Various Approaches to Torque Calculations by FEM and BEM
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Abstract - Different algorithms for the torque calculation by
Maxwell stress method (MSM) are dealt with in the paper. The
aim of designing these algorithms was to reduce the influence of the
choice of the integration path and discretization of the air gap
between the stator and rotor on the accuracy of the results. In some
of these algorithms the connection between the stator and rotor s
released. For the magnetic ficld calculation the finite element
method (FEM), boundary element method (BEM), and hybrid
finite element - boundary element method (HM) were used. The
calculation results were tested on 3 permanent magnet DC motor
and a single phase brushless motor.

I. INTRODUCTION

Torque is one of the basic parameters of each motor. For the
torque calculation different methods exist. Recently, the most
frequently used methods have been those where the torque is
calculated directly from the magnetic field solution in the motor.
The accuracy of these methods depends to a great extent on the
accuracy of the magneti¢ field calculation. The influence of the
error of the magnetic field calculation on the torque calculation
depends also on the calculation procedure, ie. on the applied
methed. For this purpose three basic methods are mainly used:
the virmal work method, Maxwell stress method, and
magnetizing current method.

The MSM is frequently used in practice due to its simplicity
and good results. It enables the calculation of the total torque
acting on the rotor or its space distribution arcund the rotor. The
method has also some weaknesses. The results namely depend
on the choice of the integration path in the element and on the
shape of elements over which the integration path runs. The
mentioned drawbacks can be reduced in several ways. Some of
them are: the use of higher order elements, mesh refinement in
the space between the rotor and stator, adaptation of
discretization elements and use of different interpolations of
magnetic quantities in the space between the stator and rotor.

The requirements in designing the algonthms were the
following: to use the automatic discretization [9] by the first
order element, to obtain a good result with a relatively coarse
discretization, and that the rotor position is not determined with
discretization.

II. THE TORQUE CALCULATION BY THE MSM

In the MSM the torque is calculated on the basis of the magnetic
field distribution on the closed surface in the air gap around the
rotor (1).

1
B? rxn:IdS 1)
7 (rxn)

T=i|:”i(rx3)(B-n)—

0

where:
B -vector of magnetic flux density,
# -radius from the rotation axis to the integration surface 5,
n -umit vector normal to the integration surface,
M, -permeability of vacuum,
B -absolute value of magnetic flux density.

In the numerical calculation the integral becomes a sum. For
the 2D torque calculation the equation has the following form:
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where:
B,., B. -normal and tangential components of Bon /. ,
I ¢ part of the integration path,
L -axial length of the rotor,
M, -the mumber of parts on the integration path.

IH. ALGORITHMS

In such calculation the accuracy can be increased by
increasing N/, and the accuracy of B, B, in the summations
(2). For this purpose four algorithms were developed.

Algorithm A

The magnetic field is calculated by FEM {1]. In the field
calculation, first order discretization elements are used. In
elements the magnetic density is constant and therefore it is
reasonable that each element over which the integration path
runs represents one component in sum (2). In this equation
index e represents the contribution of the element ¢. The
accuracy of the calculation of the element contribution is
infiuenced by the shape of the element and position of the
integration path in it In the used element the tangential
components are discontinuous on the edges of the element. The
more the discretization eclements resemble the equilateral
triangles, the smaller the influence of the discontimuity. For the
first order element it is also characteristic that the calculated
value of the magnetic density (3) is the most accurate in the
center of gravity. It is therefore favorable to choose the
integration path in such a way that it runs through the center of
gravity of the element.
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where:
N; -shape function of the finite eiement,
Ai -nodal values z components of magnetic vector
potentials.

Algorithm B

The magnetic ficld is calculated by FEM in the same way as
in the foregoing case. Afterwards the air gap region between the
rotor and stator is extracted and in this region the inferpolation
of the magnetic vector potential by using Bernstein-Bezier’s
surfaces is carried out [4], [5). A complete interpolation surface
will be composed of small triangular patches that are smoothly
connected (C' continuity) at every vertex and along all edges of
the finite element mesh, As an interpolation surface over given
vertices of the triangular mesh, we use a surface compotunded
from triangular Bernstein-Bezier’s patches of the 3™ order (4).
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where:
r. 5, t - baricentric coordinates of the element and
Ajx - z components of magnetic vector potentials at
control points.

The components of the magnetic flux density (5), which we
need for the torque calculation (2), can be determined at any
point by carrying out the curl operation on (4), since
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With this we achieved that the calculated components of the
magnetic induction in the air gap change continuously and the
calculated torque does not depend on discretization,

Algorithm C

In this algorithm the magnetic field in the entire problem
domain is calculated by FEM, as in algorithm A or B.
Afterwards the air gap region between the rotor and stator is
extracted and represents now the Dirichlet’s linear problem
with known values of the magnetic vector potential on the inner
and outer boundary. The field solution by BEM (by mixed
boundary elements) gives 84/6n on both boundaries. The
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components of the magnetic flux density in this case, can be
determined at any point by ({6). With this we achieved that the
calculated magnetic densities are continuos in the air gap. In the
torque calculation (2), as in algorithm C, the number of
summands is not conditioned by the number of discretization
elements over which the integration path mns. By increasing the
number of summands the accuracy of the torque calculation is

increased.
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where:

A -boundary values z components of magnetic vector

potentials and

G - 2D Green’s function

Algorithm D

The magnetic field is calculated by HM [7], [8]. BEM is used
in the air gap between the rotor and stator, and FEM in ali other
regions. The same characteristics as in algorithm C apply to the
solutions in the air gap region.

All algorithms with main steps for torque calculation by
MMS are shown in Fig.1.

Calculation of torque
Step | Calculation
i Field
1+ Recalculation A
2 Bn, Bt
3 Torque

Fig. 1. Algorithms A, B, C, D.

I'V. NUMERICAL EXAMPLES

FRST EXAMPLE

The algorithms were applied and tested in a cogging torque
calculation of a permanent magnet DC motor. The discretization
of the regions in the motor as used in the FEM and no-load
magnetic field for the rotor position of 0 degrees are shown in
Fig. 2. The cogging torque was calculated for different choices of
the integration path. The integration path radius was changed
from the rotor fo the stator border (Fig. 3). This calculation was
made for the rotor position of four degrees. In this position the
cogging torque is maximum.
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Fig. 3. Influence of the integration path radius on the cogging torque.

SECOND EXAMPLE

A detailed investigation of the cogging torque calculation
was performed for a one-phase brushless motor, too (Fig.4).
The cogging torque was calculated for different choices of
the integration path. The integration path radius has been
changed from the rotor to the stator border. The results for
different paths of this calculation by the algorithms A and B
are shown in Table 1. This calculation was made at the 30
degree rotor position. The cogging torque calculation was
also made for different rotor positions within one pole
division. This division is 60 degrees. In this example the
integration path is chosen in the middle of the air gap
(r=19.2 mm). In Fig. 5, the results of the cogging torque
calculation obtained by the algorithm B together with the
measured values are shown. In Fig. 6 , Fig. 7 and Fig. 8, B,,
B, calculations obtained in the algorithms A, C and D are
shown.

TABLE |
INFLUENCE OF THE INTEGRATION PATH RADIUS ON THE COGGING TORQUE.

r (mm)| T by algorithm| 7 by algorithm
A (Nm) B (Nm)
19021 6.5284766E-02 5.45484E-02
1904 | 6.2757313E-02 5.43986E-02
19.08 | 5.7858620E-02 5.40975E-02
19.12{ 5.3158958E-02 5.37947E-02
19.16 | 5.3120464E-02]  5.34902E-02

R e
19.22| 5.3704765E-02 5.28210E02
19.24 | 5.3899023E-02 5.26665E-02
19.26 -0.1214754 5.25117E02
19.28 | 2.5657695E-02 5.23564E-02
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Fig. 5. Copging torque: calculated by zlgorithm B and measured values.
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Fig 6. By, By calculated in the air gap by FEM.
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Fig. 7. By, B; calculated in the air gap by BEM (FEM+BEM).
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Fig. 8. By, B, caleulated in the air gap by HM.
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IV. CONCLUSION

In algorithm A the change of the integration path causes large
deviations of the calculated torques (Fig. 3, Fig. 5, Table I}. In
the case of small torques the calculation errors can be up 0
100%. In such cases this algorithm is therefore useless.

In algorithms B and C the calculated values of torques are
rather independent of the choice of the integration path.
Numerically they are favorable, since the magnetic quantities int
the air gap are determined in two steps. At first, the field in the
entire motor is calculated by FEM and then only the air gap
region is treated. The calculated values of magnetic densities are
continuos in this area.

Algorithm D is numerically less favorable since HM is used.
The use of BEM in the air gap region results in a nonsymmetric
system matrix. The advantage of the algorithm is the possibility
to release the connections between the rotor and stator, which is
favorable if the rotor position is changing in the torque
calculation.
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