated incident wave with magnetic field 
parallel to the z-axis (i.e., transverse electric, or TE, 
polarization) is illuminated upon the scatterers. 

Owing to the interface, the incident plane wave 
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generates three waves that would exist in the absence of 
the conducting object. Let the unperturbed field be 
represented by 
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Using the vector potential techniques, the internal total 
electric field defined as 
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Here, ik  denotes the wave number in region i and rε  
is the relative permittivity of the dielectric objects. 

)',';,( yxyxG  is the Green’s function, which can be 
obtained by the Fourier transform [18]. For numerical 
implementation of Green’s function, we might face some 
difficulties in calculating this function. This Green’s 
function is in the form of an improper integral, which 
must be evaluated numerically. However, the integral 
converges very slowly when ),( yx  and )','( yx  
approach the interface ay = . Fortunately we find that 
the integral in sG1 , sG2 , and sG3   may be rewritten as a 
closed-form term plus a rapidly converging integral [2]. 
Thus, the whole integral in the Green’s function can be 
calculated efficiently. 
    The direct scattering problem is to calculate the 
scattered field sE  in region 1, while the permittivity 
distribution of the buried objects is given. This can be 
achieved by first solving the total field E  in equations (2) 
and (3) as well as calculating sE  in equations (4) and (5). 
For numerical implementation of the direct problem, the 
dielectric objects are divided into N sufficient small cells. 
Thus the permittivity and the total field within each cell 
can be taken as constants. Then the moment method is 
used to solve equations (2) to (5) with a pulse basis 
function for expansion and point matching for testing 
[19]. Equations (2) to (5) can then be transformed into a 
matrix form 
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where ( i
xE ) and ( i

yE ) represent the N-element incident 

field column vectors and, ( xE ) and ( yE ) are the 

N-element total field column vectors. ( s
xE ) and ( s

yE ) 
denote the M-element scattered field column vectors. 
Here, M is the number of measurement points. The 
matrices [G1], [G2], and [G3] are NN ×  square matrices. 
[G4], [G5], and [G5] are NM ×  matrices. The element in 
matrices [Gi], i =1, 2, 3…6 can be obtained by tedious 
mathematic manipulation (see Appendix). [τ] is a NN ×  
diagonal matrix whose diagonal element are formed from 
the permittivities of each cell minus one. [I] is an identity 

NN ×  matrix. 
For the inverse scattering problem, the permittivity 

distribution of the dielectric objects is to be computed by 
the knowledge of the scattered field measured in region 1. 
In the inversion procedure, 2N different incident column 
vectors are used to illuminate the object, the follow 
equations are obtained, 
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Here, ][ i

tE  and ][ tE  are both NN 22 ×  matrices. 

][ s
tE  is an NM 2×  matrix. It is worth mentioning that 

other than matrix ][ 2tG , the matrix ][]][[ 1 ttt IG +τ  is 
always a well-posed one in any case, therefore we can 
first solve ][ i

tE  in equation (9) and substitute into 
equation (10), and then [τt] can be found by the following 
equation 
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From equation (11), all the diagonal elements in the 
matrix [τ] can be determined by comparing the element 
with the same subscripts which may be any row of both 

][ tΨ  and ][ tΦ , 
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Then the permittivities of each cell can be obtained as 
follow, 

( ) 1+= nnn τε .                              (13) 
Note that there are a total of 2M possible values for each 
element of τ. Therefore, the average value of these 2M 
data is computed and chosen as final reconstruction result 
in the simulation. 

In the above derivation, the key problem is that the 
incident matrices ][ i

tE  must not be a singular matrix, i.e., 

all the incident column vectors that form the ][ i
tE  

matrices, must be linearly unrelated. Thus, if the object is 
illuminated by a group of unrelated incident waves, it is 
possible to reconstruct the permittivity distribution of the 
objects. Note that when the number of cells becomes very 
large; it is difficult to make such a great number of 
independent measurements. In such a case, some 
regularization methods must be used to overcome the 
ill-posedness 
 

III.    NUMERICAL RESULTS 
 

In this section, we report some numerical results 
obtained by computer simulations using the method 
described in section II. Consider a lossless three- layer 
structure ( 0321 === σσσ ) and the width of the 
second layer is 0.2m. The permittivity in each region is 
characterized by 01 εε = , 02 25.2 εε =  and 03 εε = , 
respectively, as shown in Fig. 1. The frequency of the 
incident wave is chosen to be 3 GHz. The incident waves 
are generated by numerous groups of radiators operated 
simultaneously. 

Each group of radiators is restricted to transmit a 
narrow-bandwidth pattern that can be implemented by 
antenna array techniques. By changing the beam 
direction and tuning the phase of each group of radiators, 
one can focus all the incident beams in turn at each cell of 
the object. This procedure is known as Beam Focusing 
[9]. Note that this focusing should be set when the 
scatterer is absent. Clearly, an incident matrix formed in 
this way is diagonally dominant and its inverse matrix 
exists. The measurement is taken from 0.4 m to -0.4 m in 
region 1 at equal spacing. The number of measurement 
points is set to be 9 for each illumination. For avoiding 
trivial inversion of finite dimensional problems, the 
discretization number for the direct problem is four times 
that for the inverse problem in our numerical simulation. 

In the first example, the buried cylinder with a 70 × 

, , , 

, , 
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21 mm rectangular cross section is discretized into 20 × 6 
cells, and the corresponding dielectric permittivities are 
plotted in Fig. 2. The model is characterized by simple 
step distribution of permittivity. Each cell has 3.5 × 3.5 
mm cross-sections. The reconstructed permittivity 
distributions of the object are plotted in Fig. 3. The 
root-mean-square (RMS) error is about 0.9 %. It is 
apparent that the reconstruction is good. 

In the second example, the buried cylinder with a 36 
× 36 mm square cross section is discretized into 10 × 10 
cells, and the corresponding dielectric permittivities are 
plotted in Fig. 4. The model is characterized by a 
four-layer contrast of permittivity. Each cell has 3 × 3 
mm cross-sections. The reconstructed permittivity 
distributions of the object are plotted in Fig. 5. The 
root-mean-square (RMS) error is about 1.21 %. We can 
see the reconstruction is also good. 

For investigating the effect of noise, we add to each 
complex scattered field a quantity b+cj,      

        

 
 

Fig. 2. Original relative permittivity distribution for 
example 1. 
 
 

 
 

Fig. 3. Reconstructed relative permittivity distribution for 
example 1. 
 
where b and c are independent random numbers having a 
Gaussian distribution over 0 to the noise level times the 

RMS value of the scattered field. The noise levels applied 
include 10-5, 10-4, 10-3, 10-2, and 10-1 in the simulations. 
The numerical results for examples 1 and 2 are plotted in 
Figs. 6 and 7, respectively. They show the effect of noise 
is tolerable for noise levels below 1%. 
Our method depends on the condition number of ][ i

tE ; 
that is, on having 2N unrelated measurements. The 
procedure will generally not work when the number of 
unknowns gets very large. This is due to the fact that it is 
difficult to make such a great number of measurements 
and make them all unrelated. As a result, the condition 
number of ][ i

tE  will become large while the number of 
unknowns is very large. In such a case, the regularization 
method should be employed to overcome the ill- 
posedness. For instance, the pseudoinverse transform 
techniques [7] can be applied for the inversion of the 

][ i
tE  matrix. 

 
 

  
 

Fig. 4. Original relative permittivity distribution for 
example 2. 
 
 

 
 

Fig. 5. Reconstructed relative permittivity distribution for 
example 2. 
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Fig. 6. Reconstructed error as a function of noise level for 
example 1. 
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Fig. 7. Reconstructed error as a function of noise level for 
example 2. 
 

IV.     CONCLUSIONS 
 

Imaging algorithm for TE case is more complicated 
than that for the TM case, due to the added difficulties in 
the polarization charges. Nevertheless, the polarization 
charges cannot be ignored for this two-dimensional 
problem and all three-dimensional problems. In this 
paper, an efficient algorithm for reconstructing the 
permittivity distribution of inhomogeneous dielectric 
cylinders buried in a slab medium, illuminated by TE 
waves, has been proposed. By properly arranging the 
direction of various unrelated waves, the difficulty of 
ill-posedness and nonlinearity is avoided. Thus, the 
permittivity distribution can be obtained by simple 
matrix operations. The moment method has been used to 
transform a set of integral equations into matrix form. 
Then these matrix equations are solved by the unrelated 
illumination method. Numerical simulation for imaging 
the permittivity distribution of an inhomogeneous 
dielectric cylinder buried in a slab medium has been 
carried out and good reconstruction has been obtained 
even in the presence of Gaussian noise in measured data. 

This algorithm is very effective and efficient, since no 
iteration is required. 
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